CN103866162A - 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金 - Google Patents

一种具有高裂纹扩展抗力的镍基粉末冶金高温合金 Download PDF

Info

Publication number
CN103866162A
CN103866162A CN201410071312.1A CN201410071312A CN103866162A CN 103866162 A CN103866162 A CN 103866162A CN 201410071312 A CN201410071312 A CN 201410071312A CN 103866162 A CN103866162 A CN 103866162A
Authority
CN
China
Prior art keywords
superalloy
phase
based powder
crack propagation
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410071312.1A
Other languages
English (en)
Other versions
CN103866162B (zh
Inventor
王文姣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201410071312.1A priority Critical patent/CN103866162B/zh
Publication of CN103866162A publication Critical patent/CN103866162A/zh
Application granted granted Critical
Publication of CN103866162B publication Critical patent/CN103866162B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

本发明涉及镍基粉末冶金高温合金领域中一种具有高裂纹扩展抗力的镍基粉末冶金高温合金,所述镍基粉末冶金高温合金按质量百分比含量为:Co 12.9%、Cr 15.7%、W 3.1%、Mo 2.6%、Al 2.2%、Ti 3.8%、Nb 0.8%、C 0.04%、Zr 0.04%、RE 0.08%、Hf 0.3~0.6%、余量为Ni;所述高温合金中第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.457~0.462Ti0.483~0.487Nb0.042~0.043Hf0.008~0.018),二次γ′相平均尺寸为180~220nm,二次γ′相占总γ′相的质量分数为49.6~53.2%,一次γ′和三次γ′相之和占总γ′相的质量分数为46.8~50.4%。加入微量元素Hf,从而使采用等离子旋转电极制粉、直接热等静压成形的镍基粉末冶金高温合金经过相同的热处理后,合金中相的组成、尺寸和数量发生变化,裂纹扩展速率低于不加Hf合金的裂纹扩展速率。

Description

一种具有高裂纹扩展抗力的镍基粉末冶金高温合金
技术领域
本发明属于镍基粉末冶金高温合金制备领域,特别是涉及一种具有高裂纹扩展抗力的镍基粉末冶金高温合金。 
背景技术
采用粉末冶金技术生产的高温合金具有晶粒细小、组织均匀、无宏观偏析、热加工性能和力学性能良好等优异特性,在航空航天领域先进发动机涡轮盘等热端部件中有着广泛应用,裂纹扩展速率是涡轮盘损伤容量设计和寿命预测的重要指标之一。影响裂纹扩展速率的因素可分为外部因素和内部因素两大类:外部因素指材料的工作条件,如温度、频率、应力比、保载时间等;内部因素指材料组织和性能,如材料的晶粒度、晶界弯曲程度及化学成分等。 
本发明是在镍基粉末冶金高温合金中加入微量元素Hf,使合金中主要相的组成、尺寸和数量发生变化,提高合金的裂纹扩展抗力。 
发明内容
本发明是通过在镍基粉末冶金高温合金中加入微量元素Hf 得到具有高裂纹扩展抗力的镍基粉末冶金高温合金,包括: 
(1) 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金,按质量百分比含量为:Co12.9%、Cr15.7%、W4.0%、Mo4.0%、Al2.2%、Ti3.8%、Nb0.8%、C0.04%、Zr0.04%、Hf0.3~0.6%、余量为Ni;所述高温合金中第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.457~0.462Ti0.483~0.487Nb0.042~0.043Hf0.008~0.018),二次γ′相平均尺寸为180~220nm,二次γ′相占总γ′相的质量分数为49.6~53.2%,三次γ′相占总γ′相的质量分数为46.8~50.4%。 
(2) 所述高温合金中MC型碳化物组成为(Ti0.64~0.69Nb0.25~0.26Hf0.04~0.09Zr0.0078~0.0080)C,质量分数为0.22~0.23%。 
(3) 所述的具有高裂纹扩展抗力的镍基粉末冶金高温合金采用等离子旋转电极制备合金粉末,粉末粒度范围为50~150μm。 
(4) 所述的具有高裂纹扩展抗力镍基粉末冶金高温合金,所述Hf含量为0.6%。 
经过特定的热处理使得合金微观结构具有非常不同的形式,从而微观结构的改变,大大改变了该合金的性能。
具体实施方式
下面通过具体的实施例对本发明作进一步的说明。 
(1) 镍基粉末冶金高温合金Alloy-1按质量百分比含量为:Co12.9%、Cr15.7%、W4.0%、Mo4.0%、Al2.2%、Ti3.8%、Nb0.8%、C0.04%、Zr0.04%、余Ni。其经过等离子旋转电极制粉、粉末粒度范围为50~150μm,经过相同的热等静压之后,进行固溶热处理,将冷轧后的合金板材在箱式电阻炉中进行固溶热处理,固溶温度为860-880℃,保温时间为2.8~4.8h,水淬;时效热处理:分为如下五步:时效温度为315~330℃,保温时间为12~28min,水淬;再加热到410~430℃进行第二次时效处理,时效时间为1.9~2.1h,水淬;再加热到480~495℃进行第三次时效,时效时间为2~2.5h,水淬;再加热到520~550℃进行第四次时效,时效时间为5~8h,水淬;再加热到580~620℃进行第五次时效,时效时间为10~12h,水淬,得到成品。检测得到其微观组织为:合金中第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.463Ti0.493Nb0.044),二次γ′相平均尺寸为100nm,二次γ′相占总γ′相的质量分数为68.8%,三次γ′相占总γ′相的质量分数为31.2%;碳化物组成为(Ti0.76Nb0.23Zr0.009)C,质量分数为0.18% 
(2) 含Hf为0.3%的镍基粉末冶金高温合金Alloy-2按质量百分比含量为: Co12.9%、Cr15.7%、W4.0%、Mo4.0%、Al2.2%、Ti3.8%、Nb0.8%、C0.04%、Zr0.04%、Hf0.3%、余Ni。其经过等离子旋转电极制粉、粉末粒度范围为50~150μm,经过相同的热等静压之后,进行固溶热处理,将冷轧后的合金板材在箱式电阻炉中进行固溶热处理,固溶温度为860-880℃,保温时间为2.8~4.8h,水淬;时效热处理:分为如下五步:时效温度为315~330℃,保温时间为12~28min,水淬;再加热到410~430℃进行第二次时效处理,时效时间为1.9~2.1h,水淬;再加热到480~495℃进行第三次时效,时效时间为2~2.5h,水淬;再加热到520~550℃进行第四次时效,时效时间为5~8h,水淬;再加热到580~620℃进行第五次时效,时效时间为10~12h,水淬,得到成品。检测得到其微观组织为:第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.462Ti0.487Nb0.043Hf0.008),二次γ′相平均尺寸为180nm,二次γ′相占总γ′相的质量分数为53.2%,三次γ′相占总γ′相的质量分数为46.8%;碳化物组成为(Ti0.69Nb0.26Hf0.04Zr0.008)C,质量分数为0.22% 
(3) 含Hf为0.6%的镍基粉末冶金高温合金Alloy-3按质量百分比含量为: Co12.9%、Cr15.7%、W4.0%、Mo4.0%、Al2.2%、Ti3.8%、Nb0.8%、C0.04%、Zr0.04%、Hf0.6%、余Ni。其经过等离子旋转电极制粉、粉末粒度范围为50~150μm,经过相同的热等静压之后,进行固溶热处理,将冷轧后的合金板材在箱式电阻炉中进行固溶热处理,固溶温度为860-880℃,保温时间为2.8~4.8h,水淬;时效热处理:分为如下五步:时效温度为315~330℃,保温时间为12~28min,水淬;再加热到410~430℃进行第二次时效处理,时效时间为1.9~2.1h,水淬;再加热到480~495℃进行第三次时效,时效时间为2~2.5h,水淬;再加热到520~550℃进行第四次时效,时效时间为5~8h,水淬;再加热到580~620℃进行第五次时效,时效时间为10~12h,水淬,得到成品。检测得到其微观组织为:第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.457Ti0.483Nb0.042Hf0.018),二次γ′相平均尺寸为220nm,二次γ′相占总γ′相的质量分数为49.6%,三次γ′相占总γ′相的质量分数为50.4%;碳化物组成为(Ti0.64Nb0.25 Hf0.09 Zr0.0078)C,质量分数为0.23% 
以上三种合金取下裂纹扩展速率试样,分别在650℃、力值比R=0.05、加载频率为10-30次/min(三角波,无保载)和650℃、力值比R=0.05、保载90s的试验条件下进行疲劳裂纹扩展速率试验,表1给出了应力强度因子范围ΔK=50MPa 
Figure DEST_PATH_45681DEST_PATH_IMAGE001
(mm/cycle)时合金的裂纹扩展速率。可见加入微量元素Hf后的镍基粉末冶金高温合金Alloy-2和Alloy-3具有较低的裂纹扩展速率,在无保载条件下,与Alloy-1相比,裂纹扩展速率减低了33.0%~59.0%,其中含0.6%Hf合金的裂纹扩展速率最低;在保载条件下,与Alloy-1相比,裂纹扩展速率降低了58.5~70.4%,含Hf0.6%的合金的裂纹扩展速率最低。表2给出了三种合金的高温冲击和650℃/970MPa持久性能,加Hf后,合金的高温冲击和持久性能良好。 
表1  在应力强度因子范围ΔK=50MPa(m1/2) (mm/cycle)时合金的裂纹扩展速率 
表2  合金750℃拉伸和650℃/970MPa持久性能 
Figure DEST_PATH_744833DEST_PATH_IMAGE003

Claims (4)

1.一种具有高裂纹扩展抗力的镍基粉末冶金高温合金,其特征在于:所述高温合金按质量百分比含量为:Co12.9%、Cr15.7%、W3.1%、Mo2.6%、Al 2.2%、Ti 3.8%、Nb 0.8%、C 0.04%、Zr 0.04%、RE 0.08%、Hf 0.3~0.6%、余量为Ni;所述高温合金中第二强化相γ′相组成为(Ni0.94Co0.06)3(Al0.457~0.462Ti0.483~0.487Nb0.042~0.043Hf0.008~0.018),二次γ′相平均尺寸为180~220nm,二次γ′相占总γ′相的质量分数为49.6~53.2%,三次γ′相占总γ′相的质量分数为46.8~50.4%。
2.根据权利要求1所述的具有高裂纹扩展抗力的镍基粉末冶金高温合金,其特征在于:所述高温合金中MC型碳化物组成为(Ti0.64~0.69Nb0.25~0.26Hf0.04~0.09Zr0.0078~0.0080)C,质量分数为0.22~0.23%。
3. 根据权利要求1和2所述的具有高裂纹扩展抗力的镍基粉末冶金高温合金,其特征在于:合金采用等离子旋转电极制备合金粉末,粉末粒度范围为50~150μm。
4. 根据权利要求1或3所述的具有高裂纹扩展抗力的镍基粉末冶金高温合金,其特征在于:所述Hf含量为0.6%。
CN201410071312.1A 2014-03-02 2014-03-02 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金 Active CN103866162B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410071312.1A CN103866162B (zh) 2014-03-02 2014-03-02 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410071312.1A CN103866162B (zh) 2014-03-02 2014-03-02 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金

Publications (2)

Publication Number Publication Date
CN103866162A true CN103866162A (zh) 2014-06-18
CN103866162B CN103866162B (zh) 2015-10-14

Family

ID=50905159

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410071312.1A Active CN103866162B (zh) 2014-03-02 2014-03-02 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金

Country Status (1)

Country Link
CN (1) CN103866162B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624474A (zh) * 2016-04-11 2016-06-01 西安欧中材料科技有限公司 一种超细高等级球形ep741np合金粉末的制备方法
CN105821359A (zh) * 2016-04-11 2016-08-03 西安欧中材料科技有限公司 一种高塑性镍基合金的热处理工艺
JP2019044209A (ja) * 2017-08-30 2019-03-22 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
JP2021075796A (ja) * 2021-01-15 2021-05-20 山陽特殊製鋼株式会社 積層造形体
US11148196B2 (en) 2016-05-09 2021-10-19 Siemens Energy Global GmbH & Co. KG Pre-treatment, method for additive production of a component, and device
CN114112668A (zh) * 2021-11-19 2022-03-01 华能国际电力股份有限公司 一种燃气轮机高温静止部件基体裂纹扩展寿命预测模型

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455033A (ja) * 1990-06-26 1992-02-21 Kobe Steel Ltd Ni基超合金製品の恒温鍛造方法
CN1914339A (zh) * 2003-12-19 2007-02-14 霍尼韦尔国际公司 具有增强的抗疲劳和抗蠕变性的高温粉末冶金超合金
US20100329883A1 (en) * 2009-06-30 2010-12-30 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
CN102392147A (zh) * 2011-11-16 2012-03-28 钢铁研究总院 超细晶镍基粉末高温合金的制备方法
CN102676881A (zh) * 2012-06-12 2012-09-19 钢铁研究总院 消除原始颗粒边界的镍基粉末冶金高温合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0455033A (ja) * 1990-06-26 1992-02-21 Kobe Steel Ltd Ni基超合金製品の恒温鍛造方法
CN1914339A (zh) * 2003-12-19 2007-02-14 霍尼韦尔国际公司 具有增强的抗疲劳和抗蠕变性的高温粉末冶金超合金
US20100329883A1 (en) * 2009-06-30 2010-12-30 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
CN102392147A (zh) * 2011-11-16 2012-03-28 钢铁研究总院 超细晶镍基粉末高温合金的制备方法
CN102676881A (zh) * 2012-06-12 2012-09-19 钢铁研究总院 消除原始颗粒边界的镍基粉末冶金高温合金

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105624474A (zh) * 2016-04-11 2016-06-01 西安欧中材料科技有限公司 一种超细高等级球形ep741np合金粉末的制备方法
CN105821359A (zh) * 2016-04-11 2016-08-03 西安欧中材料科技有限公司 一种高塑性镍基合金的热处理工艺
US11148196B2 (en) 2016-05-09 2021-10-19 Siemens Energy Global GmbH & Co. KG Pre-treatment, method for additive production of a component, and device
JP2019044209A (ja) * 2017-08-30 2019-03-22 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
JP2021075796A (ja) * 2021-01-15 2021-05-20 山陽特殊製鋼株式会社 積層造形体
JP7128916B2 (ja) 2021-01-15 2022-08-31 山陽特殊製鋼株式会社 積層造形体
CN114112668A (zh) * 2021-11-19 2022-03-01 华能国际电力股份有限公司 一种燃气轮机高温静止部件基体裂纹扩展寿命预测模型
CN114112668B (zh) * 2021-11-19 2024-03-12 华能国际电力股份有限公司 一种燃气轮机高温静止部件基体裂纹扩展寿命预测模型

Also Published As

Publication number Publication date
CN103866162B (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
Yeh et al. Breakthrough applications of high-entropy materials
CN103866162B (zh) 一种具有高裂纹扩展抗力的镍基粉末冶金高温合金
Kawagishi et al. Development of an oxidation-resistant high-strength sixth-generation single-crystal superalloy TMS-238
CN106521243B (zh) 一种Ni-Cr-Mo-Nb-Al-Ti系高温合金材料、其制备方法及其应用
Sun et al. Effect of Y2O3 contents on oxidation resistance at 1150 C and mechanical properties at room temperature of ODS Ni-20Cr-5Al alloy
US8734716B2 (en) Heat-resistant superalloy
EP3299481B1 (en) High-strength, heat-resistant ni-base alloy member, method for producing same, and gas turbine
Xu et al. Progress in application of rare metals in superalloys
US10060012B2 (en) High-temperature TiAl alloy
US9039960B2 (en) Methods for processing nanostructured ferritic alloys, and articles produced thereby
Xie et al. Orientational dependence of recrystallization in an Ni-base single-crystal superalloy
JP2013531739A5 (zh)
JP2016532777A (ja) 超合金及びそれからなる部品
US9353427B2 (en) Ni-based alloy, and gas turbine rotor blade and stator blade each using same
Kim et al. Gamma Titanium Aluminide Alloys 2014: A Collection of Research on Innovation and Commercialization of Gamma Alloy Technology
CN102676881A (zh) 消除原始颗粒边界的镍基粉末冶金高温合金
Chiou et al. Effects of aluminum addition on the high temperature oxidation behavior of CM-247LC Ni-based superalloy
Wang et al. Effects of heat treatment on microstructure and high-temperature tensile properties of nickel-based single-crystal superalloys
Ogunbiyi et al. Spark plasma sintering of Inconel 738LC: densification and microstructural characteristics
CN103173865A (zh) 一种低成本镍基单晶高温合金及其制备方法
Liu et al. Dynamic recrystallization and microstructure evolution of a powder metallurgy nickel-based superalloy under hot working
CN103820678A (zh) 高裂纹扩展抗力的镍基高温合金
EP2853612B1 (en) High temperature niobium-bearing nickel superalloy
JP2018162522A (ja) 酸化物粒子分散強化型Ni基超合金
JPS5896846A (ja) ニツケル基超合金

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: INST OF IRON + STEEL

Free format text: FORMER OWNER: WANG WENJIAO

Effective date: 20150722

C41 Transfer of patent application or patent right or utility model
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Zhang Yiwen

Inventor after: Han Shoubo

Inventor after: Liu Mingdong

Inventor after: Chi Yue

Inventor after: Xia Tian

Inventor after: Sun Zhikun

Inventor after: Liu Jiantao

Inventor after: Zhang Ying

Inventor after: Jia Jian

Inventor after: Tao Yu

Inventor after: Zhang Guoxing

Inventor before: Wang Wenjiao

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: WANG WENJIAO TO: ZHANG YIWEN CHI YUE XIA TIAN SUN ZHIKUN LIU JIANTAO ZHANGYING JIA JIAN TAO YU ZHANG GUOXING HAN SHOUBO LIU MINGDONG

TA01 Transfer of patent application right

Effective date of registration: 20150722

Address after: 100081 Haidian District Institute of South Road, Beijing, No. 76

Applicant after: Central Iron & Steel Research Institute

Address before: 102218, Beijing, Changping District Tiantongyuan west two district 18-4-1302

Applicant before: Wang Wenjiao

C14 Grant of patent or utility model
GR01 Patent grant