CN103825567A - Operational amplifier circuit - Google Patents
Operational amplifier circuit Download PDFInfo
- Publication number
- CN103825567A CN103825567A CN201210464966.1A CN201210464966A CN103825567A CN 103825567 A CN103825567 A CN 103825567A CN 201210464966 A CN201210464966 A CN 201210464966A CN 103825567 A CN103825567 A CN 103825567A
- Authority
- CN
- China
- Prior art keywords
- terminal
- capacitor
- output transistor
- coupled
- gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 209
- 230000008054 signal transmission Effects 0.000 claims abstract description 59
- 238000010586 diagram Methods 0.000 description 10
- 230000005669 field effect Effects 0.000 description 10
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Landscapes
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明是有关于一种负载驱动电路,且特别是有关于一种运算放大器电路。The present invention relates to a load driving circuit, and in particular to an operational amplifier circuit.
背景技术Background technique
运算放大器在集成电路设计中扮演着相当重要的角色,其广泛地应用在高传真的立体音响设备(high-fidelity stereo equipment)、微电脑及其它电子设备。运算放大器的功用其中之一为增强输出信号的驱动能力,以驱动负载或者下一级电路。Operational amplifiers play a very important role in integrated circuit design, and are widely used in high-fidelity stereo equipment, microcomputers and other electronic equipment. One of the functions of the operational amplifier is to enhance the driving capability of the output signal to drive the load or the next stage circuit.
图1绘示已知的数字控制模拟电压驱动电路的概要示意图。请参考图1,此驱动电路100包括数字模拟转换器110(digital to analog converter,DAC)与运算放大器120。数字模拟转换器110用以接收数字信号SD,并将接收数字信号SD转换模拟信号SA后,再将模拟信号SA输出至运算放大器120。在此例中,运算放大器120为负反馈配置,具有单增益(unity gain)。当运算放大器120接收到不同的输入电压时,其输出便会产生不同的电压变化,此变化速度称为回转率(slew rate),其值取决于运算放大器120的输入级电流与补偿电容的大小。FIG. 1 is a schematic diagram of a known digitally controlled analog voltage driving circuit. Please refer to FIG. 1 , the
具体而言,在数字控制模拟电压驱动电路的应用中,运算放大器120的输出级电路通常会包括多个补偿电容来加强运算放大器120的稳定性。以8位的数字信号SD为例,根据数字信号SD的最高有效位(most significantbits,MSB)的不同,数字模拟转换器110的输出范围可大致区分为两个部分。图2绘示数字信号对应数字模拟转换器110的输出范围的对照示意图。请参考图2,在数字信号SD的最高有效位为1(MSB=1)的范围内,所对应的电压范围大致为高电位输出V2至V3。在数字信号SD的最高有效位为0(MSB=0)的范围内,所对应的电压范围大致为低电位输出V1至V2。因此,为了因应此种数字控制方式,运算放大器120的输出级电路内部通常会设计两个电容来补偿其稳定性。其中之一电容负责补偿数字模拟转换器110的高电位输出,其中的另一电容负责补偿数字模拟转换器110的低电位输出。Specifically, in the application of digitally controlled analog voltage driving circuit, the output stage circuit of the
在此种设计中,补偿电容通常会在芯片中占据过大的面积。然而,若为了增加回转率而采取减少补偿电容的方式,又会导致运算放大器振荡。因此,如何在运算放大器的输出级电路设计一个适当的电容补偿结构实为重要的课题之一。In this design, the compensation capacitor usually occupies too much area in the chip. However, reducing the compensation capacitor in order to increase the slew rate will cause the operational amplifier to oscillate. Therefore, how to design an appropriate capacitance compensation structure in the output stage circuit of the operational amplifier is one of the important issues.
发明内容Contents of the invention
本发明提供一种运算放大器电路,利用一控制信号来切换其输出级电路的补偿电容至不同的输出晶体管。The invention provides an operational amplifier circuit, which uses a control signal to switch the compensation capacitance of its output stage circuit to different output transistors.
本发明提供一种运算放大器电路,包括输入级电路、偏压电路以及输出级电路。输入级电路具有输入端,用以接收输入信号。偏压电路耦接至输入级电路,用以提供偏压电流至输入级电路。输出级电路耦接至偏压电路。输出级电路具有输出端。输出级电路包括输出晶体管对、电容单元以及开关单元。输出晶体管对包括第一输出晶体管及第二输出晶体管。第一输出晶体管的第一源/漏极经由输出端耦接至第二输出晶体管的第一源/漏极。电容单元具有第一端及第二端。电容单元的第二端耦接至输出级电路的输出端。开关单元耦接在第一及第二输出晶体管的栅极之间,并且耦接至电容单元的第一端。开关单元根据控制信号来决定导通第一输出晶体管的栅极与电容单元的第一端之间的信号传递路径,或者导通第二输出晶体管的栅极与电容单元的第一端之间的信号传递路径。The invention provides an operational amplifier circuit, which includes an input stage circuit, a bias voltage circuit and an output stage circuit. The input stage circuit has an input terminal for receiving an input signal. The bias circuit is coupled to the input stage circuit for providing bias current to the input stage circuit. The output stage circuit is coupled to the bias circuit. The output stage circuit has an output. The output stage circuit includes an output transistor pair, a capacitor unit and a switch unit. The output transistor pair includes a first output transistor and a second output transistor. The first source/drain of the first output transistor is coupled to the first source/drain of the second output transistor via the output terminal. The capacitor unit has a first end and a second end. The second end of the capacitor unit is coupled to the output end of the output stage circuit. The switch unit is coupled between the gates of the first and second output transistors, and coupled to the first end of the capacitor unit. The switch unit decides to turn on the signal transmission path between the gate of the first output transistor and the first terminal of the capacitor unit, or to turn on the signal transmission path between the gate of the second output transistor and the first terminal of the capacitor unit according to the control signal. signal transmission path.
在本发明的一实施例中,上述的电容单元包括第一电容器。第一电容器具有第一端及第二端。第一电容器的第一端耦接至电容单元的第一端,第一电容器的第二端耦接至电容单元的第二端。In an embodiment of the present invention, the above-mentioned capacitor unit includes a first capacitor. The first capacitor has a first terminal and a second terminal. The first terminal of the first capacitor is coupled to the first terminal of the capacitance unit, and the second terminal of the first capacitor is coupled to the second terminal of the capacitance unit.
在本发明的一实施例中,上述的开关单元包括第一开关以及第二开关。第一开关具有第一端、第二端及控制端。第一开关的第一端耦接至第一输出晶体管的栅极,第一开关的第二端耦接至第一电容器的第一端,第一开关的控制端受控于反相的控制信号。第二开关具有第一端、第二端及控制端。第二开关的第二端耦接至第二输出晶体管的栅极,第二开关的第一端耦接至第一电容器的第一端,第二开关的控制端受控于控制信号。In an embodiment of the present invention, the above-mentioned switch unit includes a first switch and a second switch. The first switch has a first terminal, a second terminal and a control terminal. The first terminal of the first switch is coupled to the gate of the first output transistor, the second terminal of the first switch is coupled to the first terminal of the first capacitor, and the control terminal of the first switch is controlled by an inverted control signal . The second switch has a first terminal, a second terminal and a control terminal. The second terminal of the second switch is coupled to the gate of the second output transistor, the first terminal of the second switch is coupled to the first terminal of the first capacitor, and the control terminal of the second switch is controlled by the control signal.
在本发明的一实施例中,当第一开关导通第一输出晶体管的栅极与第一电容器的第一端之间的信号传递路径时,第二开关断开第二输出晶体管的栅极与第一电容器的第一端之间的信号传递路径。当第二开关导通第二输出晶体管的栅极与第一电容器的第一端之间的信号传递路径时,第一开关断开第一输出晶体管的栅极与第一电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when the first switch turns on the signal transmission path between the gate of the first output transistor and the first terminal of the first capacitor, the second switch turns off the gate of the second output transistor and the signal transmission path between the first end of the first capacitor. When the second switch turns on the signal transmission path between the gate of the second output transistor and the first end of the first capacitor, the first switch turns off the connection between the gate of the first output transistor and the first end of the first capacitor. signal transmission path between them.
在本发明的一实施例中,上述的电容单元包括多个第二电容器。各第二电容器具有第一端及第二端。各第二电容器的第一端耦接至电容单元的第一端,各第二电容器的第二端耦接至电容单元的第二端。In an embodiment of the present invention, the above-mentioned capacitor unit includes a plurality of second capacitors. Each second capacitor has a first end and a second end. The first terminal of each second capacitor is coupled to the first terminal of the capacitor unit, and the second terminal of each second capacitor is coupled to the second terminal of the capacitor unit.
在本发明的一实施例中,上述的开关单元包括多个第三开关以及多个第四开关。各第三开关具有第一端、第二端及控制端。各第三开关的第一端耦接至第一输出晶体管的栅极,各第三开关的第二端耦接至不同的第二电容器的第一端,各第三开关的控制端受控于反相的控制信号。各第四开关具有第一端、第二端及控制端。各第四开关的第二端耦接至第二输出晶体管的栅极,各第四开关的第一端耦接至不同的第二电容器的第一端,各第四开关的控制端受控于控制信号。In an embodiment of the present invention, the above-mentioned switch unit includes a plurality of third switches and a plurality of fourth switches. Each third switch has a first terminal, a second terminal and a control terminal. The first terminal of each third switch is coupled to the gate of the first output transistor, the second terminal of each third switch is coupled to the first terminal of a different second capacitor, and the control terminal of each third switch is controlled by Inverted control signal. Each fourth switch has a first terminal, a second terminal and a control terminal. The second terminal of each fourth switch is coupled to the gate of the second output transistor, the first terminal of each fourth switch is coupled to the first terminal of a different second capacitor, and the control terminal of each fourth switch is controlled by control signal.
在本发明的一实施例中,当各第三开关导通第一输出晶体管的栅极与各第二电容器的第一端之间的信号传递路径时,各第四开关断开第二输出晶体管的栅极与各第二电容器的第一端之间的信号传递路径。当各第四开关导通第二输出晶体管的栅极与各第二电容器的第一端之间的信号传递路径时,各第三开关断开第一输出晶体管的栅极与各第二电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when each third switch turns on the signal transmission path between the gate of the first output transistor and the first end of each second capacitor, each fourth switch turns off the second output transistor The signal transmission path between the gate of the second capacitor and the first end of each second capacitor. When each fourth switch turns on the signal transmission path between the gate of the second output transistor and the first end of each second capacitor, each third switch disconnects the gate of the first output transistor and the first end of each second capacitor. A signal transfer path between the first ends.
在本发明的一实施例中,当其中之一第三开关导通第一输出晶体管的栅极与其中之一第二电容器的第一端之间的信号传递路径时,其它第三开关断开第一输出晶体管的栅极与其它第二电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when one of the third switches turns on the signal transmission path between the gate of the first output transistor and the first terminal of one of the second capacitors, the other third switches are turned off A signal transmission path between the gate of the first output transistor and the first terminal of the other second capacitor.
在本发明的一实施例中,当第三开关的第一部分第三开关导通第一输出晶体管的栅极与第二电容器的第一部分第二电容器的第一端之间的信号传递路径时,第三开关的第二部分第三开关断开第一输出晶体管的栅极与第二电容器的第二部分第二电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when the first part of the third switch turns on the signal transmission path between the gate of the first output transistor and the first end of the first part of the second capacitor, A second portion of the third switch The third switch disconnects the signal transfer path between the gate of the first output transistor and the second portion of the second capacitor at the first end of the second capacitor.
在本发明的一实施例中,当其中之一第四开关导通第二输出晶体管的栅极与其中之一第二电容器的第一端之间的信号传递路径时,其它第四开关断开第二输出晶体管的栅极与其它第二电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when one of the fourth switches turns on the signal transmission path between the gate of the second output transistor and the first terminal of one of the second capacitors, the other fourth switches are turned off A signal transmission path between the gate of the second output transistor and the first terminal of the other second capacitor.
在本发明的一实施例中,当第四开关的第一部分第四开关导通第二输出晶体管的栅极与第二电容器的第一部分第二电容器的第一端之间的信号传递路径时,第四开关的第二部分第四开关断开第二输出晶体管的栅极与第二电容器的第二部分第二电容器的第一端之间的信号传递路径。In an embodiment of the present invention, when the first part of the fourth switch turns on the signal transmission path between the gate of the second output transistor and the first end of the first part of the second capacitor, The second part of the fourth switch disconnects the signal transfer path between the gate of the second output transistor and the second part of the second capacitor at the first terminal of the second capacitor.
在本发明的一实施例中,上述的电容单元还具有第三端及第四端。电容单元的第三端耦接至第一输出晶体管的栅极,电容单元的第四端耦接至第二输出晶体管的栅极。In an embodiment of the present invention, the above-mentioned capacitor unit further has a third terminal and a fourth terminal. The third terminal of the capacitor unit is coupled to the gate of the first output transistor, and the fourth terminal of the capacitor unit is coupled to the gate of the second output transistor.
在本发明的一实施例中,上述的电容单元包括第三电容器以及第四电容器。第三电容器具有第一端及第二端。第三电容器的第一端耦接至第一输出晶体管的栅极,第三电容器的第二端耦接至输出级电路的输出端。第四电容器具有第一端及第二端。第四电容器的第二端耦接至第二输出晶体管的栅极,第四电容器的第一端耦接至输出级电路的输出端。In an embodiment of the present invention, the above-mentioned capacitor unit includes a third capacitor and a fourth capacitor. The third capacitor has a first terminal and a second terminal. A first terminal of the third capacitor is coupled to the gate of the first output transistor, and a second terminal of the third capacitor is coupled to the output terminal of the output stage circuit. The fourth capacitor has a first terminal and a second terminal. The second terminal of the fourth capacitor is coupled to the gate of the second output transistor, and the first terminal of the fourth capacitor is coupled to the output terminal of the output stage circuit.
在本发明的一实施例中,上述的输出级电路的输出端耦接至输入级电路的输入端,形成反馈电路配置。In an embodiment of the present invention, the output end of the above-mentioned output stage circuit is coupled to the input end of the input stage circuit to form a feedback circuit configuration.
在本发明的一实施例中,上述的第一输出晶体管的第二源/漏极耦接至第一系统电压,第二输出晶体管的第二源/漏极耦接至第二系统电压。In an embodiment of the present invention, the second source/drain of the above-mentioned first output transistor is coupled to the first system voltage, and the second source/drain of the second output transistor is coupled to the second system voltage.
在本发明的一实施例中,上述的控制信号为输入信号对应的数字信号的最高有效位。In an embodiment of the present invention, the above-mentioned control signal is the most significant bit of the digital signal corresponding to the input signal.
基于上述,在本发明的范例实施例中,输出级电路包括电容单元以及开关单元。运算放大器电路利用控制信号来切换开关单元,以让电容单元可根据不同的电压范围来对运算放大器电路进行补偿。Based on the above, in an exemplary embodiment of the present invention, the output stage circuit includes a capacitor unit and a switch unit. The operational amplifier circuit uses the control signal to switch the switching unit so that the capacitor unit can compensate the operational amplifier circuit according to different voltage ranges.
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合所附图式作详细说明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.
附图说明Description of drawings
图1绘示已知的数字控制模拟电压驱动电路的概要示意图。FIG. 1 is a schematic diagram of a known digitally controlled analog voltage driving circuit.
图2绘示数字信号对应数字模拟转换器110的输出范围的对照示意图。FIG. 2 is a schematic diagram illustrating a comparison of digital signals corresponding to output ranges of the digital-to-
图3绘示本发明一实施例的运算放大器电路的概要示意图。FIG. 3 is a schematic diagram of an operational amplifier circuit according to an embodiment of the present invention.
图4绘示本发明另一实施例的运算放大器电路的概要示意图。FIG. 4 is a schematic diagram of an operational amplifier circuit according to another embodiment of the present invention.
图5绘示本发明另一实施例的运算放大器电路的概要示意图。FIG. 5 is a schematic diagram of an operational amplifier circuit according to another embodiment of the present invention.
[主要元件标号说明][Description of main component labels]
100:数字控制模拟电压驱动电路 110:数字模拟转换器100: Digital control analog voltage drive circuit 110: Digital to analog converter
120:运算放大器 300、400、500:运算放大器电路120:
310、410、510:输入级电路 320、420、520:偏压电路310, 410, 510:
330、430、530:输出级电路 332、432、532:电容单元330, 430, 530:
334、434、534:开关单元 A、B、C、D:电容单元的各端点334, 434, 534: switch unit A, B, C, D: terminals of the capacitor unit
MN1、MN2、MN3:N型场效应晶体管 MP1、MP2、MP3:P型场效应晶体管MN1, MN2, MN3: N-type field effect transistors MP1, MP2, MP3: P-type field effect transistors
AVO:输出信号 AVO、AVP:差动输入信号AVO: output signal AVO, AVP: differential input signal
INV:输入级电路的反向输入端 IN:输入级电路的非反向输入端INV: the inverting input terminal of the input stage circuit IN: the non-inverting input terminal of the input stage circuit
SD:数字信号 SA:模拟信号SD: digital signal SA: analog signal
IP5、IP6、I7、I8:偏压电流 VDD:第一系统电压IP5, IP6, I7, I8: bias current VDD: first system voltage
VSS:第二系统电压 Va、Vb:偏压点VSS: second system voltage Va, Vb: bias point
OUT:输出级电路的输出端 CM1:第一电容器OUT: the output terminal of the output stage circuit CM1: the first capacitor
CM2:第二电容器 CM3:第三电容器CM2: second capacitor CM3: third capacitor
CM4:第四电容器 S:控制信号CM4: Fourth capacitor S: Control signal
SB:反相控制信号 SW1:第一开关SB: Inversion control signal SW1: First switch
SW2:第二开关 SW1_1、SW1_2:第三开关SW2: Second switch SW1_1, SW1_2: Third switch
SW2_1、SW2_2:第四开关SW2_1, SW2_2: Fourth switch
具体实施方式Detailed ways
图3绘示本发明一实施例的运算放大器电路的概要示意图。请参考图3,本实施例的运算放大器电路300包括输入级电路310、偏压电路320以及输出级电路330。输入级电路310具有反向输入端INV与非反向输入端IN,分别用以接收差动输入信号AVO、AVP。具体而言,在本实施例中,输入级电路310包括N型场效应晶体管MN1、MN2、MN3,P型场效应晶体管MP1、MP2、MP3。N型场效应晶体管MN1、MN2以及P型场效应晶体管MP1、MP2各自形成差动输入对。在本实施例中,运算放大器电路300的反向输入端INV例如与输出级电路330的输出端OUT耦接。因此,前述两个差动输入对除了接收差动输入信号AVP以外,还接收输出级电路330所输出的输出信号AVO,以形成具有单增益的反馈电路配置,但本发明并不限于此。在其它实施例中,输入级电路310的反向输入端也可接收对应于差动输入信号AVP的差动输入信号AVN(未绘示)。FIG. 3 is a schematic diagram of an operational amplifier circuit according to an embodiment of the present invention. Please refer to FIG. 3 , the
在本实施例中,偏压电路320耦接至输入级电路320,用以提供偏压电流IP5、IP6至输入级电路310。在实务上偏压电流IP5、IP6例如是以电流镜配置的晶体管电路来实施,因此,输入级电路310中的N型场效应晶体管MN3与P型场效应晶体管MP3用以配合偏压电流IP5、IP6来偏压差动输入对,作为电流源。In this embodiment, the
在本实施例中,输出级电路330包括互补式输出晶体管对MP9、MN9、电容单元332以及开关单元334。输出晶体管对MP9、MN9包括第一输出晶体管MP9及第二输出晶体管MN9。在此例中,两者分别以P型场效应晶体管以及N型场效应晶体管来实施。第一输出晶体管MP9的漏极经由输出端OUT耦接至第二输出晶体管MN9的漏极。第一输出晶体管MP9的源极耦接至第一系统电压VDD,第二输出晶体管MN9的源极耦接至第二系统电压VSS。In this embodiment, the
当输出级电路330需要提供大电流给所驱动的负载或下一级电路时,此运算放大器电路300会利用偏压电路320中的偏压点Va,使得第一输出晶体管MP9的源极与栅极间具有较大的压差,进而提供较大的电流给所驱动的负载或下一级电路。当输出级电路330需要自所驱动的负载或下一级电路抽回较大的电流时,此运算放大器电路300会利用偏压电路320中的偏压点Vb,使得第二输出晶体管MN9的源极与栅极间具有较大的压差,进而自所驱动的负载或下一级电路抽回较大的电流。When the
在本实施例中,电容单元332用以对运算放大器电路330进行补偿,以提高其稳定性。电容单元332具有第一端A及第二端B。电容单元332的第一端A耦接至开关单元334。电容单元332的第二端B耦接至输出级电路330的输出端OUT。具体而言,本实施例的电容单元332包括第一电容器CM1。第一电容器CM1具有第一端及第二端。第一电容器CM1的第一端耦接至电容单元332的第一端A,第一电容器CM1的第二端耦接至电容单元332的第二端B。In this embodiment, the
在本实施例中,开关单元334耦接在第一输出晶体管MP9及第二输出晶体管MN9的栅极之间,并且耦接至电容单元332的第一端A。开关单元334根据控制信号S来决定导通第一输出晶体管MP9的栅极与电容单元332的第一端A之间的信号传递路径,或者导通第二输出晶体管MN9的栅极与电容单元332的第一端A之间的信号传递路径。具体而言,本实施例的开关单元334包括第一开关SW1以及第二开关SW2。第一开关SW1具有第一端、第二端及控制端。第一开关SW1的第一端耦接至第一输出晶体管MP9的栅极,第一开关SW1的第二端耦接至第一电容器CM1的第一端A,第一开关SW1的控制端受控于反相的控制信号SB。第二开关SW2具有第一端、第二端及控制端。第二开关SW2的第二端耦接至第二输出晶体管MN9的栅极,第二开关SW2的第一端耦接至第一电容器CM1的第一端A,第二开关SW2的控制端受控于控制信号S。In this embodiment, the
在本实施例中,当第一开关SW1导通第一输出晶体管MP9的栅极与第一电容器CM1的第一端A之间的信号传递路径时,第二开关SW2断开第二输出晶体管MN9的栅极与第一电容器CM1的第一端A之间的信号传递路径。相反地,当第二开关SW2导通第二输出晶体管MN9的栅极与第一电容器CM1的第一端A之间的信号传递路径时,第一开关SW1断开第一输出晶体管MP9的栅极与第一电容器CM1的第一端A之间的信号传递路径。In this embodiment, when the first switch SW1 turns on the signal transmission path between the gate of the first output transistor MP9 and the first terminal A of the first capacitor CM1, the second switch SW2 turns off the second output transistor MN9 The signal transmission path between the gate of the first capacitor CM1 and the first terminal A of the first capacitor CM1. Conversely, when the second switch SW2 turns on the signal transmission path between the gate of the second output transistor MN9 and the first terminal A of the first capacitor CM1, the first switch SW1 turns off the gate of the first output transistor MP9. The signal transmission path between the terminal A of the first capacitor CM1 and the first capacitor CM1.
本实施例的运算放大器电路300应用在数字控制模拟电压驱动电路100时,控制信号S例如是数字信号SD的最高有效位。在数字信号SD的最高有效位为1(MSB=1)时,控制信号S=1,反相控制信号SB=0,两者导通第一输出晶体管MP9的栅极与电容单元332的第一端A之间的信号传递路径,并且断开第二输出晶体管MN9的栅极与第一电容器CM1的第一端A之间的信号传递路径。换句话说,运算放大器电路330操作在高电位输出V2至V3的电压范围时,开关单元334切换至第一输出晶体管MP9的栅极与电容单元332的第一端A之间的信号传递路径,由第一电容器CM1对运算放大器电路330进行补偿,以提高其稳定性。When the
另一方面,在数字信号SD的最高有效位为0(MSB=0)时,控制信号S=0,反相控制信号SB=1,两者导通第二输出晶体管MN9的栅极与第一电容器CM1的第一端A第一输出晶体管之间的信号传递路径,并且断开MP9的栅极与电容单元332的第一端A之间的信号传递路径。换句话说,运算放大器电路330操作在低电位输出V1至V2的电压范围时,开关单元334切换至第二输出晶体管MN9的栅极与第一电容器CM1的第一端A第一输出晶体管之间的信号传递路径,由第一电容器CM1对运算放大器电路330进行补偿,以提高其稳定性。On the other hand, when the most significant bit of the digital signal SD is 0 (MSB=0), the control signal S=0 and the inverted control signal SB=1, both of them turn on the gate of the second output transistor MN9 and the first The first terminal A of the capacitor CM1 connects the signal transmission path between the first output transistor, and disconnects the signal transmission path between the gate of MP9 and the first terminal A of the
因此,在数字控制模拟电压驱动电路的应用中,针对运算放大器电路330稳定性的补偿,本实施例的输出级电路330内部只需设计单一个电容即可补偿其稳定性。通过开关单元334的切换,此单一个电容可以在不同的电位输出范围对运算放大器电路330进行补偿。因此,在本实施例的设计架构中,补偿电容不会在芯片中占据过大的面积。另外,若要增加回转率,可通过调整补偿电容的电容值大小即可达成。Therefore, in the application of the digitally controlled analog voltage driving circuit, for the compensation of the stability of the
应注意的是,本实施例的控制信号并不限于8位的数字信号的最高有效位。控制信号的实施态样可以是任何位数的数字信号的任一位,或者其它由设计者根据实际需求所设定的控制信号。此外,本实施例的运算放大器电路的应用范围也不限于数字控制模拟电压驱动电路。It should be noted that the control signal in this embodiment is not limited to the most significant bit of an 8-bit digital signal. The implementation form of the control signal can be any bit of a digital signal with any number of digits, or other control signals set by the designer according to actual needs. In addition, the scope of application of the operational amplifier circuit of this embodiment is not limited to digitally controlled analog voltage drive circuits.
图4绘示本发明另一实施例的运算放大器电路的概要示意图。请参考图3及图4,本实施例的运算放大器电路400类似于图3的运算放大器电路300,两者之间主要的差异例如在于电容单元432及开关单元434的电路结构,说明如下。FIG. 4 is a schematic diagram of an operational amplifier circuit according to another embodiment of the present invention. 3 and 4, the
本实施例的电容单元432包括多个第二电容器。在此例中,为了简要说明起见,图4仅绘示两个第二电容器CM2_1、CM2_2用以例示说明,其数量并不用以限制本发明。各第二电容器具有第一端及第二端。第二电容器CM2_1、CM2_2的第一端耦接至电容单元432的第一端A,第二电容器CM2_1、CM2_2的第二端耦接至电容单元432的第二端B。The
在本实施例中,开关单元434包括多个第三开关以及多个第四开关。在此例中,为了简要说明起见,图4仅绘示两个第三开关SW1_1、SW1_2以及两个第四开关SW2_1、SW2_2用以例示说明,个别开关的数量并不用以限制本发明。在本实施例中,各第三开关具有第一端、第二端及控制端。以第三开关SW1_1为例,第三开关SW1_1的第一端耦接至第一输出晶体管MP9的栅极,第三开关SW1_1的第二端耦接至第二电容器CM2_1的第一端A,第三开关SW1_1的控制端受控于反相的控制信号SB。第三开关SW1_2与其它电路元件的耦接关系可由图4类推,在此不再赘述。值得一提的是,第三开关SW1_1、SW1_2的第二端是耦接至不同的第二电容器CM2_1、CM2_2的第一端A。In this embodiment, the
在本实施例中,各第四开关具有第一端、第二端及控制端。以第四开关SW2_1为例,第四开关SW2_1的第一端耦接至第二电容器CM2_1的第一端A,第四开关SW2_1的第二端耦接至第二输出晶体管MN9的栅极,第四开关SW2_1的控制端受控于控制信号S。第四开关SW2_2与其它电路元件的耦接关系可由图4类推,在此不再赘述。值得一提的是,第四开关SW2_1、SW2_2的第一端是耦接至不同的第二电容器CM2_1、CM2_2的第一端A。In this embodiment, each fourth switch has a first terminal, a second terminal and a control terminal. Taking the fourth switch SW2_1 as an example, the first terminal of the fourth switch SW2_1 is coupled to the first terminal A of the second capacitor CM2_1, and the second terminal of the fourth switch SW2_1 is coupled to the gate of the second output transistor MN9. The control terminals of the four switches SW2_1 are controlled by the control signal S. The coupling relationship between the fourth switch SW2_2 and other circuit elements can be deduced from FIG. 4 , and will not be repeated here. It is worth mentioning that the first terminals of the fourth switches SW2_1 , SW2_2 are coupled to the first terminals A of different second capacitors CM2_1 , CM2_2 .
从另一观点来看,若将第二电容器CM2_1、第三开关SW1_1以及第四开关SW2_1视为一个补偿模块,则此补偿模块即可执行如图3的电容单元332及开关单元334的补偿功能。因此,从此一观点来看,本实施例的电容单元432及开关单元434可视为多个上述补偿模块的并联耦接。From another point of view, if the second capacitor CM2_1, the third switch SW1_1 and the fourth switch SW2_1 are regarded as a compensation module, then this compensation module can perform the compensation function of the
在本实施例中,当各第三开关导通第一输出晶体管MP9的栅极与各第二电容器的第一端A之间的信号传递路径时,各第四开关断开第二输出晶体管MN9的栅极与各第二电容器的第一端A之间的信号传递路径。相反地,当各第四开关导通第二输出晶体管MN9的栅极与各第二电容器的第一端A之间的信号传递路径时,各第三开关断开第一输出晶体管MP9的栅极与各第二电容器的第一端A之间的信号传递路径。In this embodiment, when each third switch turns on the signal transmission path between the gate of the first output transistor MP9 and the first terminal A of each second capacitor, each fourth switch turns off the second output transistor MN9 The signal transmission path between the gate of the second capacitor and the first terminal A of each second capacitor. Conversely, when each fourth switch turns on the signal transmission path between the gate of the second output transistor MN9 and the first terminal A of each second capacitor, each third switch turns off the gate of the first output transistor MP9. and the signal transmission path between the first terminal A of each second capacitor.
在多个第二电容的实施态样中,当其中之一第三开关导通第一输出晶体管MP9的栅极与其中之一第二电容器的第一端A之间的信号传递路径时,其它第三开关断开第一输出晶体管MP9的栅极与其它第二电容器的第一端A之间的信号传递路径。举例而言,在本实施例中,当第三开关SW1_1导通第一输出晶体管MP9的栅极与第二电容器CM2_1的第一端A之间的信号传递路径时,第三开关SW1_2断开第一输出晶体管MP9的栅极与第二电容器CM2_2的第一端A之间的信号传递路径。In the implementation of multiple second capacitors, when one of the third switches turns on the signal transmission path between the gate of the first output transistor MP9 and the first terminal A of one of the second capacitors, the other The third switch disconnects the signal transmission path between the gate of the first output transistor MP9 and the first terminal A of the other second capacitor. For example, in this embodiment, when the third switch SW1_1 turns on the signal transmission path between the gate of the first output transistor MP9 and the first terminal A of the second capacitor CM2_1, the third switch SW1_2 turns off the first terminal A of the second capacitor CM2_1. A signal transmission path between the gate of the output transistor MP9 and the first terminal A of the second capacitor CM2_2 .
类似地,在多个第二电容的实施态样中,当其中之一第四开关导通第二输出晶体管MN9的栅极与其中之一第二电容器的第一端之间的信号传递路径时,其它第四开关断开第二输出晶体管MN9的栅极与其它第二电容器的第一端之间的信号传递路径。举例而言,在本实施例中,当第四开关SW2_1导通第二输出晶体管MN9的栅极与第二电容器CM2_1的第一端A之间的信号传递路径时,第四开关SW2_2断开第二输出晶体管MN9的栅极与第二电容器CM2_2的第一端A之间的信号传递路径。Similarly, in the implementation of multiple second capacitors, when one of the fourth switches turns on the signal transmission path between the gate of the second output transistor MN9 and the first terminal of one of the second capacitors , the other fourth switch disconnects the signal transmission path between the gate of the second output transistor MN9 and the first terminal of the other second capacitor. For example, in this embodiment, when the fourth switch SW2_1 turns on the signal transmission path between the gate of the second output transistor MN9 and the first terminal A of the second capacitor CM2_1, the fourth switch SW2_2 turns off the second A signal transmission path between the gate of the second output transistor MN9 and the first terminal A of the second capacitor CM2_2 .
换句话说,在本实施例中,多个第三开关同时间只有一个被导通,并且,多个第四开关同时间也只有一个被导通,但本发明并不限于此。在另一实施例中,多个第三开关中有可能部分同时被导通,另一部分同时被断开。并且,多个第四开关中也有可能部分同时被导通,另一部分同时被断开。In other words, in this embodiment, only one of the plurality of third switches is turned on at a time, and only one of the plurality of fourth switches is turned on at a time, but the present invention is not limited thereto. In another embodiment, some of the multiple third switches may be turned on at the same time, and another part may be turned off at the same time. Moreover, it is also possible that some of the multiple fourth switches are turned on at the same time, and the other part is turned off at the same time.
举例而言,在三个以上的第二电容器的实施态样中,当多个第三开关的第一部分第三开关,例如其中特定数个第三开关,导通第一输出晶体管MP9的栅极与部分第二电容器的第一端A之间的信号传递路径时,第三开关的第二部分第三开关,例如剩下的其它第三开关,断开第一输出晶体管MP9的栅极与另一部分第二电容器的第一端A之间的信号传递路径。类似地,当多个第四开关的第一部分第四开关,例如其中特定数个第第四开关,导通第二输出晶体管MN9的栅极与部分第二电容器的第一端A之间的信号传递路径时,第四开关的第二部分第四开关,例如剩下的其它第四开关,断开第二输出晶体管MN9的栅极与另一部分第二电容器的第一端A之间的信号传递路径。For example, in the implementation of more than three second capacitors, when the first part of the plurality of third switches, for example, a specific number of the third switches, turns on the gate of the first output transistor MP9 When the signal transmission path between the first terminal A of the second capacitor and part of the second capacitor, the third switch of the second part of the third switch, such as the remaining third switch, disconnects the gate of the first output transistor MP9 from the other A part of the signal transmission path between the first terminals A of the second capacitor. Similarly, when the first part of the plurality of fourth switches, for example, a specific number of fourth switches among them, turns on the signal between the gate of the second output transistor MN9 and the first terminal A of part of the second capacitor During the transmission path, the fourth switch in the second part of the fourth switch, such as the remaining fourth switches, disconnects the signal transmission between the gate of the second output transistor MN9 and the first terminal A of another part of the second capacitor path.
图5绘示本发明另一实施例的运算放大器电路的概要示意图。请参考图3及图5,本实施例的运算放大器电路500类似于图3的运算放大器电路300,两者之间主要的差异例如在于电容单元532的电路结构,说明如下。FIG. 5 is a schematic diagram of an operational amplifier circuit according to another embodiment of the present invention. 3 and 5, the
本实施例的电容单元532还具有第三端C及第四端D。电容单元532的第三端C耦接至第一输出晶体管MP9的栅极,电容单元532的第四端D耦接至第二输出晶体管MN9的栅极。具体而言,在本实施例中,电容单元532还包括第三电容器CM3以及第四电容器CM4。第三电容器CM3具有第一端及第二端。第三电容器CM3的第一端耦接至第一输出晶体管MP9的栅极,第三电容器CM3的第二端耦接至输出级电路530的输出端OUT。第四电容器CM4具有第一端及第二端。第四电容器CM4的第二端耦接至第二输出晶体管MN9的栅极,第四电容器CM4的第一端耦接至输出级电路530的输出端OUT。The
从电路操作的观点来看,当第一开关SW1导通,第二开关SW2断开时,第一电容器CM1与第三电容器CM3形成并联配置,等效为一补偿电容,以对运算放大器电路500进行补偿。相反地,当第二开关SW2导通,第一开关SW1断开时,第一电容器CM1与第四电容器CM4形成并联配置,等效为另一补偿电容,也可对运算放大器电路500进行补偿。From the point of view of circuit operation, when the first switch SW1 is turned on and the second switch SW2 is turned off, the first capacitor CM1 and the third capacitor CM3 form a parallel configuration, which is equivalent to a compensation capacitor, so that the
综上所述,在本发明的范例实施例中,输出级电路包括电容单元以及开关单元。运算放大器电路利用控制信号来切换开关单元,以让电容单元可根据不同的电压范围来对运算放大器电路进行补偿。此种设计结构除了可节省芯片面积,更可提高运算放大器电路的驱动能力。To sum up, in an exemplary embodiment of the present invention, the output stage circuit includes a capacitor unit and a switch unit. The operational amplifier circuit uses the control signal to switch the switching unit so that the capacitor unit can compensate the operational amplifier circuit according to different voltage ranges. This design structure not only saves the chip area, but also improves the driving capability of the operational amplifier circuit.
虽然本发明已以实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,故本发明的保护范围当视所附的权利要求范围所界定者为准。Although the present invention has been disclosed as above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make some changes and modifications without departing from the spirit and scope of the present invention. Therefore, the scope of protection of the present invention should be defined by the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210464966.1A CN103825567B (en) | 2012-11-16 | 2012-11-16 | Operational Amplifier Circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210464966.1A CN103825567B (en) | 2012-11-16 | 2012-11-16 | Operational Amplifier Circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103825567A true CN103825567A (en) | 2014-05-28 |
CN103825567B CN103825567B (en) | 2017-09-22 |
Family
ID=50760451
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210464966.1A Active CN103825567B (en) | 2012-11-16 | 2012-11-16 | Operational Amplifier Circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103825567B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107666310A (en) * | 2016-07-29 | 2018-02-06 | 奕力科技股份有限公司 | Output buffer device |
CN113258891A (en) * | 2020-02-12 | 2021-08-13 | 奇景光电股份有限公司 | Operational amplifier |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101588160B (en) * | 2008-05-20 | 2013-01-02 | 联咏科技股份有限公司 | Operational amplifier capable of improving slew rate and related method thereof |
CN101674057B (en) * | 2008-09-09 | 2013-07-24 | 联咏科技股份有限公司 | Rail-to-Rail Op Amp Reduces Power Consumption |
CN102201790B (en) * | 2010-03-26 | 2013-11-13 | 联咏科技股份有限公司 | Coupling blocking method and operational amplifier |
JP5665641B2 (en) * | 2010-06-08 | 2015-02-04 | ルネサスエレクトロニクス株式会社 | Output circuit, data driver, and display device |
CN102487266A (en) * | 2010-12-02 | 2012-06-06 | 联咏科技股份有限公司 | Operational amplifier and display driving circuit using the same |
-
2012
- 2012-11-16 CN CN201210464966.1A patent/CN103825567B/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107666310A (en) * | 2016-07-29 | 2018-02-06 | 奕力科技股份有限公司 | Output buffer device |
CN113258891A (en) * | 2020-02-12 | 2021-08-13 | 奇景光电股份有限公司 | Operational amplifier |
CN113258891B (en) * | 2020-02-12 | 2024-02-06 | 奇景光电股份有限公司 | Operational Amplifier |
Also Published As
Publication number | Publication date |
---|---|
CN103825567B (en) | 2017-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7692471B2 (en) | Switched-capacitor circuit having two feedback capacitors | |
US8749275B2 (en) | Differential circuit | |
US20150061767A1 (en) | Telescopic Amplifier with Improved Common Mode Settling | |
TWI504139B (en) | Operational amplifier circuit | |
JP2007281876A (en) | Comparison circuit and its amplifying circuit | |
JP2008153875A (en) | Semiconductor integrated circuit | |
US7477087B2 (en) | Switch-capacitor techniques for level-shifting | |
CN110661499A (en) | Dynamic amplifier and gain enhancement method thereof | |
US7652534B1 (en) | Rail-to-rail operational amplifier capable of reducing current consumption | |
SE519691C2 (en) | High speed and high gain operational amplifier | |
US7595678B2 (en) | Switched-capacitor circuit | |
US8456343B2 (en) | Switched capacitor type D/A converter | |
CN101546986B (en) | Op Amps for Improved Slew Rate | |
WO2007105282A1 (en) | Variable gain amplifier | |
US7777655B2 (en) | Wideband switched current source | |
JP4928290B2 (en) | Differential signal comparator | |
CN103279162A (en) | Low-power-consumption reference voltage buffer based on assembly line ADC | |
CN103825567B (en) | Operational Amplifier Circuit | |
CN210351102U (en) | Microphone programmable gain amplifier integrated circuit | |
US7688145B2 (en) | Variable gain amplifying device | |
US20160181997A1 (en) | Signal amplifying circuit | |
CN108702135B (en) | Amplifier device and switched capacitor integrator | |
JP2012114610A (en) | Electronic circuit | |
US20160099692A1 (en) | High gain, high slew rate amplifier | |
TW202025624A (en) | An amplifier circuit and a method for controlling a gain-bandwidth of an operational amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |