CN103842804A - 用于有机基质复合材料的非破坏性检验方法 - Google Patents

用于有机基质复合材料的非破坏性检验方法 Download PDF

Info

Publication number
CN103842804A
CN103842804A CN201280048710.0A CN201280048710A CN103842804A CN 103842804 A CN103842804 A CN 103842804A CN 201280048710 A CN201280048710 A CN 201280048710A CN 103842804 A CN103842804 A CN 103842804A
Authority
CN
China
Prior art keywords
parts
measurement
ultrasonic
cmo
aforementioned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280048710.0A
Other languages
English (en)
Inventor
莱昂内尔·盖伊
蒂博·萧邦
奥迪勒·勒菲
弗雷德里克·茹贝尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Safran Nacelles Ltd
Original Assignee
Hurel Hispano SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hurel Hispano SA filed Critical Hurel Hispano SA
Publication of CN103842804A publication Critical patent/CN103842804A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8472Investigation of composite materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本方法用于由有机基质复合材料(CMO)制成的部件(1)的非破坏性检验,其包含以下步骤:a)通过傅里叶变换红外光谱学(FTIR)(15)对该部件(1)进行表面检验;b)如果步骤a)发现了缺陷,根据两个额外的超声技术(21,25)对所述材料进行深入的检验。

Description

用于有机基质复合材料的非破坏性检验方法
技术领域
本专利申请涉及有机基质复合材料的非破坏性测试(下面简称CND,(所有简写均为法文))的方法。
背景技术
该材料可以具体用于航空领域,和更具体用于包含机舱的推进组,且后者中包含涡轮喷气机。
有机基质复合材料(下面简称CMO)的具体用途是生产内部固定结构(下面简称IFS),IFS设计用于使涡轮喷气机倾斜和确定涡轮喷气机的次级流路(也被称为冷空气流路径)。
该IFS在涡轮喷气机的一侧承受非常高的温度,这可能最终导致CMO因理化老化而退化。
能够在维护操作中尽可能早,且尽可能简单的发现这些退化是很重要的。
因此,本发明的目的是提供一个用于非破坏性测试有机基质复合材料部件的高度可信和易于实施的方法,有机基质复合材料部件可以具体用于飞机推进系统中。
发明内容
本发明的目的通过对有机基质复合材料部件的非破坏性测试方法实现,包含步骤为:
a)通过傅里叶变换红外光谱(FTIR)对该部件进行表面检验;
b)如果步骤a)发现了缺陷,根据两个互补的超声技术对所述表面进行深入的检验。
该FTIR表面检验非常容易实施,根据本发明的方法使得有可能轻易的分辨优良实体而无需额外检查,和需要通过超声技术手段进行更深入检查来消除所有怀疑(下面简称LDD)。
对于怀疑的那些实体,使用两个互补的超声技术使得有可能获得有绝佳可靠性和重现性的方法。
根据与本发明一致方法的其它任选特征,其可以单独或结合进行:
-实施步骤a),获得测试区域中几个FTIR谱的平均值,当分析表征理化老化的峰值发现至少超过一个预先确定的所谓不合格阈值,当部件是经涂漆的时要考虑部件的涂层厚度的测量,随后进行步骤b);
-实施步骤b),收集通过每个超声技术给出的测量结果,当这些结果中至少一个超过预先确定的所谓不合格阈值,表明该部件需要维修,且该阈值由决定支持真值表定义,后者在开发测试中建立;
-完成在基于对有关区域比色法的可视分析的每个超声技术的测量;
-组成两个超声技术之一是通过测试区域表面波传输的声能的测量,而两个超声技术的另一个是材料所述区域的机电阻抗的测量;
-所述超声测量在所述区域标准化步骤之后进行:此标准化步骤可以校准该测量;
-在步骤b)之前,对覆盖所述部件表面的涂层进行清除:此步骤,只在待检验部件由涂料覆盖时应用,对于实施步骤b)的超声测量是必须的。
当部件是经涂漆的,傅里叶变换红外光谱表面检查附有测量涂层厚度。
本发明具体用于飞机推进组的某部分的非破坏性测试,例如飞机涡轮喷气机舱的内部固定结构(IFS)。
本发明的其它特征和优势将从以下描述中变得更明晰,结合本文中唯一附图,大致说明了本发明的方法。
附图说明
图1为待检验部件。
具体实施方式
在已选的实施例中,该部件1是内部固定结构(IFS),即,设计为使飞机涡轮喷气机倾斜的部件,该部件在其内侧,即面向涡轮喷气机的表面上,包含隔热层3。
在这个IFS的区域5中,隔热层3被部分去除,从而暴露出形成此IFS的复合材料。
在本发明的上下文中,该复合材料是有机基质复合材料(CMO),即,由通过有机树脂(例如BNI型树脂)聚合作用获得的各板材堆叠而成的复合材料,此树脂封装有例如碳纤维。
在所示实施例中,隔热层3被部分去除的区域5是待检验的CMO材料。
事实上,此材料承受非常高的温度,这可导致例如CMO通过理化老化而退化的缺陷,定期检测它们的老化是重要的。
首先,区域5使用干布清洁(步骤7),从而消除油污和其它污染颗粒。
然后,实施标准非破坏性测试(CND)(步骤9),其通常包括粘合试验,使用Bondmaster(超声仪器专用,可购自Olympus),和敲击试验(即基于锤击的声音试验),使得有可能发现CMO剥落的潜在区域。
如果步骤9的非破坏性测试是阳性的,则在步骤11中确定缺陷区域的大小。
在这些测量结束后,得知IFS的必要维修等级,基于此飞机只要不进行必要的维修就不能飞行(本文附加的图表中初始“AOG”指的是“飞机在地面上”,意味着飞机不能飞行)。
如果进行步骤9中的标准试验不能发现CMO的明显剥落,则进行步骤15,在步骤15中通过红外傅里叶变换光谱学(FTIR)设备进行CMO的区域5的表面检验。
该设备可购自A2TECHNOLOGIES,以EXOSCAN为商标名。
此手持型设备具有手枪的形式,扫过区域5.
此设备可在约2mm*2mm的表面上测量波长范围为4000-500cm-1的红外线吸收率。
红外线吸收率变化反应CMO表面缺陷。
更具体地,通过在区域5中使用FTIR设备实施一系列测量,随后,获得的波谱在其使用前取平均值。
当表征理化老化的峰值分析(取决于开发测试)低于不合格阈值NC1(步骤17)时(当部件经涂漆时需要进行涂层厚度的测量),认为CMO是没有表面缺陷的,且不需要进行进一步调查:结论为该IFS适航(步骤18)。
相反的,结果超出此预先确定的阈值NC1时,为了非常准确的表征该缺陷的性质应考虑进行深入的CMO测量。
应该注意的是,IFS1的内表面可以是涂漆的,如空客A380的情况,或可以是裸露的,如空客A330的情况。
当IFS1的内表面是涂漆的,有必要在任何进一步辅助手段前对涂层进行干燥清除,如图19中所示。
这样做是为了避免涂层干扰,使用下面详细说明的超声测量,该层通常为约40-80微米。
从本文所附的方案中明显看出,两系列不同且互补的超声测量平行进行。
在第一超声测量21中,超声波以一定的入射角投射在测试区域5的表面,且产生表面波从而测量通过CMO传输的发射器和接收器之间的能量传递。
更确切地,待测试的区域5表面通过两个传感器,即发射器(承受震荡电压)和(被动)接收器,机械地请求。
实际上,传感器相对于测试区域5的法向平面对称的布置,且测量通过表面波传输的超声波的振幅。
发射器/接收器组合围绕着缺陷区域布置。
当测量数值没有超过预先确定的不合格阈值NC2(步骤23),其结论为检测是阳性的,即CMO显示出深度损坏。
当超出该阈值NC2时,此第一超声测量系列使得有可能表征CMO中深度损坏的存在。
在第二超声测量系列25中,确定CMO测试区域5的机电阻抗。
穿过该传感器的强度和其传递的电压之间的关系使得有可能推导所寻机电阻抗。
然后由该超声测量获得的阻抗与合格阈值NC3(步骤27)比较。
通常,测试区域5通过在3-7兆赫兹频率的波列处理。
更确切地,根据通过上述每个超声测量系列获得的结果,测试逻辑如下,注意连接步骤23和27到步骤29和39的实线和点划线不在不同的可能选项之间设定级别:使用不同的线仅为了清楚。
当测量21和25倾向负结果时,换句话说,当这些测量值仍分别低于阈值NC2和NC3时,得出CMO仅仅表面被影响:仅仅复合材料板的表面层损坏(步骤29)。
在这种情况下,可以确定或需要或不需要维修IFS(步骤31),且因此让飞机留在地面或适航。
该决定取决于其他外部参数,例如技术参数(在有关区域上的机械压力水平),财政参数尤其涉及IFS剩余使用寿命,和那些本文没有详细描述的参数。
另一方面,当这两个测量系列21、25中至少一个出现阳性检测,则可以得出CMO出现内部损坏,且因此有必要维修IFS,从而该飞机留在地面。
更确切地,当仅超声测试21、25之一是阳性的时,可能面临情况39,这意味着实际上存在两个阳性非破坏性测试,即,FTIR检测和波表面超声检测,导致飞机留在地面(步骤41)。
或者两个超声测试21、25是阳性的,这意味着存在三个阳性的非破坏性测试(步骤39:FTIR测试+两个超声测试21、25),导致IFS维修,且因此飞机留在地面。
CMO的退化水平的评价得益于真值表(决策支持),真值表通过与研发试验相关联而建立。
从前述描述中可知,根据本发明的方法使得有可能通过由CMO制成的部件的表面和内部理化老化快速并高可靠性地测试材料的退化。
该方法使得有可能设定可重现和完全合理的操作模式,其中首先进行视觉和声音标准测试,随后如果需要,使用FTIR设备快速进行表面测量,随后,如果需要,进一步进行基于超声的测量。
每一步只在前面步骤表面需要继续时才进行一次,因此防止操作者进行不必要测量。
根据本发明的方法使得有可能逐步表征测试到的缺陷,首先开始于表面缺陷,然后通过分析CMO的内部结构。
负责维护飞机推进系统的操作者容易实施根据本发明的方法,无论是在日常检查中,还是在发现事故后的特定检查中。
本发明绝不限于所描述和说明的实施方案,其只作为一种实施例提供。

Claims (9)

1.一种有机基质复合材料(CMO)部件(1)的非破坏性测试方法,其包含步骤:
a)通过傅里叶变换红外光谱(FTIR)(15)对该部件(1)进行表面检查;
b)如果步骤a)发现了缺陷,根据两个互补的超声技术(21,25)对所述表面进行深入的检查。
2.根据权利要求1所述的方法,其中对于步骤a)的实施,将在测试区域(5)的多个波谱取平均值,且当表征理化老化的峰值分析显示至少超过一个预先确定的不合格阈值(NC1)时,进行步骤b)。
3.根据权利要求1或2所述的方法,其中对于步骤b)的实现,收集通过每个超声技术(21,25)给出的测量结果,当其中至少一个结果至少超过一个所述预先确定的不合格阈值(NC2,NC3),判定该部件需要维修。
4.根据权利要求3所述的方法,其中通过每个超声技术(21,25)提供的测量包括基于对有关区域比色法的可视分析。
5.根据前述任一项权利要求所述的方法,其中两个超声技术(21,25)中的一个(21)是通过测试区域表面波传输的声能的测量,而两个超声技术中的另一个(25)是材料的所述区域的机电阻抗的测量。
6.根据前述任一项权利要求所述的方法,其中在步骤b)之前,对所述部件表面的涂层进行清除(19)。
7.根据前述任一项权利要求所述的方法,其中当部件(1)是涂漆的,傅里叶变换红外光谱(FTIR)表面控制附有涂层厚度测量。
8.根据前述任一项权利要求所述的方法在由有机基质复合材料(CMO)制成的部件的非破坏性测试中的应用。
9.根据权利要求8所述的应用在飞机涡轮喷气机舱的固定内部结构(IFS)(1)的部件中的应用。
CN201280048710.0A 2011-10-05 2012-10-01 用于有机基质复合材料的非破坏性检验方法 Pending CN103842804A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1103022 2011-10-05
FR1103022A FR2981157B1 (fr) 2011-10-05 2011-10-05 Procede de controle non destructif d'un materiau composite a matrice organique.
PCT/FR2012/052217 WO2013050691A1 (fr) 2011-10-05 2012-10-01 Procédé de contrôle non destructif d'un matériau composite à matrice organique

Publications (1)

Publication Number Publication Date
CN103842804A true CN103842804A (zh) 2014-06-04

Family

ID=47071384

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280048710.0A Pending CN103842804A (zh) 2011-10-05 2012-10-01 用于有机基质复合材料的非破坏性检验方法

Country Status (8)

Country Link
US (1) US9274002B2 (zh)
EP (1) EP2764348A1 (zh)
CN (1) CN103842804A (zh)
BR (1) BR112014006691A2 (zh)
CA (1) CA2849237A1 (zh)
FR (1) FR2981157B1 (zh)
RU (1) RU2014117112A (zh)
WO (1) WO2013050691A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461374A (zh) * 2014-06-30 2017-02-22 莫门蒂夫性能材料股份有限公司 测定基底上的钝化涂料组合物的重量和厚度的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012218B1 (fr) 2013-10-17 2015-12-04 Aircelle Sa Procede d’evaluation de l’endommagement d’un materiau composite recouvert d’une peinture, mesurant sur le spectrogramme deux criteres distincts
FR3063810B1 (fr) * 2017-03-08 2019-03-22 Safran Aircraft Engines Procede d'inspection d'un carter par colorimetrie
FR3063809B1 (fr) * 2017-03-08 2019-03-22 Safran Aircraft Engines Procede de controle non destructif d'un carter par colorimetrie
FR3105528B1 (fr) 2019-12-23 2022-05-20 Engie Green France Procédé de détection de défauts d’un élément en matériau composite
CN114113328A (zh) * 2021-11-03 2022-03-01 哈尔滨飞机工业集团有限责任公司 一种检测铝面板与蜂窝胶接件脱粘缺陷的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043303A1 (en) * 2003-07-16 2006-03-02 The Boeing Company Non-destructive infrared inspection device
CN101173954A (zh) * 2006-11-03 2008-05-07 通用电气公司 用于在负载下样本中定位故障事件的系统和方法
US20090133501A1 (en) * 2007-11-27 2009-05-28 The Boeing Company Array-Based System And Method For Inspecting A Workpiece With Backscattered Ultrasonic Signals
CN101606058A (zh) * 2006-12-06 2009-12-16 洛克希德马丁公司 使用红外热像法改进的激光超声检查
US20100276578A1 (en) * 2008-09-22 2010-11-04 The Boeing Company Method for determining degree of aging of a polymer resin material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698288B2 (en) * 2001-12-06 2004-03-02 General Electric Company Method and system for assembling and nondestructive testing of assemblies with composite components
US7966883B2 (en) * 2006-12-06 2011-06-28 Lockheed Martin Corporation Non-destructive inspection using laser-ultrasound and infrared thermography
US7743660B2 (en) * 2007-06-15 2010-06-29 The Boeing Company System and method for automated inspection of large-scale part
US7915586B2 (en) * 2008-08-08 2011-03-29 The Boeing Company Method for performing mid-IR spectroscopy measurements to measure film coating thickness, weight and/or film composition
US9541540B2 (en) * 2012-10-04 2017-01-10 United Technologies Corporation Non-destructive test inspection method for evaluating thermal degradation of bismaleimide resin
US9414026B2 (en) * 2013-01-25 2016-08-09 The Boeing Company System and method for automated crack inspection and repair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043303A1 (en) * 2003-07-16 2006-03-02 The Boeing Company Non-destructive infrared inspection device
CN101173954A (zh) * 2006-11-03 2008-05-07 通用电气公司 用于在负载下样本中定位故障事件的系统和方法
CN101606058A (zh) * 2006-12-06 2009-12-16 洛克希德马丁公司 使用红外热像法改进的激光超声检查
US20090133501A1 (en) * 2007-11-27 2009-05-28 The Boeing Company Array-Based System And Method For Inspecting A Workpiece With Backscattered Ultrasonic Signals
US20100276578A1 (en) * 2008-09-22 2010-11-04 The Boeing Company Method for determining degree of aging of a polymer resin material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICOLAS P.AVDELIDIS ET.AL: "A study of active thermography approaches for the non-destructive testing and evaluation of aerospace structures", 《SPIE PROCEEDINGS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106461374A (zh) * 2014-06-30 2017-02-22 莫门蒂夫性能材料股份有限公司 测定基底上的钝化涂料组合物的重量和厚度的方法
CN106461374B (zh) * 2014-06-30 2019-07-09 莫门蒂夫性能材料股份有限公司 测定基底上的钝化涂料组合物的重量和厚度的方法

Also Published As

Publication number Publication date
WO2013050691A1 (fr) 2013-04-11
FR2981157B1 (fr) 2013-10-25
FR2981157A1 (fr) 2013-04-12
CA2849237A1 (fr) 2013-04-11
US9274002B2 (en) 2016-03-01
BR112014006691A2 (pt) 2017-04-11
US20140217290A1 (en) 2014-08-07
RU2014117112A (ru) 2015-11-10
EP2764348A1 (fr) 2014-08-13

Similar Documents

Publication Publication Date Title
CN103842804A (zh) 用于有机基质复合材料的非破坏性检验方法
Yang et al. Progress and trends in nondestructive testing and evaluation for wind turbine composite blade
CN107561004B (zh) 一种基于激光冲击波的复合材料粘接力在线快速检测方法
US10444195B2 (en) Detection of near surface inconsistencies in structures
US8522615B1 (en) Simplified direct-reading porosity measurement apparatus and method
US10309893B2 (en) Composite inspection
GB2545271A (en) Determining physical characteristics of a structure
JP2017151084A (ja) 複合材検査
EP3185009B1 (en) Inspection of composite structures using laser ultrasound
ITTO20101090A1 (it) Metodo di ispezione a ultrasuoni non distruttiva, in particolare per strutture in materiale composito per applicazioni aeronautiche
US9201017B2 (en) Photon doppler velocimetry for laser bond inspection
US20130345992A1 (en) Method of determining the breaking stress in shear of a part of determined thickness
CN112880895B (zh) 一种基于非线性超声波的大型高速回转装备叶片残余应力测量方法
Szatkowski et al. Common practice lightning strike protection characterization technique to quantify damage mechanisms on composite substrates
Tu et al. Non-destructive evaluation of hidden defects beneath the multilayer organic protective coatings based on terahertz technology
Li et al. Microwave imaging for delamination detection in T-joints of wind turbine composite blades
Zhong et al. Terahertz spectroscopy and imaging detection of defects in civil aircraft composites
Zagrai et al. N‐Scan®: New Vibro‐Modulation System for Crack Detection, Monitoring and Characterization
US11982643B2 (en) Acoustic emission method to ascertain damage occurrence in impacted composites
周正干 et al. Laser ultrasonic detection of drilling-induced delamination in composite laminates
Markus et al. Extended non-destructive testing of composite bonds
Kraljevski et al. Autoencoder-based Ultrasonic NDT of Adhesive Bonds
Park et al. Structural damage monitoring of a composite wing using multiple types of sensors
Sharma Rain erosion damage assessment using ultrasonics
SE1551214A1 (en) Method and system for inspecting plate-like structures using ultrasound

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140604

WD01 Invention patent application deemed withdrawn after publication