WO2013050691A1 - Procédé de contrôle non destructif d'un matériau composite à matrice organique - Google Patents

Procédé de contrôle non destructif d'un matériau composite à matrice organique Download PDF

Info

Publication number
WO2013050691A1
WO2013050691A1 PCT/FR2012/052217 FR2012052217W WO2013050691A1 WO 2013050691 A1 WO2013050691 A1 WO 2013050691A1 FR 2012052217 W FR2012052217 W FR 2012052217W WO 2013050691 A1 WO2013050691 A1 WO 2013050691A1
Authority
WO
WIPO (PCT)
Prior art keywords
cmo
ftir
ultrasonic
composite material
measurements
Prior art date
Application number
PCT/FR2012/052217
Other languages
English (en)
Inventor
Lionel GAY
Thibaud CHOPARD
Odile LEFEU
Frédéric Joubert
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Priority to EP12775800.1A priority Critical patent/EP2764348A1/fr
Priority to RU2014117112/28A priority patent/RU2014117112A/ru
Priority to BR112014006691A priority patent/BR112014006691A2/pt
Priority to CA2849237A priority patent/CA2849237A1/fr
Priority to CN201280048710.0A priority patent/CN103842804A/zh
Publication of WO2013050691A1 publication Critical patent/WO2013050691A1/fr
Priority to US14/245,816 priority patent/US9274002B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/45Interferometric spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/041Analysing solids on the surface of the material, e.g. using Lamb, Rayleigh or shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/12Analysing solids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N2021/8472Investigation of composite materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/022Casings
    • G01N2201/0221Portable; cableless; compact; hand-held
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/269Various geometry objects
    • G01N2291/2694Wings or other aircraft parts

Definitions

  • the present patent application relates to a method of non-destructive testing (CND in the following) of an organic matrix composite material.
  • Such a material may be used in particular in the field of aeronautics, and more particularly inside a propulsion unit comprising a nacelle and, inside thereof, a turbojet engine.
  • CMO organic matrix composite material
  • IFS also vein of cold air
  • Such an IFS is subjected to very high temperatures on the turbojet side, which can eventually lead to degradation of the CMO by physico-chemical aging.
  • the present invention thus aims in particular to provide a very reliable and simple process to implement, to non-destructively control a CMO part that can be used in particular within an aircraft propulsion system.
  • a) carry out a control of this part by Fourier Transform Infrared Spectroscopy (FTIR), b) if step a) reveals a defect, carry out depth checks of said material using two techniques. complementary ultrasound.
  • FTIR Fourier Transform Infrared Spectroscopy
  • step a) an average of several FTIR spectra carried out in the zone under study is carried out, and step b) is carried out when the analysis of the peaks characteristic of physico-chemical aging exceeds minus a predetermined threshold of non-compliance, taking into account the paint thickness measurement when the part is painted;
  • step b) the results of the measurements given by each ultrasound technique are collected, and it is decided in favor of a need for repair of the part when at least one of these results exceeds at least one predetermined threshold of non-compliance; such a threshold is defined from decision support truth tables, themselves constructed during developmental trials;
  • one of the two ultrasonic techniques consists of a measurement of acoustic energy transmitted by surface waves on the studied area, and the other of the two ultrasonic techniques consists of measuring the electromechanical impedance of said zone of the material;
  • said ultrasonic measurements are carried out after a normalization step of said zone: this normalization step makes it possible to carry out a calibration of the measurements;
  • step b stripping of the paint covering the surface of said part is carried out: this step, applicable only when the part to be inspected is coated with paint, is necessary to implement the ultrasonic measurements of the step b);
  • the present invention is intended in particular for the CND of an aircraft propulsion unit part such as a fixed internal structure (IFS) of an aircraft turbojet engine nacelle.
  • IFS fixed internal structure
  • this part 1 is an IFS, that is to say a part intended to streamline the turbojet engine of an aircraft, having on its internal face, that is to say on its face intended to be vis-à-vis the turbojet engine, a thermal insulation mattress 3.
  • the thermal insulation mat 3 has been partially torn off, thus exposing the composite material forming this ISF.
  • this composite material is an organic matrix composite (CMO), that is to say a composite material formed of a stack of plies, each obtained by polymerization of an organic resin (resin of type BN I for example), this resin trapping fibers for example carbon.
  • CMO organic matrix composite
  • the zone 5 in which the thermal mat 3 has been partially torn off is the area of the CMO material that is to be controlled.
  • this material is subjected to very high temperatures, likely to cause defects such as degradation of the CMO by physico-chemical aging, and it is important to periodically control aging.
  • the zone 5 is cleaned with a dry cloth (step 7) so as to remove grease and other polluting particles.
  • a conventional CND (step 9), typically comprising a stickiness control, is then performed with a Olympus Bondmaster (a special ultrasonic device from Olympus) and a Tap Test, ie a acoustic hammer test, to detect any areas of takeoff CMO.
  • Olympus Bondmaster a special ultrasonic device from Olympus
  • a Tap Test ie a acoustic hammer test
  • step 11 If the CND of step 9 is positive, the extent of the defective zone is determined in step 11.
  • step 9 If the conventional tests carried out in step 9 do not make it possible to demonstrate a CMO maneuver detachment, then one goes to step 1 5, in which a surface control of the zone 5 of the CMO is carried out, using a Fourier transform infrared spectroscopy (FTIR) apparatus.
  • FTIR Fourier transform infrared spectroscopy
  • This portable device is in the form of a gun that is swept on the zone 5.
  • This device can measure, on surfaces of the order of 2mm x 2mm, the absorbance of infrared rays over a wavelength range of 4000 to 500 cm -1 .
  • va ri a tio ns of a bso rba n ce of the radii are indicative of surface defects in the CMO.
  • step 1 7 When the analysis of the peaks characteristic of physicochemical aging (determined by the development tests) remains below a threshold of nonconformity NC1 (step 1 7), by means of coherence with the measurement of paint attenuator When the part is painted, it is considered that the CMO does not have a surface defect, and that it is therefore not necessary to carry out further investigations: the conclusion is that the IFS is fit for flight ( step 18).
  • this predetermined threshold NC1 When, on the other hand, this predetermined threshold NC1 is exceeded, it is considered that measurements in depth of the CMO must be made in order to characterize very precisely the nature of the defect.
  • the inner surface of the IFS 1 can be painted, as is the case in the Airbus A380, or be exposed, as is the case for example in the Airbus A330.
  • the first series of ultrasonic measurements 21 consists of sending ultrasonic waves at a certain incidence to the surface of the studied zone 5 and thus generating surface waves and then measuring the energy transmitted by the CMO between the emitter and the emitter. receiver.
  • the surface of the zone to be studied is mechanically stressed by means of two transducers, namely a transmitter (subjected to an oscillating voltage) and a receiver (passive).
  • the transducers are placed symmetrically with respect to a plane normal to the zone under study 5, and the amplitude of the ultrasonic wave transmitted by the surface waves is measured.
  • This transmitter / receiver pair is moved to the defective zone.
  • step 23 When the measured quantities exceed a predetermined threshold of NC2 nonconformity (step 23), it is deduced that this control is positive, that is to say that the CMO has a deep damage.
  • This first series of ultrasonic measurements makes it possible to characterize the presence of a defect at depth in the CMO, when the threshold NC2 is exceeded.
  • the second series of ultrasonic measurements consists in determining the electromechanical impedance of the studied area 5 of the CMO.
  • the impedance resulting from this point ultrasonic measurement is then compared with a conformity threshold NC3 (step 27).
  • test logics as a function of the results obtained by each of the aforementioned series of ultrasonic measurements are as follows, being noted that the solid and dotted lines connecting steps 23 and 27 in steps 29 and 39 do not establish any Hierarchy between the different possible options: different features were used for the sake of clarity.
  • step 31 it may be decided or not to take the I FS for repair (step 31), and thus to maintain the aircraft on the ground or not.
  • Either the two ultrasonic controls 21, 25 are positive, which means that there are therefore three positive non-destructive tests (step 39: the FTIR control + the two ultrasonic controls 21, 25), resulting in the repair of the IFS, and therefore the immobilization of the aircraft.
  • the method according to the invention makes it possible to detect quickly and very reliably the degradation of the material by physico-chemical aging on the surface and inside a room. performed in CMO.
  • This method makes it possible to define a reproducible and perfectly rational operating mode, in which we begin with conventional visual and acoustic tests, followed if necessary by measurements of surface realized very quickly by means of an apparatus with FTIR, themselves followed. if necessary by further measurements using ultrasound.
  • This method according to the invention makes it possible to gradually characterize the defects observed, starting first with surface defects and then analyzing the internal structure of the CMO.
  • the method according to the invention can be implemented in a manner carried out by the operators in charge of the maintenance of the aircraft propulsion units, either during routine visits or during special visits following observed incidents.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Ce procédé de contrôle non destructif d'une pièce (1 ) en matériau composite à matrice organique (CMO), comprend les étapes consistant à : a) effectuer u n contrôle de surface de cette pièce (1) par spectroscopie infrarouge à transformée de Fourrier (FTIR) (15), b) si l'étape a) est révélatrice d'un défaut, effectuer des contrôles en profondeur dudit matériau selon deux techniques à ultrasons (21, 25) complémentaires.

Description

Procédé de contrôle non destructif d'un matériau
composite à matrice organique
La présente demande de brevet se rapporte à un procédé de contrôle non destructif (CND dans ce qui suit) d'un matériau composite à matrice organique.
Un tel matériau peut être utilisé notamment dans le domaine de l'aéronautique, et plus particulièrement à l'intérieur d'un ensemble propulsif comprenant une nacelle et, à l'intérieur de celle-ci, un turboréacteur.
Une utilisation particul ière d'un matériau composite à matrice organique (CMO dans ce qui suit) est la réalisation d'une structure interne fixe (IFS dans ce qui suit) destinée à caréner le turboréacteur et à définir la veine de flux secondaire (dite aussi veine d'air froid) du turboréacteur.
Une telle IFS est soumise à des températures très élevées du côté du turboréacteur, pouvant conduire à terme à la dégradation du CMO par vieillissement physico-chimique.
Il importe de pouvoir détecter le plus tôt possible, et de manière la plus simple possible, cette dégradation lors des opérations de maintenance.
La présente invention a ainsi pour but notamment de fournir un procédé très fiable et simple à mettre en œuvre, permettant de contrôler de manière non destructive une pièce en CMO pouvant être utilisée notamment à l'intérieur d'un ensemble propulsif d'aéronef.
On atteint ce but de l'invention avec un procédé de CND d'une pièce en CMO, comprenant les étapes consistant à :
a) effectu er u n contrôl e d e su rfa ce d e cette pièce par spectroscopie infrarouge à transformée de Fourrier (FTIR), b) si l'étape a) est révélatrice d'un défaut, effectuer des contrôles en profondeur dudit matériau selon deux techniques à ultrasons complémentaires.
Le contrôle de surface par FTI R étant très simple à mettre en œuvre, le procédé selon l'invention permet de discriminer très simplement les cas favorables où aucun contrôle supplémentaire n'est nécessaire, de ceux où un lever de doute (LDD dans ce qui suit) nécessite des contrôles en profondeur au moyen de techniques ultrasonores. Pour ces derniers cas, le fait d'utiliser deux techniques ultrasonores complémentaires permet d'obtenir d'excellentes fiabilité et reproductibilité du procédé.
Suivant d'autres caractéristiques optionnelles du procédé selon l'invention, pouvant être prises seules ou en combinaison :
- pour la mise en œuvre de l'étape a), on effectue une moyenne de plusieurs spectres FTIR réalisés dans la zone étudiée, et on passe à l'étape b) lorsque l'analyse des pics caractéristiques du vieillissement physico-chimique dépasse au moins un seuil prédéterminé dit de non-conformité, en tenant compte de la mesure d'épaisseur de peinture lorsque la pièce est peinte ;
- pour la mise en œuvre de l'étape b), on recueille les résultats des mesures données par chaque technique ultrasonore, et on se prononce en faveur d'une nécessité de réparation de la pièce lorsque l'un au moins de ces résultats dépasse au moins un seuil prédéterminé dit de non-conformité ; un tel seuil est défini à partir de tables de vérité d'aide à la décision, elles-mêmes construites lors d'essais de développement ;
- on complète les mesu res données par chaque techn iq ue ultrasonore avec une analyse visuelle basée sur la colorimétrie comparative des zones concernées ;
- l'une des deux techniques ultrasonores consiste en une mesure d'énergie acoustique transmise par ondes de surface sur la zone étudiée, et l'autre des deux techniques ultrasonores consiste en la mesure d'impédance électromécanique de ladite zone du matériau ;
- on effectue lesdites mesures ultrasonores après une étape de normalisation de ladite zone : cette étape de normalisation permet de réaliser un étalonnage des mesures ;
- préalablement à l'étape b), on réalise un décapage de la peinture couvrant la surface de ladite pièce : cette étape, applicable uniquement lorsque la pièce à contrôler est revêtue de peinture, est nécessaire pour mettre en œuvre les mesures ultrasonores de l'étape b) ;
on accompagne le contrôle de su rface par spectroscopie infrarouge à transformée de Fourrier par une mesure d'épaisseur de peinture lorsque la pièce est peinte.
La présente invention est destinée notamment au CND d'une pièce d'ensemble propulsif d'aéronef telle qu'une structure interne fixe (IFS) de nacelle de turboréacteur d'aéronef. D'autres caractéristiques et avantages de la présente invention apparaîtront à la lumière de la description qui va suivre, et à l'examen de l'unique figure ci-annexée, représentant de manière schématique le procédé selon la présente invention.
On a représenté, en 1 , une pièce à contrôler.
Dans l'exemple choisi cette pièce 1 est un IFS, c'est-à-dire une pièce destinée à caréner le turboréacteur d'un aéronef, comportant sur sa face interne, c'est-à-dire sur sa face destinée à être en vis-à-vis du turboréacteur, un matelas d'isolation thermique 3.
Dans une zone 5 de cette IFS, le matelas d'isolation thermique 3 a été partiellement arraché, mettant ainsi à nu le matériau composite formant cet ISF.
Dans le cadre de la présente invention, ce matériau composite est un composite à matrice organique (CMO), c'est-à-dire un matériau composite formé d'un empilement de plis obtenus chacun par polymérisation d'une résine organique (résine de type BN I par exemple), cette résine emprisonnant des fibres par exemple en carbone.
Dans l'exemple représenté, la zone 5 dans laquelle le matelas thermique 3 a été partiellement arraché, est la zone du matériau CMO que l'on cherche à contrôler.
En effet, ce matériau est soumis à de très hautes températures, susceptibles d'entraîner des défauts tels qu'une dégradation du CMO par vieillissement physico-chimique, et il importe d'en contrôler périodiquement le vieillissement.
On commence tout d'abord par nettoyer la zone 5 au moyen d'un chiffon sec (étape 7), de manière à en ôter les graisses et autres particules polluantes.
On effectue ensu ite un CND classique (étape 9) comprenant typiquement un contrôle du collage, avec un Bondmaster (appareil à ultra-sons spécifique à cet usage, de la société Olympus) et un Tap Test, c'est-à-dire un test acoustique au marteau, permettant de déceler d'éventuelles zones de décollage du CMO.
Si le CND de l'étape 9 est positif, on déterm ine à l'étape 1 1 l'étendue de la zone défectueuse.
A l'issue de l'ensemble de ces mesures, on connaît l'étendue des réparations nécessaires pour l'IFS, étant entendu que l'aéronef ne pourra voler tant que ces réparations n'auront pas été effectuées (les initiales AOG sur le schéma ci-annexé indiquent « Airplane On Ground », ce qui signifie que l'avion ne peut décoller).
Si les tests classiques réalisés à l'étape 9 ne permettent pas de mettre en évidence un décollement man ifeste du CMO, alors on se rend à l'étape 1 5, dans laquelle on réalise un contrôle de surface de la zone 5 du CMO, au moyen d'un appareil à spectroscopie infrarouge à transformée de Fourrier (FTIR).
Un tel appareil est commercialisé notamment par la Société A2 TECHNOLOGIES sous la marque EXOSCAN.
Cet appareil portable se présente sous la forme d'un pistolet que l'on balaie sur la zone 5.
Cet appareil permet de mesurer, sur des surfaces de l'ordre de 2mm x 2mm, l'absorbance de rayons infrarouges sur une plage de longueur d'ondes allant de 4000 à 500 cm"1.
Les va ri at io n s d ' a bso rba n ce d es rayon s i nfra roug es son t révélatrices de défauts de surface du CMO.
Plus précisément, on effectue plusieurs séries de mesures au moyen de l'appareil à FTIR dans la zone 5, puis on réalise la moyenne des spectres obtenus, avant de les exploiter.
Lorsque l 'analyse des pics caractéristiques du vieillissement physico-ch im ique (déterm inés par les essais de développement) demeure inférieure à un seuil de non conformité NC1 (étape 1 7), moyennant cohérence avec la mesu re d 'épa isseur de peintu re lorsq ue l a pièce est peinte, on considère que le CMO ne présente pas de défaut de surface, et qu'il n'est donc pas nécessaire de mener plus avant les investigations : la conclusion est que l'IFS est apte au vol (étape 18).
Lorsqu'au contraire ce seuil prédéterminé NC1 est dépassé, on considère qu'il faut réal iser des mesures en profondeur du CMO, afin de caractériser de manière très précise la nature du défaut.
A noter que la surface intérieure de l'IFS 1 peut être peinte, comme c'est le cas dans l'Airbus A380, ou bien être à nu , comme c'est le cas par exemple dans l'Airbus A330.
Dans le cas où la surface intérieure de l'IFS 1 est peinte, il est nécessaire, avant d'aller plus avant dans les meures complémentaires, de réaliser un décapage à sec de la peinture, comme cela est indiqué à la figure 19.
Ceci afi n d ' év ite r q u e l a pe i nture, dont l a cou ch e m esu re typiquement de l'ordre de 40 à 80 m icromètres, ne vienne perturber les mesures ultrasonores qui vont être détaillées à présent.
Comme cela est visible sur le schéma ci-annexé, on réalise en fait deux séries de mesu res u ltrasonores distinctes et complémentaires, en parallèle.
La première série de mesures ultrasonores 21 consiste à envoyer à la surface de la zone étud iée 5 des ondes ultrasonores sous une certaine incidence et à engendrer ainsi des ondes de surface pour ensuite mesurer l'énergie transmise par le CMO entre l'émetteur et le récepteur.
Plus précisément, on sollicite mécaniquement la surface de la zone à étudier 5 au moyen de deux transducteurs, à savoir un émetteur (soumis à une tension oscillatoire), et un récepteur (passif).
En pratique, on place les transducteurs de manière symétrique par rapport à un plan normal à la zone à étudiée 5, et on mesure l'amplitude de l'onde ultrasonore transmise par les ondes de surface.
On déplace ce couple émetteur/récepteur a utou r d e l a zon e défectueuse.
Lorsque les grandeurs mesurées dépassent un seuil prédéterminé de non-conformité NC2 (étape 23) on en déduit que ce contrôle est positif, c'est-à-dire que le CMO présente un dommage en profondeur.
Cette première série de mesures ultrasonores permet de caractériser la présence d'un défaut en profondeur dans le CMO, lorsque le seuil NC2 est dépassé.
La deuxième série de mesures ultrasonores 25 consiste à déterminer l'impédance électromécanique de la zone étudiée 5 du CMO.
La relation entre l'intensité traversant ce transducteur et la tension à laquelle il est soum is permet d'en déduire l'impédance électromécan ique recherchée.
On compare ensuite l'impédance résultant de cette mesure ultrasonore ponctuelle à un seuil de conformité NC3 (étape 27).
Typiquement, on sollicite la zone étudiée 5 au moyen de trains d'ondes dont les fréquences sont situées entre 3 et 7 mégahertz. Plus précisément, la log ique de test en fonction des résultats obtenus par chacune des séries de mesures ultrasonores susmentionnées, est la suivante, étant noté que les traits pleins et en pointillés reliant les étapes 23 et 27 aux étapes 29 et 39 n'établissent aucune hiérarchie entre les différentes options possibles : des traits différents ont été employés dans un seul souci de clarté.
Lorsque les mesures 21 et 25 aboutissent à des résultats négatifs, c'est-à-dire lorsque ces mesures restent en dessous des seuils respectifs NC2 et NC3, on en déduit que le CMO n'est touché que de manière superficielle : seul le pli de surface du composite est endommagé (étape 29).
Dans ce cas, il pourra être décidé ou non d'emmener l ' I FS en réparation (étape 31 ), et donc de maintenir ou non l'avion au sol.
Cette décision dépend d'autres paramètres extérieurs, tels que des paramètres tech n iq ues (n iveau d e sol l icitation méca n iq u e de l a zon e concernée) et financiers liés notamment à la durée de vie restant de l'IFS, et ces paramètres ne seront pas détaillés ici.
En revanche, lorsqu'au moins l'une des deux séries de mesure 21 , 25 conduit à un contrôle positif, on en déduit qu'il y a un dommage interne du CMO, et qu' il est donc nécessaire de procéder à une réparation de l' I FS, entraînant une immobilisation de l'aéronef.
Plus précisément on peut se retrouver dans une situation 39 où seul l'un des contrôles ultrasonores 21 , 25 est positif, ce qui signifie qu'il y a en tout deux CND positifs, à savoir le contrôle FTIR et le contrôle ultrasonore par ondes de surface, entraînant donc l'immobilisation de l'avion (étape 41 ).
Ou bien les deux contrôles ultrasonores 21 , 25 sont positifs, ce qui sign ifie qu'il y a donc trois contrôles non destructifs positifs (étape 39 : le contrôle FTIR + les deux contrôles ultrasonores 21 , 25), entraînant la réparation de l'IFS, et donc l'immobilisation de l'aéronef.
L'évaluation du niveau de dégradation du CMO s'effectue à l'aide de tables de vérité (aide à la décision) qui ont été établies par corrélation avec les essais de développement.
Comme on peut le comprendre à la lecture de la description qui précède, le procédé selon l'invention permet de déceler de manière rapide et très fiable la dégradation du matériau par vieillissement physico-chimique à la surface et à l'intérieur d'une pièce réalisée en CMO. Ce procédé permet de définir un mode opératoire reproductible et parfaitement rationnel, dans lequel on commence par des tests visuels et acoustiques classiques, suivis le cas échéant par des mesures de surface réalisées très rapidement au moyen d'un appareil à FTIR, elles-mêmes suivies le cas échéant par des mesures plus poussées faisant appel aux ultrasons.
Chaque étape n'est mise en œuvre que si l'étape précédente en indique la nécessité, évitant ainsi à l'opérateur d'effectuer des mesures inutiles.
Ce procédé selon l'invention permet de caractériser graduellement les défauts constatés, en commençant tout d'abord par des défauts de surface, puis en allant analyser la structure intérieure du CMO.
Le procédé selon l'invention pourra être mis en œuvre de manière a isée par les opérateu rs en charge de la maintenance des ensembles propulsifs d'aéronef, soit lors de visites de routine, soit lors de visites particulières faisant suite à des incidents constatés.
Bien entendu, la présente invention n'est nullement limitée au mode de réalisation décrit et représenté, fournis à titre de simple exemple.

Claims

REVENDICATIONS
1 . Procédé de contrôle non destructif d'une pièce (1 ) en matériau composite à matrice organique (CMO), comprenant les étapes consistant à : a) effectuer un contrôle de surface de cette pièce (1 ) par spectroscopie infrarouge à transformée de Fourrier (FTIR) (15), b) si l'étape a) est révélatrice d'un défaut, effectuer des contrôles en profondeur dudit matériau selon deux techniques à ultrasons
(21 , 25) complémentaires.
2. Procédé selon la revendication 1 , dans lequel pour la mise en œuvre de l'étape a), on effectue une moyenne de plusieurs spectres FTIR réalisés dans la zone étudiée (5), et on passe à l'étape b) lorsque l'analyse des pics caractéristiques du vieillissement physico-chimique dépasse au moins un seuil prédéterminé dit de non-conformité (NC1 ).
3. Procédé selon l'une des revendications 1 ou 2 dans lequel, pour la mise en œuvre de l'étape b), on recueille les résultats des mesures données par chaque technique ultrasonore (21 , 25), et on se prononce en faveur d'une nécessité de réparation de la pièce lorsque l'un au moins de ces résultats dépasse au moins un seuil prédéterminé dit de non-conformité (NC2, NC3).
4. Procédé selon la revend ication 3, dans lequel on complète les mesures données par chaque technique ultrasonore (21 , 25) avec une analyse visuelle basée sur la colorimétrie comparative des zones concernées.
5. Procédé selon l'une quelconque des revendications précédentes, dans lequel l'une (21 ) des deux techniques ultrasonores (21 , 25) consiste en une mesure d'énergie acoustique transmise par ondes de surface sur la zone étudiée, et l'autre (25) des deux techniques ultrasonores consiste en la mesure d'impédance électromécanique de ladite zone du matériau.
6. Procédé selon l'une quelconque des revendications précédentes, dans lequel, préalablement à l'étape b), on réalise un décapage (19) de la peinture couvrant la surface de ladite pièce.
7. Procédé selon l'une quelconque des revendications précédentes, dans leq uel , on accompagne le contrôle de surface par spectroscopie infrarouge à transformée de Fourrier (FTIR) par une mesure d'épaisseur de peinture lorsque la pièce (1 ) est peinte.
8. Appl ication d 'u n procéd é conforme à l 'u n e q u elconq ue d es revendications précédentes au contrôle non destructif d'une pièce en composé à matrice organique (CMO).
9. Application selon la revendication 8 à une pièce de structure interne fixe (IFS) (1 ) de nacelle de turboréacteur d'aéronef.
PCT/FR2012/052217 2011-10-05 2012-10-01 Procédé de contrôle non destructif d'un matériau composite à matrice organique WO2013050691A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12775800.1A EP2764348A1 (fr) 2011-10-05 2012-10-01 Procédé de contrôle non destructif d'un matériau composite à matrice organique
RU2014117112/28A RU2014117112A (ru) 2011-10-05 2012-10-01 Способ неразрушающего контроля композитного материала с органической матрицей
BR112014006691A BR112014006691A2 (pt) 2011-10-05 2012-10-01 método de teste não destrutivo de uma peça em material composto de matriz orgânica (omc) e aplicação de um método
CA2849237A CA2849237A1 (fr) 2011-10-05 2012-10-01 Procede de controle non destructif d'un materiau composite a matrice organique
CN201280048710.0A CN103842804A (zh) 2011-10-05 2012-10-01 用于有机基质复合材料的非破坏性检验方法
US14/245,816 US9274002B2 (en) 2011-10-05 2014-04-04 Method for the non-destructive inspection of an organic-matrix composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1103022 2011-10-05
FR1103022A FR2981157B1 (fr) 2011-10-05 2011-10-05 Procede de controle non destructif d'un materiau composite a matrice organique.

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/245,816 Continuation US9274002B2 (en) 2011-10-05 2014-04-04 Method for the non-destructive inspection of an organic-matrix composite material

Publications (1)

Publication Number Publication Date
WO2013050691A1 true WO2013050691A1 (fr) 2013-04-11

Family

ID=47071384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052217 WO2013050691A1 (fr) 2011-10-05 2012-10-01 Procédé de contrôle non destructif d'un matériau composite à matrice organique

Country Status (8)

Country Link
US (1) US9274002B2 (fr)
EP (1) EP2764348A1 (fr)
CN (1) CN103842804A (fr)
BR (1) BR112014006691A2 (fr)
CA (1) CA2849237A1 (fr)
FR (1) FR2981157B1 (fr)
RU (1) RU2014117112A (fr)
WO (1) WO2013050691A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154236A1 (fr) * 2017-02-22 2018-08-30 Safran Aircraft Engines Procede d'inspection d'un carter par colorimetrie
WO2018154235A1 (fr) * 2017-02-22 2018-08-30 Safran Aircraft Engines Procede de controle non destructif d'un carter par colorimetrie
FR3105528A1 (fr) 2019-12-23 2021-06-25 Engie Green France Procédé de détection de défauts d’un élément en matériau composite

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3012218B1 (fr) * 2013-10-17 2015-12-04 Aircelle Sa Procede d’evaluation de l’endommagement d’un materiau composite recouvert d’une peinture, mesurant sur le spectrogramme deux criteres distincts
US9606048B2 (en) * 2014-06-30 2017-03-28 Momentive Performance Materials Inc. Method for determining the weight and thickness of a passivation or conversion coating on a substrate
CN114113328A (zh) * 2021-11-03 2022-03-01 哈尔滨飞机工业集团有限责任公司 一种检测铝面板与蜂窝胶接件脱粘缺陷的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043303A1 (en) * 2003-07-16 2006-03-02 The Boeing Company Non-destructive infrared inspection device
US20090133501A1 (en) * 2007-11-27 2009-05-28 The Boeing Company Array-Based System And Method For Inspecting A Workpiece With Backscattered Ultrasonic Signals
US20100276578A1 (en) * 2008-09-22 2010-11-04 The Boeing Company Method for determining degree of aging of a polymer resin material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6698288B2 (en) * 2001-12-06 2004-03-02 General Electric Company Method and system for assembling and nondestructive testing of assemblies with composite components
US7516663B2 (en) * 2006-11-03 2009-04-14 General Electric Company Systems and method for locating failure events in samples under load
US7966883B2 (en) * 2006-12-06 2011-06-28 Lockheed Martin Corporation Non-destructive inspection using laser-ultrasound and infrared thermography
US7605924B2 (en) * 2006-12-06 2009-10-20 Lockheed Martin Corporation Laser-ultrasound inspection using infrared thermography
US7743660B2 (en) * 2007-06-15 2010-06-29 The Boeing Company System and method for automated inspection of large-scale part
US7915586B2 (en) * 2008-08-08 2011-03-29 The Boeing Company Method for performing mid-IR spectroscopy measurements to measure film coating thickness, weight and/or film composition
US9541540B2 (en) * 2012-10-04 2017-01-10 United Technologies Corporation Non-destructive test inspection method for evaluating thermal degradation of bismaleimide resin
US9414026B2 (en) * 2013-01-25 2016-08-09 The Boeing Company System and method for automated crack inspection and repair

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060043303A1 (en) * 2003-07-16 2006-03-02 The Boeing Company Non-destructive infrared inspection device
US20090133501A1 (en) * 2007-11-27 2009-05-28 The Boeing Company Array-Based System And Method For Inspecting A Workpiece With Backscattered Ultrasonic Signals
US20100276578A1 (en) * 2008-09-22 2010-11-04 The Boeing Company Method for determining degree of aging of a polymer resin material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the SPIE, Thermosense XXX, edited by V.P: Vavilov", vol. 6939, 2008, SPIE, USA, article AVDELIDIS, N. P. ET AL: "A study of active thermography approaches for the non-destructive testing and evaluation of aerospace structures", pages: 693918-1 - 693918-6, XP002668522 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154236A1 (fr) * 2017-02-22 2018-08-30 Safran Aircraft Engines Procede d'inspection d'un carter par colorimetrie
WO2018154235A1 (fr) * 2017-02-22 2018-08-30 Safran Aircraft Engines Procede de controle non destructif d'un carter par colorimetrie
US10203276B2 (en) 2017-02-22 2019-02-12 Safran Aircraft Engines Method for inspecting a casing by colorimetry
US10527541B2 (en) 2017-02-22 2020-01-07 Safran Aircraft Engines Method for the non-destructive testing of a casing by colorimetry
CN110662887A (zh) * 2017-02-22 2020-01-07 赛峰航空器发动机 通过比色法检查外壳的方法
CN110662886A (zh) * 2017-02-22 2020-01-07 赛峰航空器发动机 通过比色法进行外壳的非破坏性测试的方法
CN110662887B (zh) * 2017-02-22 2022-05-13 赛峰航空器发动机 通过比色法检查外壳的方法
CN110662886B (zh) * 2017-02-22 2022-05-13 赛峰航空器发动机 通过比色法进行外壳的非破坏性测试的方法
FR3063810A1 (fr) * 2017-03-08 2018-09-14 Safran Aircraft Engines Procede d'inspection d'un carter par colorimetrie
FR3063809A1 (fr) * 2017-03-08 2018-09-14 Safran Aircraft Engines Procede de controle non destructif d'un carter par colorimetrie
FR3105528A1 (fr) 2019-12-23 2021-06-25 Engie Green France Procédé de détection de défauts d’un élément en matériau composite
WO2021130458A1 (fr) 2019-12-23 2021-07-01 Engie Green France Procédé de détection de défauts d'un élément en matériau composite

Also Published As

Publication number Publication date
RU2014117112A (ru) 2015-11-10
FR2981157B1 (fr) 2013-10-25
BR112014006691A2 (pt) 2017-04-11
US20140217290A1 (en) 2014-08-07
EP2764348A1 (fr) 2014-08-13
US9274002B2 (en) 2016-03-01
CN103842804A (zh) 2014-06-04
FR2981157A1 (fr) 2013-04-12
CA2849237A1 (fr) 2013-04-11

Similar Documents

Publication Publication Date Title
EP2764348A1 (fr) Procédé de contrôle non destructif d'un matériau composite à matrice organique
Habib et al. Structural health monitoring of bonded composite repairs–A critical comparison between ultrasonic Lamb wave approach and surface mounted crack sensor approach
EP2979082B1 (fr) Procédé et système de détection de défauts sur un objet
Stoik et al. Nondestructive evaluation of aircraft composites using reflective terahertz time domain spectroscopy
CA2912809C (fr) Procede d'inspection par transmission d'ultrasons ameliore
FR3046452A1 (fr) Embout de connexion d'une ligne flexible, dispositif de mesure et procede associe
EP3707503A1 (fr) Contrôle de sante d'une structure industrielle
Armitage et al. Design, development and testing of multi-functional non-linear ultrasonic instrumentation for the detection of defects and damage in CFRP materials and structures
Gleiter et al. Lockin thermography with optical or ultrasound excitation
EP1980847A2 (fr) Méthode d'inspection de défauts se produisant dans du matériau composite en fibre de carbone par perforation de la poche durant le processus de fabrication
EP3532832B1 (fr) Procédé de contrôle non destructif par ultrasons d'un assemblage collé
EP2861977B1 (fr) Contrôle non-destructif par ultrasons de structures en matériau composite
Sarjerao Mane et al. Study of effects of surface preparation on carbon-fiber-reinforced-polymer (CFRP) Single Lap Joints (SLJ) using positioning of gates in ultrasonic signals
CA2922038A1 (fr) Procede d'evaluation de l'endommagement d'un materiau composite recouvert d'une peinture, mesurant sur le spectrogramme deux criteres distincts
周正干 et al. Laser ultrasonic detection of drilling-induced delamination in composite laminates
Tighe et al. Infrared techniques for practical defect identification in bonded joints in liquefied natural gas carriers
Zhao et al. Nondestructive evaluation of residual stress and TGO by using laser ultrasonic method
Qingju et al. Subsurface interfacial defects of metal materials testing using ultrasound infrared lock-in thermography
EP4155724B1 (fr) Procédé de détection d'un défaut dans une structure d'un dispositif par modulation vibro-acoustique
Lin et al. Thickness of coating tested nondestructively based on Welch frequency
NL2006345C2 (en) Method and system for non-destructive testing.
Kojimoto Ultrasonic inspection methods for defect detection and process control in roll-to-roll flexible electronics manufacturing
Wagle et al. Multi wheel PVDF transducer array for imaging of defects in composite materials
Harmon et al. Investigations of delaminations with ultrasonic spectroscopy
FR2996917A1 (fr) Procede et dispositif de determination de l'apparition d'un defaut lors du percage d'un panneau en materiau composite

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2849237

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012775800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012775800

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014117112

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006691

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006691

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140320