CN103841566A - 移动模型下存在恶意用户攻击的基于d-s证据理论的协作频谱感知方法 - Google Patents
移动模型下存在恶意用户攻击的基于d-s证据理论的协作频谱感知方法 Download PDFInfo
- Publication number
- CN103841566A CN103841566A CN201410113770.7A CN201410113770A CN103841566A CN 103841566 A CN103841566 A CN 103841566A CN 201410113770 A CN201410113770 A CN 201410113770A CN 103841566 A CN103841566 A CN 103841566A
- Authority
- CN
- China
- Prior art keywords
- user
- cognitive
- cognitive nodes
- sigma
- evidence theory
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Mobile Radio Communication Systems (AREA)
Abstract
移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,涉及无线通信技术领域中认知无线电网络频谱感知技术。它是为了适应在动态拓扑结构下存在恶意用户提供虚假感知信息下的基于D-S证据理论的协作频谱感知需求。本发明是一种动态拓扑结构下存在恶意用户提供虚假感知信息下的基于D-S证据理论的协作频谱感知方法。解决方案主要步骤分为两步:第一:协作感知节点网络中实施认识用户认证机制,通过可靠的认证机制减少恶意认知用户。第二:提高认知网络的数据融合算法对与认知用户的恶意攻击的鲁棒性,及时发现和去除恶意用户的虚假感知结果。本发明适用于移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知。
Description
技术领域
本发明涉及无线通信技术领域中认知无线电网络频谱感知技术。
背景技术
无线电频谱是无线通信中最为稀缺和宝贵的资源,而许多已分配的频谱并没有得到高效的利用。认知无线电中认知用户通过实时感知动态变化的无线环境,机会式地占用未被主用户使用的频带,并自适应的对发射功率、频段进行合理控制,在保证不对主用户产生干扰的前提下来传输自己的数据。认知无线电是一种对无线电频谱的智能处理,可以有效的提高频谱利用率。频谱感知是认知无线电网络的关键技术之一,只有准确快速的确定特定频带有无主用户信号存在,才能确定认知用户是否退出或使用此频带。
目前常用的频谱感知方法主要可分为单用户频谱感知和多用户协作感知。单用户感知主要包括匹配滤波器感知、循环平稳特征感知、能量感知。这些方案具有结构相对简单,易于实现等,但是在复杂的无线环境下,单用户感知对于终端隐藏、信道衰落等等问题上感知性能会下降很多。
多用户协作感知是在单用户的感知基础上,多个用户信息融合判决进行感知的技术。主要是为改善当认知用户处于严重的多径衰落或者被建筑物遮挡下,主用户就在附近,认知用户误认为主用户未使用此频带,而接入信道,传输信息,对初级用户产生干扰的问题。当多个用户协作检测时,可以有效的降低误检概率,减少对主用户的干扰。多用户协作感知主要分为软判决和硬判决。硬判决是基单用户判决结果,软判决是基于单用户检测的数据信息。采用软判决可以得到更全面的信息,感知性能较好,缺点是相比于硬判决,软判决需要更多的但是,在多用户协作频谱感知中,恶意用户发送错误的信息会对主用户信号的检测性能产生巨大影响。
传统的认知无线电技术都是针对静态的感知节点,2009年IEEE802.22通过了一项修正案,在无线区域网络(Wireless Regional Area Network)采用移动设备,从而引起了一些学者对于移动情景认知无线电技术的研究,如频谱接入、频谱感知等。传统的频谱感知算法是基于固定模型的,节点具有移动性的频谱感知算法目前是频谱感知中比较空白的研究领域。节点移动会影响频谱感知的能力,移动性动态的改变了PU(Primary User)和CR(Cognitive User)的距离。因此,它们之间的移动信道特性也随着时间而变化。例如,在某一个时间,一个CR在主用户的A小区内,在PU移动后,CR有可能不在此范围,而在B小区内。这两个小区具有不同的信道衰落参数,则会对PU信号检测产生影响。
发明内容
本发明是为了适应在动态拓扑结构下存在恶意用户提供虚假感知信息下的基于D-S证据理论的协作频谱感知需求,从而提供一种移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法。
移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征是:它是基于一个包括N个随机分布在Z个小区的认知用户(Cognitive User)且带有一个融合中心(Fusion Centre)的认知网络,该认知网络中的融合中心位置保持不变;该认知网络中的N个认知节点按照随机游走的方式独立移动,且每个认知节点每隔1秒选择一个移动方向和速度;在1秒之内,每个认知节点的运动方向和运动速度保持不变;Z为大于1的整数;
移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法由以下步骤实现:
步骤一、对认知网络中的所有认知节点进行合法用户认证,认证成功的认知用户参与协作感知,并执行步骤二;认证不成功的认知用户退出协作感知,并结束;
式中:std()为的方差;mean()为的均值;
步骤六、根据公式:
获得每个认知节点的归一化感知结果偏离值D;
步骤七一、令Ω为一个包含全部假设且假设间互斥的有限集合,称Ω为帧的识别;Ω={H,T},H代表认知节点为可靠用户,T代表认知节点为恶意用户;由Ω构成的所有子集为Ω={{H,T},H,T,φ},φ为空集;对于任意m(A)表示给定条件事件A的信任程度;
步骤七二、根据D-S证据理论的融合规则,并且利用D-S的组合规则:
在当前时刻对认知节点的用户信任度进行更新;
其中: ;
步骤九、建立用户信任度库Ci,k;所述信任度库Ci,k的建立原则为:
对每个认知节点的用户信任度初始值均为0,当认知节点被判定为恶意用户时,用户信任度值加1,认知节点被判定为恶意用户时,信任度值不变,即:
步骤十、令k的值加1,并返回执行步骤一至步骤九W1次;W1为正整数;获得每个认知节点在W1时长内的信任度累计值,并根据公式:
Wi,k=Ci,k/W1
获得每个认知节点的权重Wi,k;
步骤十一、融合中心根据公式:
对每个认知节点的感知结果进行融合,得到一个总的感知结果Yk;
步骤十二、将步骤十一获得的总的感知结果Yk和参考门限γ进行比较:
获得感知结果,完成移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知。
每个认知节点的感知参数设定为:每秒进行一次感知,感知时长为1ms,并设定在该感知时长下该认知节点为静止节点。
式中:W为信号带宽,2TW为采样点;ni,k为高斯白噪声,服从均值为0、方差为1的正态分布;hi,k为信道增益;si,k为主用户信号;m为求和公式里的中间变量。
式中:Pt为发射功率;PLo为参考距离的路径损耗;αj为小区j的路径损耗指数;di,k为主用户与认知用户间的距离;d0为参考距离;ψi为正态对数分布经验参数。
步骤十一获得的总的感知结果Yk在不同认知节点Yi,k和Wi,k独立分布的情况下,满足以下分布:
ri为每个用户感知结果的信噪比。
步骤十一获得的总的感知结果Yk的虚警概率Pf为:
式中:
步骤十一获得的总的感知结果Yk的检测概率Pd为:
步骤十二中的参考门限选取方法是通过公式:
本发明充分适应在动态拓扑结构下存在恶意用户提供虚假感知信息下的基于D-S证据理论的协作频谱感知需求。本发明的协作感知节点网络中实施认识用户认证机制,通过可靠的认证机制减少恶意认知用户。同时能够提高认知网络的数据融合算法对与认知用户的恶意攻击的鲁棒性,及时发现和去除恶意用户的虚假感知结果。
附图说明
图1是本发明的协作感知网络模型结构示意图;
图2是本发明的基于移动模型下存在恶意用户攻击的协作频谱感知流程示意图。
具体实施方式
具体实施方式一、结合图1和图2说明本具体实施方式,移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,
假设条件:(1)假设CR用户一直在PU的保护范围内在移动,并且将PU的保护范围划分为4个小区,每个小区有不同的信道特性,信道衰落各不相同。各个小区的信道参数主要包括:路径损失指数,阴影衰落指数。
(2)恶意用户对与频谱感知的影响主要分为两类:
1.当PU不活动时,向数据融合中心报告高于能量值,增大虚警概率,降低可用频带的利用率。
2.当PU活动时,向数据融合中心报告低于能量值,降低检测概率,增大认知用户对于PU的干扰。
具体实施方案:
(1)、网络配置:建立一个含有N个认知节点且随机分布在4个小区,一个融合中心的的认知网络,N个节点按照随机游走模型独立移动,每隔1s择一个移动方向和速度,在这1s,每个认知用户保持运动速度和运动方向不变。融合中心位置保持不变。
(2)、首先所有认知节点和融合中心进行合法用户认证,认证成功的认知用户参与协作感知,对于认证不成功的用户融合中心不再接受此用户的感知结果,不参与协作。
(3)、感知参数:每秒进行一次感知,感知时长为1ms。由于感知时间很短,可以认为认知用户在此段时间内为静止节点。
(4)、在k时每个认知节点对接收信号进行能量检测,T:采样时间,W:信号带宽,2TW为采样点,k代表时刻,j代表小区编号。
是针对于时刻k,认知用户i在小区j的功率衰减。
(7)、对每一认知用户的所感知到的主用户信号能量进行归一化处理,得到每个用户的归一化误差,作为每个用户的本地感知结果偏离参数:
(9)针对恶意用户的攻击我们假设初始用户信任度都为1,在每一个时刻k,和时刻k-1,运用DS证据理论进行合成,以此来判决认知用户的信任度。用D表示了位置信任度报告信任以此得到用户信任度。
具体过程如下:
(9a)、令Ω为一个包含全部假设且假设间互斥的有限集合,称Ω为帧的识别。Ω={H,T},H代表认知用户是可靠用户,和T代表认知用户恶意用户。由Ω构成的所有子集为Ω={{H,T},H,T,φ},φ为空集,对于任意m(A)表示在给定的条件事件A的精确的信任程度。
(9b)、 ;
依据D-S证据理论的融合规则,用户的信任度依赖于前一时刻和现在时刻的报告,并且利用D-S的组合规则,在每一时刻对用户的信任度进行更新。
(10)、根据上式得到的信任度即是认知用户在每一个时隙的归一化信任度,假如认知用户k时刻的信任度大于0.5,则认为用户是可靠用户,若该用户小于0.5,则认为该用户是恶意用户。
(11)、建立用户信任度库,对每个用户信任度初始值为0,当用户判为恶意用户时,用户信任度值家加1,判为恶意用户时,信任度值不变。
(12)、本方案观察时间采用滑动窗口制度,为每个认知节点设定一个观察窗口,每个观察窗口包含节点在最近一段时间的信任度表现,观察时段随着观察时间的滑动而滑动,可以有效避免有恶意用户累计信用值到达一定值后传输虚假感知信息。设观察窗口为W1,经过W1次用户信任度累计后,可以得到每个用户的权重。
Wi,k=Ci,k/W1
(13)、融合中心FC(Fusion Centre)按照以下规则对感知结果进行融合,得到一个总的感知结果。
假设不同认知节点Yi,k和Wi,k独立分布,则统计量Yk满足以下分布:
设参考门限为γ,ri为每个用户感知结果的信噪比,则虚警概率和检测概率如下所示:
(14)对于固定的虚警概率值,可以得到:
将融合中心统计量和参考门限γ进行比较,得出感知结果。
Claims (8)
1.移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征是:它是基于一个包括N个随机分布在Z个小区的认知用户(Cognitive User)且带有一个融合中心(Fusion Centre)的认知网络,该认知网络中的融合中心位置保持不变;该认知网络中的N个认知节点按照随机游走的方式独立移动,且每个认知节点每隔1秒选择一个移动方向和速度;在1秒之内,每个认知节点的运动方向和运动速度保持不变;Z为大于1的整数;
移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法由以下步骤实现:
步骤一、对认知网络中的所有认知节点进行合法用户认证,认证成功的认知用户参与协作感知,并执行步骤二;认证不成功的认知用户退出协作感知,并结束;
步骤六、根据公式:
获得每个认知节点的归一化感知结果偏离值D;
步骤七一、令Ω为一个包含全部假设且假设间互斥的有限集合,称Ω为帧的识别;Ω={H,T},H代表认知节点为可靠用户,T代表认知节点为恶意用户;由Ω构成的所有子集为Ω={{H,T},H,T,φ},φ为空集;对于任意m(A)表示给定条件事件A的信任程度;
步骤七二、根据D-S证据理论的融合规则,并且利用D-S的组合规则:
在当前时刻对认知节点的用户信任度进行更新;
其中: ;
步骤九、建立用户信任度库Ci,k;所述信任度库Ci,k的建立原则为:
对每个认知节点的用户信任度初始值均为0,当认知节点被判定为恶意用户时,用户信任度值加1,认知节点被判定为恶意用户时,信任度值不变,即:
步骤十、令k的值加1,并返回执行步骤一至步骤九W1次;W1为正整数;获得每个认知节点在W1时长内的信任度累计值,并根据公式:
Wi,k=Ci,k/W1
获得每个认知节点的权重Wi,k;
步骤十一、融合中心根据公式:
对每个认知节点的感知结果进行融合,得到一个总的感知结果Yk;
步骤十二、将步骤十一获得的总的感知结果Yk和参考门限γ进行比较:
获得感知结果,完成移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知。
2.根据权利要求1所述的移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征在于每个认知节点的感知参数设定为:每秒进行一次感知,感知时长为1ms,并设定在该感知时长下该认知节点为静止节点。
5.根据权利要求4所述的移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征在于步骤十一获得的总的感知结果Yk在不同认知节点Yi,k和Wi,k独立分布的情况下,满足以下分布:
ri为每个用户感知结果的信噪比。
6.根据权利要求5所述的移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征在于步骤十一获得的总的感知结果Yk的虚警概率Pf为:
式中:
7.根据权利要求6所述的移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征在于步骤十一获得的总的感知结果Yk的检测概率Pd为:
8.根据权利要求7所述的移动模型下存在恶意用户攻击的基于D-S证据理论的协作频谱感知方法,其特征在于步骤十二中的参考门限选取方法是通过公式:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410113770.7A CN103841566B (zh) | 2014-03-25 | 2014-03-25 | 移动模型下存在恶意用户攻击的基于d‑s证据理论的协作频谱感知方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410113770.7A CN103841566B (zh) | 2014-03-25 | 2014-03-25 | 移动模型下存在恶意用户攻击的基于d‑s证据理论的协作频谱感知方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103841566A true CN103841566A (zh) | 2014-06-04 |
CN103841566B CN103841566B (zh) | 2017-02-01 |
Family
ID=50804599
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410113770.7A Active CN103841566B (zh) | 2014-03-25 | 2014-03-25 | 移动模型下存在恶意用户攻击的基于d‑s证据理论的协作频谱感知方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103841566B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104202106A (zh) * | 2014-09-26 | 2014-12-10 | 哈尔滨工业大学 | 移动场景中基于信任度的协作频谱感知方法 |
CN104780541A (zh) * | 2015-04-17 | 2015-07-15 | 西安电子科技大学 | 一种抗伪装ssdf恶意攻击的合作频谱感知的方法 |
CN105187144A (zh) * | 2015-10-27 | 2015-12-23 | 哈尔滨工业大学 | 空天地一体化网络中能够剔除恶意移动终端的协作式频谱感知方法 |
CN106850511A (zh) * | 2015-12-07 | 2017-06-13 | 阿里巴巴集团控股有限公司 | 识别访问攻击的方法及装置 |
CN106851538A (zh) * | 2017-01-23 | 2017-06-13 | 重庆邮电大学 | 一种抗ssdf的协作频谱感知方法 |
CN107623553A (zh) * | 2016-07-15 | 2018-01-23 | 中国人民解放军理工大学 | 一种基于可靠评估标准的稳健协同频谱感知方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102711120A (zh) * | 2012-05-23 | 2012-10-03 | 西安电子科技大学 | 基于ds证据理论的协作频谱感知方法 |
US20120309444A1 (en) * | 2011-06-02 | 2012-12-06 | National Chiao Tung University | Cooperative spectrum sensing method and system for locationing primary transmitters in a cognitive radio system |
CN103346849A (zh) * | 2013-06-28 | 2013-10-09 | 宁波大学 | 一种抵抗模仿主用户信号的恶意攻击的频谱感知方法 |
CN103581922A (zh) * | 2013-10-09 | 2014-02-12 | 北京科技大学 | 基于多进程d-s证据理论的合作频谱感知方法 |
-
2014
- 2014-03-25 CN CN201410113770.7A patent/CN103841566B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120309444A1 (en) * | 2011-06-02 | 2012-12-06 | National Chiao Tung University | Cooperative spectrum sensing method and system for locationing primary transmitters in a cognitive radio system |
CN102711120A (zh) * | 2012-05-23 | 2012-10-03 | 西安电子科技大学 | 基于ds证据理论的协作频谱感知方法 |
CN103346849A (zh) * | 2013-06-28 | 2013-10-09 | 宁波大学 | 一种抵抗模仿主用户信号的恶意攻击的频谱感知方法 |
CN103581922A (zh) * | 2013-10-09 | 2014-02-12 | 北京科技大学 | 基于多进程d-s证据理论的合作频谱感知方法 |
Non-Patent Citations (1)
Title |
---|
SHRABONI JANA .ETC: "《Trusted Collaborative Spectrum Sensing for Mobile Cognitive Radio Networks》", 《IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104202106A (zh) * | 2014-09-26 | 2014-12-10 | 哈尔滨工业大学 | 移动场景中基于信任度的协作频谱感知方法 |
CN104202106B (zh) * | 2014-09-26 | 2016-04-20 | 哈尔滨工业大学 | 移动场景中基于信任度的协作频谱感知方法 |
CN104780541A (zh) * | 2015-04-17 | 2015-07-15 | 西安电子科技大学 | 一种抗伪装ssdf恶意攻击的合作频谱感知的方法 |
CN104780541B (zh) * | 2015-04-17 | 2019-03-26 | 西安电子科技大学 | 一种抗伪装ssdf恶意攻击的合作频谱感知的方法 |
CN105187144A (zh) * | 2015-10-27 | 2015-12-23 | 哈尔滨工业大学 | 空天地一体化网络中能够剔除恶意移动终端的协作式频谱感知方法 |
CN105187144B (zh) * | 2015-10-27 | 2017-10-03 | 哈尔滨工业大学 | 空天地一体化网络中能够剔除恶意移动终端的协作式频谱感知方法 |
CN106850511A (zh) * | 2015-12-07 | 2017-06-13 | 阿里巴巴集团控股有限公司 | 识别访问攻击的方法及装置 |
CN106850511B (zh) * | 2015-12-07 | 2020-03-27 | 阿里巴巴集团控股有限公司 | 识别访问攻击的方法及装置 |
CN107623553A (zh) * | 2016-07-15 | 2018-01-23 | 中国人民解放军理工大学 | 一种基于可靠评估标准的稳健协同频谱感知方法 |
CN107623553B (zh) * | 2016-07-15 | 2020-10-30 | 中国人民解放军理工大学 | 一种基于可靠评估标准的稳健协同频谱感知方法 |
CN106851538A (zh) * | 2017-01-23 | 2017-06-13 | 重庆邮电大学 | 一种抗ssdf的协作频谱感知方法 |
CN106851538B (zh) * | 2017-01-23 | 2020-03-31 | 重庆邮电大学 | 一种抗ssdf的协作频谱感知方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103841566B (zh) | 2017-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103841566B (zh) | 移动模型下存在恶意用户攻击的基于d‑s证据理论的协作频谱感知方法 | |
CN101459445B (zh) | 一种认知无线电系统中的合作频谱感知方法 | |
CN102571241B (zh) | 一种改进的双门限协作频谱感知方法 | |
US11330434B2 (en) | Security detection for a physical layer authentication system that considers signal-discriminating capability of an active adversary | |
CN103795479B (zh) | 一种基于特征值的协作频谱感知方法 | |
CN103220052A (zh) | 一种认知无线电中检测频谱空洞的方法 | |
CN102571240A (zh) | 一种运用改进能量检测器的协作频谱感知参数优化方法 | |
Bkassiny et al. | Blind cyclostationary feature detection based spectrum sensing for autonomous self-learning cognitive radios | |
CN101729164B (zh) | 无线资源分配方法和认知无线电用户设备 | |
CN104780006A (zh) | 基于最小错误概率准则的频谱检测器软融合方法 | |
Ling et al. | SpiderMon: Towards using cell towers as illuminating sources for keystroke monitoring | |
Han et al. | Better late than never: GAN-enhanced dynamic anti-jamming spectrum access with incomplete sensing information | |
Ivrigh et al. | A blind source separation technique for spectrum sensing in cognitive radio networks based on kurtosis metric | |
CN104202106A (zh) | 移动场景中基于信任度的协作频谱感知方法 | |
Haldorai et al. | Cognitive Wireless Networks Based Spectrum Sensing Strategies: A Comparative Analysis | |
CN104079359A (zh) | 一种认知无线网络中协作频谱感知门限优化方法 | |
Liu et al. | An adaptive double thresholds scheme for spectrum sensing in cognitive radio networks | |
Malhotra et al. | A review on energy based spectrum sensing in Cognitive Radio Networks | |
Sadeghi et al. | Performance analysis of linear cooperative cyclostationary spectrum sensing over Nakagami-$ m $ fading channels | |
Hou et al. | Cooperative spectrum sensing for non-time-slotted full-duplex cognitive radio networks | |
Namdar et al. | Partial spectrum utilization for energy detection in cognitive radio networks | |
Wang et al. | A trust-value based cooperative spectrum sensing algorithm for mobile secondary users | |
Muta et al. | Throughput analysis for cooperative sensing in cognitive radio networks | |
Nhan et al. | A secure distributed spectrum sensing scheme in cognitive radio | |
Atef et al. | Energy detection of random arrival and departure of primary user signals in Cognitive Radio systems |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |