CN103837330B - 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置 - Google Patents

一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置 Download PDF

Info

Publication number
CN103837330B
CN103837330B CN201410104154.5A CN201410104154A CN103837330B CN 103837330 B CN103837330 B CN 103837330B CN 201410104154 A CN201410104154 A CN 201410104154A CN 103837330 B CN103837330 B CN 103837330B
Authority
CN
China
Prior art keywords
field diaphragm
thermovision field
thermovision
temperature
horizontal solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410104154.5A
Other languages
English (en)
Other versions
CN103837330A (zh
Inventor
饶长辉
刘洋毅
顾乃庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN201410104154.5A priority Critical patent/CN103837330B/zh
Publication of CN103837330A publication Critical patent/CN103837330A/zh
Application granted granted Critical
Publication of CN103837330B publication Critical patent/CN103837330B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Telescopes (AREA)

Abstract

本发明提出一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,包括激光器(1),扩缩束系统(2),热视场光阑(3),缩束准直系统(4),波前探测器(5),泵(6),恒温水箱(7),热视场光阑温度传感器(8),空气温度传感器(9)和计算机(10)。热视场光阑是太阳望远镜内部最重要的热控器件之一,其温升引发的内部视宁度效应极大地限制了太阳望远镜的性能。该装置能够对温差与内部视宁度效应间的定量关系进行标定,根据标定结果可以通过对温差的测量实现对太阳望远镜内部视宁度效应的定量测量,为大口径太阳望远镜内部视宁度效应控制提供了重要依据。该装置结构简单,操作方便,成本低廉,实用性和创新性强。

Description

一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置
技术领域
本发明涉及太阳望远镜内部视宁度效应测量领域,特别是针对一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置。
背景技术
随着人类对太阳物理学研究的不断深入,对太阳表面活动观测所需的空间、时间和光谱分辨率要求不断提高,因此,对太阳望远镜口径的需求不断增大。而太阳望远镜口径增大一倍,其集光能力提升的同时,由此导致的望远镜热载荷升高将达3~4倍。为了解决太阳望远镜日益严重的热效应问题,保护后继光学系统安全,太阳望远镜普遍采用热视场光阑,通过视场限制,将大部分太阳辐射能量截止在热视场光阑上,从而对后继光学系统起到保护的作用。
目前,世界太阳望远镜已发展到米级。由于米级口径太阳望远镜封窗玻璃制造困难且易引起压力双折射效应,大口径太阳望远镜均放弃了传统的真空式镜筒而采用开放式镜筒。对于采用开放式镜筒的太阳望远镜,其热视场光阑暴露于空气中。热视场光阑在截止大部分太阳辐射能量保护后继光学系统的同时,也会吸收部分热量,造成热视场光阑基体温升,加剧镜筒内空气不稳定性,最终恶化太阳望远镜成像像质,该影响过程称为太阳望远镜热视场光阑的内部视宁度效应。
2002年,美国ATST太阳望远镜研究人员提出,热视场光阑与环境之间的温差是造成太阳望远镜内部视宁度效应的直接原因,但温差与内部视宁度效应间的关系尚不明确(HeatStopConceptualDevelopment,ProjectDocumentation,2002)。2003年,德国GREGOR太阳望远镜研究人员提出,可以通过对热视场光阑与环境温差进行主动控制来削弱热视场光阑内部视宁度效应,并给出了带有水冷系统热视场光阑设计方案(OpticalandthermaldesignofthemainopticofthesolartelescopeGREGOR,SPIEVol.5179,2003)。2010年,欧洲EST太阳望远镜研制团队通过对热视场光阑引发镜筒内空气不稳定性的过程进行流固耦合仿真发现,热视场光阑与环境温差越小,则其引发的视宁度效应越小,并定性地给出了其热视场光阑的温控目标和适合于EST太阳望远镜热视场光阑设计方案(Theheatstopforthe4-mEuropeanSolarTelescopeEST,SPIEVol.773377332Z-1,2010)。
目前对热视场光阑内部视宁度效应的评价依赖温差测量间接获得,且热视场光阑与环境温差同其内部视宁度效应之间的定量关系尚不明确,难以通过对热视场光阑与环境的温差测量,直接定量反映热视场光阑内部视宁度效应。因此,要定量衡量热视场光阑引起的太阳望远镜内部视宁度效应,还需要建立视宁度效应与环境温差之间的定量关系。
基于以上背景,本专利提出一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,该装置通过对温差与内部视宁度效应间的定量关系进行标定,根据标定结果可以通过对温差的测量实现对太阳望远镜内部视宁度效应的定量测量,大大降低了热视场光阑内部视宁度效应的监测难度。同时,本发明可充分利用热视场光阑现有温控系统,实现对热视场光阑工作过程的模拟,结构简单,成本低;另一方面,使热视场光阑内部视宁度效应的标定可不依赖于望远镜系统独立进行,排除了望远镜系统其他部件对标定结果的影响,提高了标定准确性。
发明内容
本发明要解决的技术问题是:为太阳望远镜热视场光阑工作过程中引发的内部视宁度效应提供一套标定装置,建立起不易被直接定量测量的热视场光阑内部视宁度效应,同容易测量的热视场光阑与环境温差的标定曲线,通过对热视场光阑与环境温差的定量测量,实现对热视场光阑内部视宁度效应的定量测量。
本发明解决上述技术问题采用的技术方案是:
一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,由光学部分、温控部分和监测部分三模块组成;
光学部分包括:激光器,扩缩束系统,热视场光阑,缩束准直系统和波前探测器,该部分主要作用是模拟太阳望远镜光路及搭建波前像差检测光路;首先,激光器出光经过扩缩束系统扩束、缩束后转化为一束会聚光并形成一个实焦点,即热视场光阑安装位置;然后,激光光束经由热视场光阑的内部通光通道及缩束准直系统,最后,进入波前探测器,可直接测得波前RMS值,环围能量或远场斯特列尔比;其中,扩缩束系统中紧邻热视场光阑的透镜或反射镜F数应等于或略大于太阳望远镜主镜F数,以保证通过热视场光阑的光锥锥角与太阳望远镜中通过其的光锥锥角相同或相近,尽可能保证标定过程与实际使用的一致性;缩束准直系统缩束比例应取决于标定装置中具体采用的波前探测器所需的进光口径,并在功能上实现对光束的缩束准直即可;上述过程实现了对太阳望远镜进光通过热视场光阑的全过程模拟及后续波前像差检测;
温控部分包括:热视场光阑,泵,恒温水箱及相应管线;上述各部分通过管线连接构成一个封闭系统,在泵的驱动下形成循环,恒温水箱通过对冷却液进行温控,对热视场光阑构建恒温场;温控部分可基于热视场光阑,利用恒温水箱,通过注入恒温水对热视场光阑进行主动温控,模拟热视场光阑在汇聚太阳辐射加热下引起的温升;
监测部分包括:光阑温度传感器,环境温度传感器,计算机及相应线缆,其主要作用是利用环境温度传感器实时监测并记录热视场光阑及环境温度,并利用计算机计算热视场光阑与环境温差;
该标定装置的标定操作过程如下所述:首先,安装待标定热视场光阑,待其温度与环境恒温至相同时,开启激光器,通过波前探测器对系统静态像差进行标定;然后,设置恒温水箱的出水温度,开启泵;最后,待热视场光阑与环境温差恒定后,对波前进行测量,获得波前像差的定量指标,即完成一组温差与对应波前像差数据的测量;重复上述过程,可以获得一系列温差与对应的波前像差数据,通过查表的方式,即可实现通过对热视场光阑与环境温差的测量获得相应温差下的波前像差,实现对热视场光阑内部视宁度效应的定量测量。
其中,光学部分的扩缩束系统中紧邻热视场光阑的光学件,采用透镜或反射镜,其F数需与热视场光阑所应用的太阳望远镜主镜F数相同或相近。
其中,光学部分的缩束准直系统缩束比例应与波前探测器所需的进光口径相匹配。
其中,光学部分的波前探测器能够实时测量波前像差,并直接给出定量指标。
其中,波前探测器可采用哈特曼传感器,剪切干涉仪或曲率传感器。
其中,只要能够实现对畸变波前的实时定量测量的探测器,均可用作为所述波前探测器。
本发明的原理:
所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,通过光学部分重建热视场光阑工作光路,使得热视场光阑内部视宁度效应的标定不依赖于太阳望远镜系统独立进行。同时,光学部分增加后端准直及波前探测系统,能够实时对通过热视场光阑的光束波前像差进行探测,通过波前像差的定量指标直接评价热视场光阑内部视宁度效应。
通过温控部分主动控制,实现热视场光阑的温升,以模拟热视场光阑在工作过程中受太阳辐射加热引起的温升。
通过监测部分对热视场光阑和环境温度进行监测和记录,获得热视场光阑和环境温度的实时温差,作为绘制热视场光阑与环境温差同热视场光阑内部视宁度效应标定曲线的主要参数。
如上所述,光学部分和温控部分的协同工作,实现了对工作过程中的热视场光阑周围光路及热视场光阑温升情况的模拟;根据监测部分提供的热视场光阑与环境温差数据及光学部分中波前探测器获得的实时波前像差定量评价指标,即可建立起热视场光阑与环境温差同波前像差定量评价指标的标定曲线。
本发明与现有技术相比有如下优点:
(1).本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,实现了对太阳望远镜热视场光阑内部视宁度效应同热视场光阑与环境温差的标定。使得长期以来对不易直接测量的热视场光阑内部视宁度效应的检测,可以通过对热视场光阑与环境温差的测量实现,有助于实现热视场光阑内部视宁度效应的快速在线检测。
(2).本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,实现了不依赖于太阳望远镜系统对热视场光阑工作过程进行模拟,有效地排除了望远镜系统中其他部件对热视场光阑内部视宁度效应标定的干扰,提高了标定准确性。
(3).本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,可以通过往热视场光阑现有冷却系统中注入恒温水的方式实现对热视场光阑工作过程中温升的模拟。该方法简单易行,充分利用热视场光阑现有温控系统,有效降低了标定装置成本及复杂程度。
(4).本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,该装置采用模块化设计,由光学部分、温控部分和监测部分三模块组成。三个模块相互独立,协同工作;仅对其中某些模块进行适当改变,即可使该装置能够用于对不同类型热视场光阑内部视宁度效应的标定。该装置使用灵活性大,适用范围广。
(5).本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,通过增加少量基本光学器件并充分利用热视场光阑现有温控系统,实现了对热视场光阑内部视宁度效应与热视场光阑与环境温差的标定,使得不易被直接定量测量的热视场光阑内部视宁度效应的检测,可以通过对热视场光阑与环境温差的测量获得;同时,该标定装置不依赖于太阳望远镜系统,有效地排除了望远镜系统中其他元件对标定结果的影响,提高了标定准确性。
总之,依靠本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,可以将长期以来无法直接进行太阳望远镜热视场光阑内部视宁度效应定量测量转化为对热视场光阑与环境温差的测量,大大降低了测量难度。同时,该装置具有低成本,结构简单、适用范围广等优点,创新性与实用性强,对太阳望远镜热视场光阑设计评价及望远镜热视场光阑内部视宁度效应检测、分析有重要意义。
附图说明
图1为一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,1为激光器,2为扩缩束系统,3为热视场光阑,4为缩束准直系统,5为波前探测器,6为泵,7为恒温水箱,8为热视场光阑温度传感器,9为环境温度传感器,10为计算机。
图2为实施方案光学部分,a为He-Ne激光器,b为针孔滤波器,c为扩缩透镜组,d为热视场光阑组件,e为缩束准直透镜组,f为哈特曼波前传感器。
图3为采用“两进两出”冷却方案的热视场光阑冷却腔体结构,h-1为第一入水口,h-2为第二入水口,g-1为第一出水口,g-2为第二出水口。
图4为实施方案温控部分图,6为泵,7为恒温水箱,i-1为第一分水器,i-2为第二分水器,j-1为第一出水管,j-2为第二出水管,k-1为第一入水管,k-2为第二入水管,热视场光阑冷却腔l。
图5为标定操作流程。
具体实施方式
下面结合附图以及具体实施例进一步说明本发明。
本发明的基本思想在于提供一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,由光学部分、温控部分和监测部分等三模块组成。
光学部分包括:激光器1,扩缩束系统2,热视场光阑3,缩束准直系统4和波前探测器5。激光器1出光经过扩缩束系统2扩束、缩束后转化为一束会聚光并形成一个实焦点,其中,热视场光阑3安装于该实焦点位置。激光光束经由热视场光阑3的内部通光通道及缩束、缩束准直系统4进入波前探测器5。上述实施方式实现了对太阳望远镜进光通过热视场光阑过程的模拟及后续波前像差检测光路的搭建。
温控部分包括:热视场光阑3,泵6,恒温水箱7及相应管线等。本具体实施方式中,温控部分基于热视场光阑3现有冷却腔结构,将热视场光阑冷却腔所有进水口和出水口通过管道相连,构成一个封闭液体循环,并在循环中增加恒温水箱7。通过对恒温水箱7的出水温度进行设置,对热视场光阑3进行主动温控,以模拟热视场光阑3在会聚太阳辐射加热下引起的温升。
监测部分包括:光阑温度传感器8,环境温度传感器9,计算机10及相应线缆等。通过光阑温度传感器8和环境温度传感器9,实时监测并记录热视场光阑3基体及环境温度,并利用计算机10计算热视场光阑与环境温差。
光学部分的扩缩束系统2中紧邻热视场光阑3的光学件,采用透镜或反射镜,其F数需与热视场光阑所应用的太阳望远镜主镜F数相同或相近。
光学部分的缩束准直系统4缩束比例应与波前探测器5进光口径相匹配。
光学部分的波前探测器5可以实时测量波前像差并直接如波前RMS值,环围能量或远场斯特列尔比,波前探测器5可采用哈特曼传感器,剪切干涉仪、曲率传感器等,只要能够实现对畸变波前的实时定量测量的探测器,均可用作为本发明中波前探测器5。
根据上述方法搭建该标定装置,通过温控部分不断对热视场光阑3温度进行主动控制,并实时采集和记录热视场光阑与环境温差和对应的波前像差定量评价指标。根据以上数据,可以绘制出波前像差定量评价指标随热视场光阑与环境温差变化的标定曲线,最终通过对该热视场光阑与环境温差的直接测量,即可实现对热视场光阑内部视宁度效应的定量测量。
该明发所述的光学部分,其核心作用是模拟太阳望远镜光路,其具体光学设计可以基于热视场光阑所应用的太阳望远镜。不同的太阳望远镜,不同的设计者,将使得该标定装置的光学部分有所区别,但只要光学部分是基于太阳望远镜光学系统所做的设计,无论采用何种具体设计形式,均应视为本发明保护范畴。
所述的光学部分中,无论采用何种具体光学设计,光路中应至少有一个实焦点,即为热视场光阑安装位置。
所述的光学部分中,波前探测器5不限于种类及探测算法,只要能实现对波前像差的探测并给出定量评价指标即可。
温控部分主要作用是对热视场光阑进行主动温控。温控部分可以是基于热视场光阑3设计全新的温控装置,也可以基于热视场光阑3现有温控系统进行部分改变,实现对热视场光阑3的温控。无论采用何种温控装置和温控方式,只要能够实现对热视场光阑3温度的主动控制,均应视为本发明保护范畴。
所述的温控部分,如果基于现有温控系统,通过增加恒温水箱7,实现对热视场光阑3的主动温控,采用的循环介质不限于水,也可以是其他具有相同作用的液体。
所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,无论温度传感器数量、种类、布局方式、测量方式等,监测部分至少能够实时测量并记录热视场光阑温度和环境温度。只要满足上述要求,均应视作本发明保护范畴。
所述的监测部分,计算机10至少能够实时计算并记录热视场光阑与环境温差。
所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,能够通过温控部分主动控制热视场光阑温升,并通过波前探测器5获得相应热视场光阑温升下对应的波前像差定量评价指标,配合监测部分实测的热视场光阑与环境温差数据,建立热视场光阑与环境温差随波前像差定量评价指标变化的标定曲线。
所述的波前像差定量评价指标,能够对实测的波前像差进行定量评价。评价指标可以采用像差理论中常用的波面RMS值、环围能量等定量指标,也可以是其他自定义的评价指标及评价准则。只要指标能够实现对波前像差的定量评价,均属于本发明保护范畴。
实例1
一种用于太阳望远镜热视场光阑内部视宁度效应标定装置的可能实施方案,具体的:
光学部分包括:He-Ne激光器a,针孔滤波器b,扩缩束透镜组c,热视场光阑组件d,缩束准直透镜组r,哈特曼波前传感器f组成。激光器a出光经过针孔滤波器b后形成发散光束,经过扩缩束透镜组c后转化为一束会聚光并形成一个实焦点,其中,热视场光阑d中心通孔安装于该实焦点位置。激光光束经由热视场光阑d的内部通光通道及缩束准直透镜组e进入哈特曼波前传感器f,获得实时波前像差RMS值。上述实施方式实现了对太阳望远镜进光通过热视场光阑过程的模拟及后续波前像差检测光路的搭建。
其中,针孔滤波器b为一针孔和一显微物镜(正透镜)组成的光学系统。可将He-Ne激光器a出光转化为一点源发散光束。
其中,扩缩束透镜c组由两片双胶合正透镜组成,将发散光束准直后转换为收缩光束。
其中,缩束准直透镜组r由两片双胶合正透镜和一片双胶负透镜依次放置组成,经过热视场光阑组件d的发散光束通过两片正透镜的准直缩束后,再次被负透镜准直为一定口径的平行光,该口径与哈特曼波前传感器所需进光口径相同。
温控部分包括:泵6,恒温水箱7,第一分水器i-1,第二分水器i-2,第一入水管j-1,第二入水管j-2,第二出水管k-2,第一出水管k-1,和热视场光阑冷却腔l。泵6通过水管连接恒温水箱7,恒温水箱7通过水管连接第二分水器i-2,第二分水器i-2分别通过第一入水管j-1和第二入水管j-2连接热视场光阑冷却腔l的第一入水口h-1和第二入水口h-2;热视场光阑冷却腔l的第一出水口g-1和第二出水口g-2分别与第一出水管k-1和第二出水管k-2相连,再通过第一分水器i-1连接到泵h,即上述部分通过水管连接构成封闭循环,在泵6的驱动下,冷却液经过恒温水箱通过热视场光阑冷却腔l对热视场光阑进行温控,构成恒温场。
监测部分包括:光阑温度传感器8,环境温度传感器9,计算机10及相应线缆等。通过光阑温度传感器和环境温度传感器,实时监测并记录热视场光阑及环境温度,并利用计算机10计算热视场光阑与环境温差。光阑温度传感器8采用四线制Pt100贴片式温度传感器,环境温度传感器9采用四线制热敏电阻传感器,上述传感器均通过温度变送模块后接入测温仪,通过RS-232与计算机10通信,实现对光阑和环境温度的在线监测。
根据上述方法搭建该标定装置,标定过程如下所述。
步骤1:放置待标定热视场光阑,保持其中心通光孔在光路实焦点位置。
步骤2:恒温至热视场光阑与环境温差为零。
步骤3:开启激光器并标定系统静态像差。
步骤4:设置恒温水箱出水温度,开启温控循环。
步骤5:恒温至热视场光阑与环境温差稳定。
步骤6:记录热视场光阑与环境温差及畸变波前RMS值。
步骤7:进行下一次测量,重复步骤4—7。
步骤8:根据测量数据绘制温差—畸变波前RMS值标定曲线。
根据上述过程获得的温度—波前像差标定曲线,即可通过温度监测实现对热视场光阑内部视宁度效应的实时定量测量。
太阳望远镜热视场光阑工作过程中与周围环境的温差将引发镜筒内湍流,引发望远镜内部视宁度效应,恶化望远镜成像质量。由于望远镜系统结构复杂,影响因素众多,长期以来,热视场光阑内部视宁度效应难以准确测量。本发明提出的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,可以将热视场光阑内部视宁度效应的测量和标定过程独立于望远镜系统,大大提高了其测量准确性,同时,通过光学指标,建立起了温度—内部视宁度效应的标定曲线,能够实现通过实时温度测量的方式直接测量热视场光阑内部视宁度效应。该发明为太阳望远镜热视场光阑温控目标的确定和太阳望远镜内部视宁度效应的分析、改善和监测提供了有效的方法;同时,该发明充分利用热视场光阑现有冷却结构和少量基本光学器件,即可实现整个标定过程,结构简单,操作方便,成本低廉,实用性和创新性强。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉该技术的人在本发明所揭示的技术范围内,可理解到的替换或增减,都应涵盖在本发明的包含范围之内,因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (4)

1.一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,其特征在于:由光学部分、温控部分和监测部分组成;
光学部分包括:激光器(1),扩缩束系统(2),热视场光阑(3),缩束准直系统(4)和波前探测器(5),光学部分主要作用是模拟太阳望远镜光路及搭建波前像差检测光路;光学部分的工作过程如下所述:首先,激光器(1)发出的光经过扩缩束系统(2)扩束、缩束后转化为一束会聚光并形成一个实焦点,热视场光阑(3)安装于该焦点位置;然后,激光光束经由热视场光阑(3)内部通光通道及缩束准直系统(4),最后,进入波前探测器(5),能直接测得波前RMS值,环围能量或远场斯特列尔比;其中,扩缩束系统(2)中紧邻热视场光阑(3)的透镜或反射镜F数应等于或略大于太阳望远镜主镜F数,以保证通过热视场光阑(3)的光锥锥角与太阳望远镜中通过其的光锥锥角相同或相近,尽可能保证标定过程与实际使用的一致性;缩束准直系统(4)缩束比例应取决于所述标定装置中具体采用的波前探测器(5)所需的进光口径,并在功能上实现对光束的缩束准直即可;上述过程实现了对太阳望远镜进光通过热视场光阑的全过程模拟及后续波前像差检测;
温控部分包括:热视场光阑(3),泵(6),恒温水箱(7)及相应管线;热视场光阑(3),泵(6),恒温水箱(7)通过管线连接构成一个封闭系统,在泵(6)的驱动下形成循环,恒温水箱(7)通过对冷却液进行温控,对热视场光阑(3)构建恒温场;温控部分基于热视场光阑(3),利用恒温水箱(7),通过注入恒温水对热视场光阑(3)进行主动温控,模拟热视场光阑(3)在汇聚太阳辐射加热下引起的温升;
监测部分包括:光阑温度传感器(8),环境温度传感器(9),计算机(10)及相应线缆,监测部分主要作用是利用光阑温度传感器(8)和环境温度传感器(9)实时监测并记录热视场光阑(3)及环境的温度,并利用计算机(10)计算热视场光阑(3)与环境的温差;
该标定装置的标定操作过程如下所述:首先,安装待标定热视场光阑(3),待其温度与环境恒温至相同时,开启激光器,通过波前探测器(5)对系统静态像差进行标定;然后,设置恒温水箱(7)的出水温度,开启泵(6);最后,待热视场光阑与环境的温差恒定后,对波前进行测量,获得波前像差的定量指标,即完成一组温差与对应波前像差数据的测量;重复上述过程,获得一系列温差与对应的波前像差数据,通过查表的方式,即可实现通过对热视场光阑与环境的温差的测量获得相应温差下的波前像差,实现对热视场光阑内部视宁度效应的定量测量。
2.根据权利要求1所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,其特征在于:光学部分的波前探测器(5)能够实时测量波前像差,并直接给出定量指标。
3.根据权利要求1所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,其特征在于:波前探测器(5)采用哈特曼传感器,剪切干涉仪或曲率传感器。
4.根据权利要求1所述的一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置,其特征在于:只要能够实现对畸变波前的实时定量测量的探测器,均能够作为所述波前探测器(5)。
CN201410104154.5A 2014-03-19 2014-03-19 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置 Active CN103837330B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410104154.5A CN103837330B (zh) 2014-03-19 2014-03-19 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410104154.5A CN103837330B (zh) 2014-03-19 2014-03-19 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置

Publications (2)

Publication Number Publication Date
CN103837330A CN103837330A (zh) 2014-06-04
CN103837330B true CN103837330B (zh) 2016-05-18

Family

ID=50801049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410104154.5A Active CN103837330B (zh) 2014-03-19 2014-03-19 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置

Country Status (1)

Country Link
CN (1) CN103837330B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442854A (zh) * 2020-04-30 2020-07-24 中国科学院云南天文台 一种用于太阳望远镜热光阑的实时测温系统及测温方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105403384A (zh) * 2015-11-03 2016-03-16 中国科学院长春光学精密机械与物理研究所 镜面视宁度测量装置
CN105628340A (zh) * 2015-12-22 2016-06-01 中国科学院长春光学精密机械与物理研究所 一种镜面视宁度评价方法
CN106500968B (zh) * 2016-11-16 2019-07-02 中国科学院云南天文台 一种基于杨氏双缝干涉理论检测望远镜成像质量的方法
CN115855448A (zh) * 2022-11-26 2023-03-28 西安工程大学 一种基于针孔阵列光阑及最小二乘法的太阳望远镜多通道视场定标方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08334540A (ja) * 1995-06-09 1996-12-17 Jeco Co Ltd 恒温室内観察用窓およびその形成方法
JP4042173B2 (ja) * 1996-12-11 2008-02-06 株式会社ニコン 望遠鏡光学系
CN1553155A (zh) * 2003-05-31 2004-12-08 中国科学院云南天文台 太阳差分像运动白日大气视宁度监测仪
CN101718590B (zh) * 2009-11-27 2011-02-09 中国科学院光电技术研究所 基于远场性能指标的自适应光学系统标定装置
CN101922974B (zh) * 2010-08-31 2012-02-01 中国科学院西安光学精密机械研究所 一种激光参数性能测试自动标定装置及其方法
CN102305666B (zh) * 2011-08-23 2012-11-14 中国科学院云南天文台 基于太阳视直径方差测量的白日视宁度测量方法和设备
CN102621687B (zh) * 2012-04-09 2014-05-28 中国科学院光电技术研究所 一种太阳多层共轭自适应光学系统
CN102889935A (zh) * 2012-09-14 2013-01-23 中国科学院光电技术研究所 基于相位差法的自适应光学系统近场波前传感器标定装置及标定方法
CN103149677B (zh) * 2013-01-29 2015-01-07 中国科学院光电技术研究所 基于射流冷却原理的大口径地基太阳望远镜热视场光阑冷却装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111442854A (zh) * 2020-04-30 2020-07-24 中国科学院云南天文台 一种用于太阳望远镜热光阑的实时测温系统及测温方法

Also Published As

Publication number Publication date
CN103837330A (zh) 2014-06-04

Similar Documents

Publication Publication Date Title
CN103837330B (zh) 一种用于太阳望远镜热视场光阑内部视宁度效应的标定装置
van Hinsberg et al. Density measurements using near-field background-oriented schlieren
CN108195419B (zh) 一种新型流体多场观测的系统及方法
Häber et al. The effect of total reflection in PLIF imaging of annular thin films
CN102889935A (zh) 基于相位差法的自适应光学系统近场波前传感器标定装置及标定方法
CN102749141A (zh) 一种测量目标真实温度的辐射测温方法和仪器
Tian et al. Aero-optical wavefront measurement technique based on BOS and its applications
CN105241576B (zh) 一种基于分布式光纤的高炉热风炉内衬侵蚀建模方法
CN104458204A (zh) 一种用于非稳态流动传热可视化研究的实验及测量系统
CN104792436A (zh) 一种分布式光纤测温方法
CN108226120A (zh) 一种测量片状激光光束尺寸和能量分布的装置及方法
Li et al. Simultaneous measurement of flame temperature and absorption coefficient through LMBC-NNLS and plenoptic imaging techniques
CN108375554A (zh) 水平红外大气光谱透过率评估方法
CN103344388A (zh) 一种气体泄漏红外成像检测系统的性能评价装置及方法
CN101261224B (zh) 基于4f相位相干成像系统测量材料的光学非线性的方法
CN104777077A (zh) 基于光阱效应的液体黏滞系数测量装置及测量方法
CN105241579B (zh) 一种反后坐装置温度自动测量仪及其控制方法
CN104316480A (zh) 一种含砷金精矿焙烧炉内氧气浓度的激光原位检测系统
CN105466576A (zh) 一种对大气湍流高度和角度非等晕波前误差同步测量装置及方法
CN106124407A (zh) 一种光腔、具有该光腔的气溶胶消光仪及气溶胶消光系数的测量方法
Li et al. Effect of nonuniform radiation properties on flame temperature reconstruction based on light field imaging
CN107941667A (zh) 高温环境气固两相流多参数测量装置和方法
CN105891124A (zh) 近岸河口水色参数反演装置及方法
CN205642633U (zh) 基于光辐射的测温设备及系统
CN105987879A (zh) 近岸河口水色参数反演装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant