CN103852222A - 阳极渗漏位置检测 - Google Patents

阳极渗漏位置检测 Download PDF

Info

Publication number
CN103852222A
CN103852222A CN201310650287.8A CN201310650287A CN103852222A CN 103852222 A CN103852222 A CN 103852222A CN 201310650287 A CN201310650287 A CN 201310650287A CN 103852222 A CN103852222 A CN 103852222A
Authority
CN
China
Prior art keywords
seepage
anode
fuel cell
useful area
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310650287.8A
Other languages
English (en)
Other versions
CN103852222B (zh
Inventor
D.C.迪菲奥尔
M.辛哈
S.R.法尔塔
M.A.朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN103852222A publication Critical patent/CN103852222A/zh
Application granted granted Critical
Publication of CN103852222B publication Critical patent/CN103852222B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0444Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04791Concentration; Density
    • H01M8/04798Concentration; Density of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04097Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04402Pressure; Ambient pressure; Flow of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/0441Pressure; Ambient pressure; Flow of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

本发明涉及阳极渗漏位置检测。一种用于量化燃料电池系统中阳极渗漏位置的系统和方法。该系统和方法包括确定在燃料电池堆的阳极子系统中存在渗漏并且使用第一渗漏流量值和第一操作参数估计第一有效渗漏面积。该系统和方法还包括增加到燃料电池堆的阴极侧的空气流并且使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积。系统和方法还包括将第一渗漏有效面积和第二渗漏有效面积进行比较并且基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置。

Description

阳极渗漏位置检测
技术领域
本发明概括地涉及用于确定在燃料电池系统中的阳极渗漏的位置的系统和方法,并且更具体地涉及用于量化阳极渗漏位置、渗漏的外流位置、以及燃料电池系统中的渗漏的有效面积的系统和方法。
背景技术
相关技术的讨论
氢气是非常有吸引力的燃料,因为其清洁并且能被用于在燃料电池内高效地产生电能。氢气燃料电池是电化学设备,其包括阳极和阴极以及它们之间的电解质。阳极接收氢气气体而阴极接收氧气或空气。氢气气体在阳极催化剂内被分解以产生自由质子和电子。质子穿过电解质到达阴极。质子在阴极催化剂中与氧和电子反应以生成水。来自阳极的电子不能穿过电解质,并且因此被引导通过负载以在被发送到阴极之前做功。
质子交换膜燃料电池(PEMFC)是流行的用于车辆的燃料电池。PEMFC通常包括固体聚合物电解质质子传导膜,例如全氟磺酸膜。阳极和阴极通常包括细分的催化剂颗粒,通常是铂(Pt),其被支撑在碳颗粒上并与离聚物混合。催化剂混合物被沉积在膜的相对侧上。阳极催化剂混合物、阴极催化剂混合物和膜的组合定义了膜电极组件(MEA)。MEA制造起来相对昂贵并且要求一定条件才能有效操作。
若干燃料电池通常被组合到燃料电池堆中以生成期望的功率。例如,典型的用于车辆的燃料电池堆可具有两百或更多的被堆叠的燃料电池。燃料电池堆接收阴极输入气体,通常是由压缩机强迫通过燃料电池堆的空气流。不是所有的氧气都被燃料电池堆消耗并且一些空气被作为阴极废气输出,该阴极废气可能包括作为燃料电池堆副产品的水。燃料电池堆还接收阳极氢气输入气体,其流入燃料电池堆的阳极侧。
燃料电池堆包括一系列的双极板,这些双极板在燃料电池堆中被定位在若干MEA之间,其中双极板和MEA被定位在两个端板之间。双极板包括用于堆中的邻近的燃料电池的阳极侧和阴极侧。阳极气体流动通道被设置在双击板的阳极侧上,其允许阳极反应物气体流到相应的MEA。阴极气体流动通道被设置在双击板的阴极侧上,其允许阴极反应物气体流到相应的MEA。一个端板包括阳极气体流动通道,而另一端板包括阴极气体流动通道。双极板和端板都由导电材料制成,例如不锈钢或导电复合材料。端板将由燃料电池产生的电能导出燃料电池堆。双极板还包括流动通道,冷却流体流过该流动通道。
必须准确地确定通过在燃料电池系统的阳极子系统中的泄放阀、排放阀、和可能的其它阀的流速,来知晓何时要关闭特定阀,这是本领域技术人员熟知的。传统的阀孔模型工作相当良好,但是须进行零件之间的变化,因为该模型假设了孔的有效面积。另外,孔模型计算还要求在进口和出口压力之间的差以确定流量。对于某些已知的系统,这个压力差的大小是与压力传感器的误差同量级的,这可导致大估计误差。
2009年12月11日提交的、名称为“Injector Flow Measurement for Fuel Cell Applications”、被转让给本申请的受让人并通过引用并入本文的美国专利申请12/636276公开了用于确定通过燃料电池系统中的阀的流量的方法。刚好在喷射器脉冲之间且刚好在该喷射器脉冲之后测量阳极子系统压力,并且确定该压力之间的差。这个压力差、阳极子系统的体积、理想气体常数、阳极子系统温度、在喷射事件期间由燃料电池堆的反应消耗的燃料、和通过燃料电池堆的燃料电池中的膜的燃料跨越被用来确定通过阀的流量。2010年12月17日提交的、名称为“Flow Estimation Based on Anode Pressure Response in Fuel Cell System”、转让给本申请的受让人并通过引用并入本文的美国专利申请12/971982确定了从阳极子系统出来的阳极气体的流量,并且也能够确定在阳极子系统是否存在渗漏。不过,渗漏的位置和渗漏的有效面积是不知道的。因此,在本领域中需要一种方式来量化阳极渗漏位置、出口流位置和渗漏的有效面积,从而能够实现对燃料电池系统模型的有目的的补救行动和调节。
发明内容
根据本发明的教导,公开了用于量化燃料电池系统中的阳极渗漏位置的系统和方法,其包括确定在燃料电池堆的阳极子系统中存在渗漏并且使用第一渗漏流量值和第一操作参数估计第一有效渗漏面积。该系统和方法还包括增加到燃料电池堆的阴极侧的空气流并且使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积。系统和方法还包括将第一渗漏有效面积和第二渗漏有效面积进行比较并且基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置。
通过结合附图理解下面的描述和所附的权利要求能够容易理解本发明的另外的特征。
本发明还提供了如下方案:
方案1. 一种用于量化燃料电池系统中阳极渗漏位置的方法,所述方法包括:
              确定在燃料电池系统的阳极子系统中存在渗漏;
              使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积;
              增加到燃料电池堆的阴极侧的空气流;
              使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积;
              将第一渗漏有效面积与第二渗漏有效面积进行比较;以及
              基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置。
方案2. 如方案1所述的方法,其中,估计第一和第二渗漏有效面积包括估计三个不同的潜在渗漏外流位置的第一和第二渗漏有效面积。
方案3. 如方案2所述的方法,其中,三个不同的渗漏外流位置是阴极出口、阴极进口或周围环境。
方案4. 如方案3所述的方法,其中,三个不同的渗漏外流位置被用于建立第一组有效渗漏面积和第二组有效渗漏面积。
方案5. 如方案4所述的方法,其中,第一组有效渗漏面积与第二组有效渗漏面积比较以确定阳极外流渗漏位置。
方案6. 如方案1所述的方法,还包括,增加阳极子系统中的氢气浓度并且使用增加的氢气浓度确定阳极渗漏位置。
方案7. 如方案6所述的方法,其中,使用增加的氢气浓度确定阳极渗漏位置包括确定阳极废气气体的分子量是否有变化。
方案8. 如方案1所述的方法,还包括,基于确定的阳极渗漏位置和有效渗漏面积采取补救行动。
方案9. 一种用于量化燃料电池系统中阳极渗漏位置的方法,所述方法包括:
              确定在燃料电池系统的阳极子系统中存在渗漏;
              使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积;
              增加到燃料电池堆的阴极侧的空气流;
              使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积;
              将第一渗漏有效面积与第二渗漏有效面积进行比较;
              基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置;
              增加阳极子系统中的氢气浓度;以及
              使用增加的氢气浓度确定阳极渗漏位置。
方案10. 如方案9所述的方法,其中,估计第一和第二渗漏有效面积包括估计三个不同的潜在渗漏外流位置的第一和第二渗漏有效面积。
方案11. 如方案10所述的方法,其中,三个不同的渗漏外流位置是阴极出口、阴极进口或向着周围环境。
方案12. 如方案11所述的方法,其中,三个不同的渗漏外流位置被用于建立第一组有效渗漏面积和第二组有效渗漏面积。
方案13. 如方案12所述的方法,其中,第一组有效渗漏面积与第二组有效渗漏面积比较以确定阳极外流渗漏位置。
方案14. 如方案9所述的方法,其中,使用增加的氢气浓度确定阳极渗漏位置包括确定阳极废气气体的分子量是否有变化。
方案15. 如方案9所述的方法,还包括,基于确定的阳极渗漏位置采取补救行动。
方案16. 一种用于量化燃料电池系统中阳极渗漏位置的控制系统,所述控制系统包括:
              用于确定在燃料电池系统的阳极子系统中存在渗漏的装置;
              用于使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积的装置;
              用于增加到燃料电池堆的阴极侧的空气流的装置;
              用于使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积的装置;
              用于将第一渗漏有效面积与第二渗漏有效面积进行比较的装置;
              用于基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置的装置;
              用于增加阳极子系统中的氢气浓度的装置;以及
              用于使用增加的氢气浓度确定阳极渗漏位置的装置。
方案17. 如方案16所述的控制系统,其中,估计第一和第二渗漏有效面积包括估计三个不同的潜在渗漏外流位置的第一和第二渗漏有效面积。
方案18.  如方案18所述的控制系统,其中,三个不同的渗漏外流位置是阴极出口、阴极进口或向着周围环境。
方案19. 如方案18所述的控制系统,其中,三个不同的渗漏外流位置被用于建立第一组有效渗漏面积和第二组有效渗漏面积,并且第一组有效渗漏面积与第二组有效渗漏面积比较以确定阳极外流渗漏位置。
方案20. 如方案16所述的控制系统,其中,使用增加的氢气浓度确定阳极渗漏位置包括确定阳极废气气体的分子量是否有变化。
附图说明
图1是燃料电池系统的示意框图;
           图2是量化阳极渗漏位置和渗漏的外流位置的过程的流程图;以及
           图3是水平轴为阳极压力且竖直轴为阳极渗漏流量的曲线图。
具体实施方式
下面对涉及量化燃料电池系统中阳极渗漏位置的系统和方法的发明的实施例的讨论本质上仅是示例性的,并且绝不是用于限制本发明或其应用或使用。具体来说,本文讨论的方法确定从阳极子系统出来的阳极气体的流量。但是,该方法可应用于确定从其它封闭系统中出来的流量。
图1是燃料电池系统10的示意框图,燃料电池系统10包括具有阳极侧和阴极侧的燃料电池堆12。压缩机16在阴极输入管线14上通过水蒸气转移(WVT)单元18提供空气流给燃料电池堆12的阴极侧,水蒸气转移单元18润湿阴极输入空气。阴极废气气体在阴极废气气体管线20上通过反压阀22从燃料电池堆12输出。压力传感器26测量阴极输入管线14的压力并且压力传感器24测量阴极废气气体管线20的压力,如下面更具体描述的。
燃料电池堆12的阳极侧在阳极输入管线30上从氢气源32接收氢气气体并且在阳极再循环管线34上提供阳极再循环气体。当需要在燃料电池堆12的阳极侧进行气体的吹扫或泄放时,阳极废气气体通过阀36被泄放进阴极进口管线14,阀36被设置在阳极废气管线28中。压力传感器42被设置在阳极子系统内的位置中,例如在阳极再循环管线34中,以测量燃料电池堆12的阳极侧的压力。控制器44从压力传感器24、26和42接收压力信号,并且控制各种不同的燃料电池堆操作以及各种不同的算法,如下面更具体描述的。
如上讨论的,通过引用并入的美国专利申请12/971982确定从阳极子系统出来的阳极气体的流量,并且还能够确定在阳极子系统是否有渗漏。当前,对于每个功能,都假设渗漏是在对于该功能来说最坏的位置中。例如,排放功能假设渗漏位置是通向阴极出口的阳极进口。这使得补救行动要比它们可能需要成为的样子更加保守,并且可引起燃料电池系统10的不那么高效的操作。
已经开发了一种算法,其基本上是侵入式诊断法以试图理解燃料电池系统10中的阳极渗漏位于哪里以及通过改变操作条件量化渗漏的大小,由此允许对渗漏速度的更加准确的建模以及对基于渗漏的任何补救行动的更加精确的处理。在下面描述的算法之前,还没有方法对阳极渗漏进行建模。因此,需要以定期的或常态的方式进行渗漏检测。不过,这在高功率操作条件下是困难的,这是因为在之前已知的渗漏估计方法中固有的大误差。算法允许在渗漏检测分辨率高的条件下量化渗漏位置和渗漏大小。这能够对渗漏检测不那么准确的区域内的渗漏进行建模并且基于渗漏的位置采取合适的补救行动。该算法还允许在各种不同的操作条件下的预测性渗漏值以及改善的氮建模和排放估计。
图2是流程图50,其示出了量化阳极渗漏位置,即,确定渗漏是在阳极进口管线30内还是在阳极出口管线28内,以及还量化出口流量位置,即,阴极进口、阴极出口或环境出口流量位置的算法的过程。为了确定位置,必须确定在数个不同的操作点的渗漏速率。这最好在低功率下进行,在这种情况下下面描述的渗漏检测算法最准确。主要思想是侵入式地增加阴极流量,阴极流量会改变阴极中的压降以有助于辨别渗漏位置。
检测阳极渗漏位置的动机是通过确定阳极渗漏位置改善阳极气体浓度估计。还可以以针对渗漏的合适的补救行动为目标。示例的补救行动包括增加压缩机流量,如果渗漏是漏向阴极出口的话,在这种情况下排放就是要关心的问题;或者增加散热器空气流,如果检测到向环境的渗漏的话。在确定渗漏位置时做出如下假设:  (1)算法是主动诊断,其在被检测的渗漏不违反排放时会被采用,(2)只有单个渗漏位置,以及(3)渗漏可由孔流量表示。从阳极到阴极有可由以上算法检测的六条潜在的渗漏路径,它们在下表中给出。
 
上游位置 下游位置
阳极进口 阴极进口
阳极进口 阴极出口
阳极进口 向外
阳极出口 阴极进口
阳极出口 阴极出口
阳极出口 向外
算法由在框52检测渗漏并计算渗漏流量开始。可使用基于质量平衡的渗漏检测算法,如在美国专利申请12/636276和12/971982中描述的,它们通过引用并入本文。一旦在框52检测到渗漏,算法在框54存储渗漏流量和其它参数。所存储的渗漏值是在名义操作条件下。例如,典型的名义操作条件是:  阳极压力=130kPa,阴极进口压力=110kPa,阴极出口压力=104kPa,以及环境压力=100kPa,阳极氢气浓度是0.7。
一旦在框54存储了渗漏流量和其它参数,就使用下式估计有效渗漏面积以匹配三个不同渗漏位置                                                
Figure 489590DEST_PATH_IMAGE002
的渗漏流量,其中下标指示三个渗漏位置情况:
Figure 2013106502878100002DEST_PATH_IMAGE005
其中,
Figure 2013106502878100002DEST_PATH_IMAGE007
是阳极出口气体的分子量,
Figure 2013106502878100002DEST_PATH_IMAGE009
是渗漏速率,
Figure DEST_PATH_IMAGE011
是阳极子系统中的压力,
Figure DEST_PATH_IMAGE013
是理想气体常数(8.315 kPa-L/mol-K),
Figure DEST_PATH_IMAGE015
是堆中的冷却剂的温度(K)、
Figure DEST_PATH_IMAGE017
是从摄氏度到开尔文的转化因数,
Figure DEST_PATH_IMAGE019
是从升到立方米的转化因数,
Figure DEST_PATH_IMAGE021
是比热比(约是1.4),以及对于第一渗漏位置
Figure 121221DEST_PATH_IMAGE004
,使用阴极进口压力
Figure DEST_PATH_IMAGE023
。相同的方程被用于阴极出口渗漏位置,在这种情况下,对于第二渗漏位置
Figure 142529DEST_PATH_IMAGE004
Figure 956901DEST_PATH_IMAGE023
代替
Figure DEST_PATH_IMAGE025
(阴极废气气体的压力)。对于第三渗漏位置
Figure 779364DEST_PATH_IMAGE004
Figure 984080DEST_PATH_IMAGE025
代替
Figure DEST_PATH_IMAGE027
(周围环境的压力)。该系统可使用压力传感器(未示出)测量环境压力,或者可假设环境压力。使用上面的有效面积方程,是因为假设渗漏是与孔相似。
三个渗漏位置是(1)阳极进口到阴极出口,(2)阳极出口到阴极进口,或(3)阳极到周围环境。在估计了三个位置
Figure 307614DEST_PATH_IMAGE004
中每一个的有效渗漏面积之后,在框58增加阴极流量到可标定值,在这种情况下,更高的空气流是令人满意的,因为它增加了算法辨别渗漏的能力。一旦已经在框58增加了阴极流量,算法在新操作条件下重新计算渗漏流量,新操作条件包括增加的阴极流量;以及在框60存储新渗漏流量和操作条件。典型的新操作条件是: 阳极压力=170kPa,阴极进口压力=150kPa,阴极出口压力=120kPa,和环境压力=100kPa。当在框60重新计算并存储了新操作条件下的渗漏流量后,在框60计算
Figure 976493DEST_PATH_IMAGE028
的三个潜在下游渗漏位置。这三个不同的潜在下游位置是: (1)阴极出口管线20,(2)阴极进口管线14或(3)周围环境。
接着,在框62将对于的每个渗漏位置与
Figure 152543DEST_PATH_IMAGE030
的对应渗漏位置
Figure 675928DEST_PATH_IMAGE004
比较以确定阴极渗漏位置在哪里。数据拟合最好的地方被认为是渗漏的下游位置。在框64,阴极操作条件此后被回复到正常,阳极氢气浓度被增加到接近1【单位】,并且存储新的渗漏值
Figure DEST_PATH_IMAGE031
。在框66,使用方程(1)比较来自框52和框62的所存储的渗漏值,除了现在阳极出口气体的分子量将更接近氢气的分子量,并且确定阳极渗漏位置。如果来自框52和框62的所述存储渗漏值非常不同,那么确定渗漏在阳极出口。如果来自框52和框62的所述存储渗漏值不是非常不同,那么确定渗漏在阳极进口。如果在框52的阳极浓度低于在框62的话,确定渗漏位置的这种比较最有效。在高功率下这种渗漏检测就不那么可靠,因为这种情况下估计误差可能很大。因此,控制器42可使用较低氢气浓度来重复渗漏检测算法以改善渗漏估计。
例如,当将来自框52的渗漏值与框62比较以确定渗漏出口位置时,可应用下面的样本数据。
 
渗漏位置 正常情况下横跨渗漏的可能DP 高阴极空气流量情况下横跨渗漏的可能DP
阳极进口到阴极出口 25 kPa 50 kPa
阳极出口到阴极进口 20 Kpa 20 kPa
阳极到外部 30 kPa 70 kPa
一旦确定了渗漏位置和渗漏的有效面积
Figure DEST_PATH_IMAGE033
,可使用模型来估计在燃料电池堆运行时间期间在各种不同的操作条件下的渗漏,使得信息可给其它模型馈送合适的渗漏信号。例如,可以量化渗漏对氮模型的作用。使用上面讨论的算法,对于感兴趣的位置来说,基于渗漏流率的补救行动可更加具体。例如,如果渗漏是向周围环境,那么就不需要增加阴极流量以稀释阳极渗漏。
图3是水平轴为阳极压力(kPa)且竖直轴为阳极渗漏流量(摩尔/秒)的曲线图。图3示出了来自上面讨论的算法的典型响应。在阳极和阴极进口之间的压力偏置被保持固定在两个参考点之间,使得所能期望的只是小变化。线72是阴极进口模型,线74是阴极出口流量模型和线76是环境模型。线72、74和76中的每一个都会聚到点70,因为它们被计算为匹配。不过,当向着更低的阳极压力向回推断线72、74和76时,线76与点78最佳匹配。因此,根据图3中给出的数据可以认为阳极渗漏出口位置是周围环境。
如本领域技术人员熟知的,本文讨论的用于描述本发明的若干且各种步骤和过程可被称为由计算机、处理器或其它电子计算设备执行的操作,这些设备使用电现象操纵和/或变换数据。那些计算机和电子设备可采用各种易失性和/或非易失性存储器,包括非瞬态计算机可读介质,其上带有所存储的可执行的程序,包括各种代码或者可执行的指令,其能够由计算机或处理器执行,其中存储器和/或计算机可读介质可包括所有形式和类型的存储器和其它的计算机可读介质。
前面的讨论仅公开和描述了本发明的示例性实施例。本领域技术人员将从这种描述和附图以及权利要求中认识到,可对其进行各种改变、改进和变型,而不脱离在下面的权利要求中定义的本发明的精神和范围。

Claims (10)

1.一种用于量化燃料电池系统中阳极渗漏位置的方法,所述方法包括:
              确定在燃料电池系统的阳极子系统中存在渗漏;
              使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积;
              增加到燃料电池堆的阴极侧的空气流;
              使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积;
              将第一渗漏有效面积与第二渗漏有效面积进行比较;以及
              基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置。
2.如权利要求1所述的方法,其中,估计第一和第二渗漏有效面积包括估计三个不同的潜在渗漏外流位置的第一和第二渗漏有效面积。
3.如权利要求2所述的方法,其中,三个不同的渗漏外流位置是阴极出口、阴极进口或周围环境。
4.如权利要求3所述的方法,其中,三个不同的渗漏外流位置被用于建立第一组有效渗漏面积和第二组有效渗漏面积。
5.如权利要求4所述的方法,其中,第一组有效渗漏面积与第二组有效渗漏面积比较以确定阳极外流渗漏位置。
6.如权利要求1所述的方法,还包括,增加阳极子系统中的氢气浓度并且使用增加的氢气浓度确定阳极渗漏位置。
7.如权利要求6所述的方法,其中,使用增加的氢气浓度确定阳极渗漏位置包括确定阳极废气气体的分子量是否有变化。
8.如权利要求1所述的方法,还包括,基于确定的阳极渗漏位置和有效渗漏面积采取补救行动。
9.一种用于量化燃料电池系统中阳极渗漏位置的方法,所述方法包括:
              确定在燃料电池系统的阳极子系统中存在渗漏;
              使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积;
              增加到燃料电池堆的阴极侧的空气流;
              使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积;
              将第一渗漏有效面积与第二渗漏有效面积进行比较;
              基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置;
              增加阳极子系统中的氢气浓度;以及
              使用增加的氢气浓度确定阳极渗漏位置。
10.一种用于量化燃料电池系统中阳极渗漏位置的控制系统,所述控制系统包括:
              用于确定在燃料电池系统的阳极子系统中存在渗漏的装置;
              用于使用第一渗漏流量值和第一操作参数估计第一渗漏有效面积的装置;
              用于增加到燃料电池堆的阴极侧的空气流的装置;
              用于使用第二渗漏流量值和第二操作参数估计第二渗漏有效面积的装置;
              用于将第一渗漏有效面积与第二渗漏有效面积进行比较的装置;
              用于基于第一和第二渗漏有效面积之间的比较确定阳极外流渗漏位置的装置;
              用于增加阳极子系统中的氢气浓度的装置;以及
              用于使用增加的氢气浓度确定阳极渗漏位置的装置。
CN201310650287.8A 2012-12-06 2013-12-06 阳极渗漏位置检测 Active CN103852222B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/706,781 2012-12-06
US13/706,781 US9564648B2 (en) 2012-12-06 2012-12-06 Anode leak location detection
US13/706781 2012-12-06

Publications (2)

Publication Number Publication Date
CN103852222A true CN103852222A (zh) 2014-06-11
CN103852222B CN103852222B (zh) 2017-09-05

Family

ID=50778268

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310650287.8A Active CN103852222B (zh) 2012-12-06 2013-12-06 阳极渗漏位置检测

Country Status (3)

Country Link
US (1) US9564648B2 (zh)
CN (1) CN103852222B (zh)
DE (1) DE102013112460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850516A (zh) * 2015-05-20 2018-03-27 沙特阿拉伯石油公司 检测碳氢化合物渗漏的取样技术

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2806151A1 (en) * 2013-05-20 2014-11-26 Perkins Engines Company Limited Fuel injector
US10050288B2 (en) 2015-01-05 2018-08-14 GM Global Technology Operations LLC Systems and methods for detecting leaks in a fuel cell system
CN114142063B (zh) * 2021-11-30 2023-08-15 深蓝汽车科技有限公司 燃料电池空气系统的管路泄漏诊断方法及系统、车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1674340A (zh) * 2004-03-26 2005-09-28 日产自动车株式会社 燃料电池系统
US20060162428A1 (en) * 2002-09-19 2006-07-27 Cheng Hu Method and apparatus for detecting and locating gas leaks
US20080184780A1 (en) * 2007-02-05 2008-08-07 Toyota Engineering & Manufacturing North America, Inc. Method of detecting hydrogen sensor saturation in a hydrogen powered fuel cell
US20090255326A1 (en) * 2008-04-09 2009-10-15 Ford Motor Company Anode leak test implementation
WO2010067128A1 (en) * 2008-12-11 2010-06-17 Brinker Technology Limited Method for estimating the location of a leak in a pipeline

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19649436C1 (de) * 1996-11-28 1998-01-15 Siemens Ag Verfahren zum Erkennen eines Gaslecks
US6535827B1 (en) * 1999-10-28 2003-03-18 Mpr Associates, Inc. Method and apparatus for detecting and isolating a rupture in fluid distribution system
DE10036572A1 (de) * 2000-07-27 2002-02-14 Bosch Gmbh Robert Brennstoffzellenanlage
JP4507584B2 (ja) * 2003-12-15 2010-07-21 トヨタ自動車株式会社 燃料電池システム
WO2008049210A1 (en) * 2006-10-23 2008-05-02 Hydrogenics Corporation System and method for electrochemical cell system leak detection and indication
US20080141760A1 (en) * 2006-12-19 2008-06-19 Gm Global Technology Operations, Inc. Leak detection in a fuel cell system
US20100310955A1 (en) * 2007-12-28 2010-12-09 Venkateshwarlu Yadha Combustion of hydrogen in fuel cell cathode upon startup
US8387441B2 (en) 2009-12-11 2013-03-05 GM Global Technology Operations LLC Injector flow measurement for fuel cell applications
US8701468B2 (en) 2010-12-17 2014-04-22 GM Global Technology Operations LLC Flow estimation based on anode pressure response in fuel cell system
US10050288B2 (en) * 2015-01-05 2018-08-14 GM Global Technology Operations LLC Systems and methods for detecting leaks in a fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060162428A1 (en) * 2002-09-19 2006-07-27 Cheng Hu Method and apparatus for detecting and locating gas leaks
CN1674340A (zh) * 2004-03-26 2005-09-28 日产自动车株式会社 燃料电池系统
US20080184780A1 (en) * 2007-02-05 2008-08-07 Toyota Engineering & Manufacturing North America, Inc. Method of detecting hydrogen sensor saturation in a hydrogen powered fuel cell
US20090255326A1 (en) * 2008-04-09 2009-10-15 Ford Motor Company Anode leak test implementation
WO2010067128A1 (en) * 2008-12-11 2010-06-17 Brinker Technology Limited Method for estimating the location of a leak in a pipeline

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107850516A (zh) * 2015-05-20 2018-03-27 沙特阿拉伯石油公司 检测碳氢化合物渗漏的取样技术
CN107850516B (zh) * 2015-05-20 2021-05-28 沙特阿拉伯石油公司 检测碳氢化合物渗漏的取样技术

Also Published As

Publication number Publication date
CN103852222B (zh) 2017-09-05
US9564648B2 (en) 2017-02-07
US20140162171A1 (en) 2014-06-12
DE102013112460A1 (de) 2014-06-12

Similar Documents

Publication Publication Date Title
CN102288370B (zh) 燃料电池系统中的轻微阳极泄露检测
US8387441B2 (en) Injector flow measurement for fuel cell applications
US7544430B2 (en) Online detection of stack crossover rate for adaptive hydrogen bleed strategy
US11043682B2 (en) Method to detect fuel cell gas leak
CN102110828B (zh) 从电池堆平均hfr在线估计阴极进口和出口rh
CN102034995B (zh) 利用燃料电池堆的电池电压预测来改进燃料电池系统性能的方法
CN104180958A (zh) 一种燃料电池电堆泄漏率测试装置与方法
US8603688B2 (en) Anode gas composition utilizing H2 injection pressure wave propagation rates
US8409762B2 (en) Adaptive method to control fuel delivery injector with modeling uncertainties in a fuel cell system
CN106549176A (zh) Gen2阳极氢气浓度估算的验证和校正
CN102538880B (zh) 基于燃料电池系统中的阳极压力响应的流量估计
Hu et al. Model-based estimation of liquid saturation in cathode gas diffusion layer and current density difference under proton exchange membrane fuel cell flooding
CN114361512B (zh) 一种燃料电池排水、排杂控制系统及控制方法
CN103852222A (zh) 阳极渗漏位置检测
CN113782778A (zh) 基于定频阻抗和气体压降的电堆水管理调控方法及装置
CN103579649B (zh) 以可变时间间隔来检测阳极压力传感器卡住故障的算法
CN102386426B (zh) Pem燃料电池中的膜渗透调整
CN102956901B (zh) 使用浓度传感器修正渗透不确定性的方法
US10329150B2 (en) Fuel cell system and method for determining purity level of hydrogen gas provided to an anode side of the fuel cell
US8697303B2 (en) Optimized cathode fill strategy for fuel cell
CN116231013A (zh) 燃料电池故障嵌入模型的建立方法
US20140199605A1 (en) Transient Inlet Relative Humidity Estimation Via Adaptive Cathode Humidification Unit Model And High Frequency Resistance
Thanapalan et al. Modelling of a PEM fuel cell system
CN115799578A (zh) 一种基于引射回流估计的燃料电池系统故障规避方法
CN113497257A (zh) 一种燃料电池关机吹扫方法、装置及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant