CN103814292A - 对用于液态色谱分析法的活塞泵装置进行控制的装置 - Google Patents
对用于液态色谱分析法的活塞泵装置进行控制的装置 Download PDFInfo
- Publication number
- CN103814292A CN103814292A CN201280040451.7A CN201280040451A CN103814292A CN 103814292 A CN103814292 A CN 103814292A CN 201280040451 A CN201280040451 A CN 201280040451A CN 103814292 A CN103814292 A CN 103814292A
- Authority
- CN
- China
- Prior art keywords
- piston
- pressure
- control device
- compression
- system pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B11/00—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
- F04B11/005—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons
- F04B11/0058—Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using two or more pumping pistons with piston speed control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/36—Control of physical parameters of the fluid carrier in high pressure liquid systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
- G01N2030/324—Control of physical parameters of the fluid carrier of pressure or speed speed, flow rate
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/32—Control of physical parameters of the fluid carrier of pressure or speed
- G01N2030/326—Control of physical parameters of the fluid carrier of pressure or speed pumps
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/26—Conditioning of the fluid carrier; Flow patterns
- G01N30/28—Control of physical parameters of the fluid carrier
- G01N30/34—Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Reciprocating Pumps (AREA)
Abstract
本发明涉及一种包括为了液相色谱分析而以相移方式操作的至少两个活塞-缸单元的活塞泵单元的控制装置和包括这样的控制装置的活塞泵单元。本发明的目的在于允许以高压泵送低脉动流。这实现为,将用于活塞的驱动器控制为使得第二活塞在第一活塞的进气阶段泵送并且第一活塞在第二活塞的进气阶段泵送。控制装置在从一个活塞-缸单元切换到各其它活塞-缸单元时校正系统压力(40)的波动(45)。波动(45)是由于在工作活塞中的预压缩阶段期间以绝热方式加热的液体介质的冷却而导致的。在预压缩阶段期间,其中将在时间点(t1)达到系统压力(40)的理论上的等温压力堆积(43)没有对应于真实的压力堆积(42),其包括额外的压力增加,并且因此,在时间点(t2)已经达到系统压力(40)。额外的压力增加是由于借助于压缩工作进行的液体的绝热加热而导致的。在控制装置中在测量间隔t3至t4中从压力曲线推算时间差Δt=t1-t2以便于计算活塞速度的校正并且以便于校正波动。
Description
本发明涉及一种具有权利要求1前述特征而对用于液相色谱分析法,尤其是高效液相色谱分析法(HPLC)的活塞泵装置进行控制的装置。本发明还涉及一种具有这样控制装置的活塞泵装置。
用于HPLC的泵在高压作用下应尽可能少脉冲或者甚至完全无脉冲地推送流量。为此使用根据挤压原理借助循环作用的活塞来工作的泵。为了消除抽吸的时间,具有第一和第二盖以及第一和第二活塞-缸装置的泵得以被使用。两个活塞-缸装置都可以由流体层平行地布置,其中对用于活塞的驱动器进行驱动,使始终一个活塞推送同时另一活塞抽吸。例如在US4,752,385A中就描述了这样一种构造。
除此之外,两个活塞-缸装置也可以以流体方式串联地设置,其中用于活塞的驱动器在此情况下被如下驱动,即:在抽吸第一活塞的时候第二活塞推送而在抽吸第二活塞时第一活塞推送并且同时充满第二活塞-缸装置。例如在US4,681,513A中就描述了这样一种泵装置。
在双活塞泵的两个变形中存在这样的问题,即:在由于不同物理和技术原因而将活塞-缸装置转换到其它各个活塞-缸装置可能会导致泵装置出口处可测定的系统压力(以及因此流量)在走势上出现下降并且导致系统压力或者流量的真实走势与所期望(理想的)恒定系统压力或者流量之间的误差。其中由此的原因在于,在对要推送的液体介质进行加热的同时基本上等温压缩。这个问题将在根据图1的串联双活塞泵的下列示例中加以说明:
图1示出了串联双活塞泵装置1用于理解的基本组件的例示性示图。该双活塞泵装置1由具有缸或者工作盖10的第一活塞-缸装置3所组成,其中工作活塞11被设置为可移动的。通过密封圈17来实现向外密封。工作盖10具有排入阀15和排出阀16,其被设置为,液体可以通过进口连接14被抽取并且通过连接管道或者连接毛细管24被输送。在工作盖10上或者内部可以设置一个压力传感器13,以便检测工作盖10缸体体积上的压力。工作盖的自由体积12可以通过向前移动,即:在图1中为向右移动工作活塞来降低或者通过向后运动,即:在图1中向左运动来提高。此处所需的驱动装置显然部分没有显示在图1中。该双活塞泵装置1还包括具有缸或者补偿盖20、补偿活塞21、密封圈27、自由体积22、以及压力传感器23的第二活塞-缸装置5。补偿盖在没有阀门的情况下被直接与连接毛细管24以及形成出口端的出口毛细管30相连接,该出口毛细管30提供用于HPLC-系统的推送液体。因为将补偿盖20和出口毛细管30以流体的方式直接相互连接起来的连接毛细管24,在这部分分别拥有相同的压力,以下将该压力显示为系统压力。
图1所示的双活塞泵装置1通常循环工作,以便在出口处产生连续的流量。在泵回路的第一阶段(显示为抽吸阶段),工作活塞11向后运动并且从溶液贮存部将液体抽取出,同时补偿活塞21向前运动并且因此承受泵装置出口端的流量以及系统压力。抽取过程中将排入阀15打开并且将排出阀16关闭。在补偿活塞21即将到达其工作路径前部端点时结束抽取过程并且因此能够不继续推送液体。
在抽取阶段之后的第二阶段(视为预压缩阶段)工作盖11向前运动,以便使之前被抽取的液体到达相同的高系统压力,该系统压力存在于泵装置1的出口端30以及补偿盖20的自由空间22中。其中排入阀15是关闭的。排出阀16首先也保持关闭。这个过程被示为预压缩,因为在HPLC中通常很高的压力作用下液体一定被视为是可压缩的。在预压缩期间补偿活塞21继续支承流量以及系统压力。当工作盖10内的压力达到系统压力时,预压缩阶段结束,使排出阀16打开并且两个具有出口毛细管30的自由体积12和22被连接起来(此处应注意,阀门15、16被构造成止回阀)。在预压缩期间工作活塞11行进的预压缩路径与液体的压缩性以及补偿盖20内的压力(即:系统压力)有关。
在随后的第三阶段排出阀16被打开,使补偿活塞21以及工作活塞11的运动都有助于在泵装置1的出口端30所输送的总流量。为了避免总流量不期望地升高,因此活塞速度必须适应于使得在泵出口处总量上重新产生所期望的总流量。如其准确实现的,与泵准确的技术实施有关。无论如何必须同时在开始下一泵回路以及下一抽取阶段之前将补偿活塞21复位,以便重新灌注补偿盖20。这将在根据现有技术的泵处于第三或是附加的第四阶段时实现。为了便于理解本发明还十分重要的是,处于第三和根据需要的第四阶段而在泵出口处输送的流量取决于两个活塞速度的(运算符号正确的)总和。下面预压缩阶段随后的阶段与准确的技术执行无关而被通常概括地示为推送阶段。
这样循环工作的双活塞泵装置的问题在于,不管是否为并联的或是串联的泵装置,在对工作盖10的自由体积12中的液体进行预压缩时,如果快速执行预压缩,使预压缩阶段期间热量不能充分被排出,就实现了会导致该液体加热的压缩工作。这种压缩工作越多,液体的压力和压缩性就越高。因此工作盖10中的预压缩在预压缩过程之后要比工作盖10和工作活塞11更热。
在预压缩过程之后将不执行另外的压缩工作,因为工作盖10的自由体积12中的压力在打开排出阀16之后基本上保持恒定。此前加热的液体特别是在推送阶段开始时通过与泵周围的部件接触而降温,使其体积减小。
这个收缩体积的过程减少了这一时间所输送的流量,该流量会导致其自身以及系统压力暂时中断。每个泵回路过程都如此重复并且使其能够整体上作为不期望的循环流量和循环压力脉冲在泵装置的出口端而被注意到。在高压-梯度泵中这种脉冲能够另外被作为溶液-组成的振动而观察到。所有这些效果会导致色谱法可再现性的退化,该可再现性描述了对于色谱装置的质量来说的一个重要标准。
到目前为止,针对通过在预压缩阶段对待被推送液体介质进行加热以及通过在推送阶段随后进行降温来减少所产生的脉冲,提出了不同的可能性。在GB2446321A中描述了一种方法,该方法通过如下避开了这个问题,即:将降温过程移动到一个更预期没有不利影响的时间点。此时在预压缩阶段中大约90-95%的预压缩之后会加入足够长的等待时间,以便液体能够重新冷却。因为在此时间点排出阀仍然是关闭的,体积收缩没有作用与在泵出口处所输送的流量以及压力上。冷却之后将执行其余的预压缩并且液体被热平衡地抽入系统中。
该解决方案的缺点在于,需要一个确定的最小等待时间,因为冷却的持续时间主要由活塞腔材料以及液体的导热性来决定。这些必须加以测量,使液体在不利的情况下足够强度地冷却,以避免该问题。该等待时间延长了预压缩阶段以及由此的泵的周期。这降低了单个泵的最大流动比率。
另外该解决方案要求对工作盖内的压力进行测量,这意味着额外的消耗。此外,该解决方案仅仅被用于当用于工作和补偿活塞的驱动器为独立的时,这也将导致额外的消耗。
US2010/0275678A1描述了一种具有调压器的方法,该调压器将通过相应叠加的活塞运动来补偿压力下降。此时在预期的压力下降之前,即:例如在抽吸阶段和/或预压缩阶段中,已经在泵出口处采用系统压力的趋势并且由此在推送阶段开始时在时间窗中计算出预期的压力趋势。因此在推送阶段开始时,开启调压器,该调压器在一定时间间隔中将活塞速度调整为,使实际的压力趋势与预期的压力趋势相适应。
该解决方案的缺点在于,调压器对于外界的干扰反映敏感,即:对于由外界感应的与预期压力趋势之间的差值。这些能够例如在高压梯度泵-构造的情况下由其它泵所引起。这必须通过将单个泵进行同步来避免,使这种方法不能被用在具有凸轮轴驱动器的通用高压梯度泵上。
同样在GB2433792B中也描述了在预压缩过程之后通过调压器对脉冲所做的补偿。该专利符合之前讨论的US2010/0275678A1的基本思想。此外,这里建议,在工作和补偿盖之间加入一个流量阻体,以便将工作盖中的压力与补偿盖中的压力分隔开。
该解决方案也具有之前已经提到的缺点。使用额外的流量阻体带来了额外的缺陷,即:其作用强烈依赖于各个已设置的泵流。
从前述的现有技术出发,本发明的任务在于,实现一种对用于液相色谱分析法,尤其是高效液相色谱分析法(HPLC)的活塞泵装置进行控制的装置,其以简单的方式避免或者很大程度上降低了流量以及压力脉冲以及由压缩阶段和随后的部分推送阶段中出现的热效应而导致的溶液组合的振动。此外本发明的任务在于,实现一种具有这样控制装置的多活塞泵装置。
本发明将借助权利要求1的特征来实现该任务。
本发明从现有知识出发,能够预先确定导致不期望流量以及压力脉冲的热效应的所产生的影响并且之后由相应更改的活塞速度来加以补偿。其中,将活塞速度更改一个此前已计算出的更改振幅,以尽量避免不期望的流量和压力脉冲。其中控制装置被构造成在所述预压缩阶段和/或部分所述推送阶段时在至少一个活塞-缸装置中确定所述介质的压力,其中对所述绝热加热的介质进行的冷却会对流量造成影响。可以利用通常的压力传感器来确定压力,该压力传感器与相关的活塞-缸装置液态连接起来。该控制装置在过渡阶段控制至少一个活塞-缸装置的速度,在所述过渡阶段与至少一个由此前检测到的压力值所确定的核心值相关地对至少一个活塞-缸装置的活塞速度进行控制,使得由所述绝热加热的介质进行冷却所引起的所述系统压力的波动至少部分得以补偿。
因为适合的压力传感器存在于实际所有已知的多活塞泵中并且这些压力传感器也是通过程序控制的控制装置来操纵的,所以本发明也可以在存在泵的情况下以软件更新或者固件升级的方式来实现。在此泵的硬件变型通常是不需要的。
根据本发明的控制器需要并不复杂的调节机构,复杂的调节机构另外会引发的风险在于,在出现外部干扰影响时调节电路会产生不稳定性。
此外,本发明可以用简单的方式来实现,使受干扰的脉冲被自动地并且与所使用的液体属性无关地减少或者完全避免。
根据本发明的设计方案,在所述过渡阶段在应用所述至少一个核心值的情况下,所述控制装置确定校正规则以控制至少一个所述活塞-缸装置的所述活塞速度,所述校正规则在所述过渡阶段决定了流量,其中所述校正规则优选附加地被用于所述相关活塞的控制指令所覆盖,该控制指令没有考虑对所述经过绝热加热的介质进行冷却的补偿。由此待减少的热效应能够以简单的方式被集成到用于控制提供给活塞的驱动装置的已存在的指令中。
其中所述校正规则包括形式为:vk=c·exp[(t–t2)/τ]或者形式为vk=c·exp[(x–xII)/ε]的下降幂函数,其中所述推送阶段的所述过渡阶段在时间上的起始用t2来表示,时间点t=t2上所述修正函数的振幅用c来表示,所述修正函数的时间常数用τ来表示,所述活塞的位置用x来表示以及所述推送阶段的所述过渡阶段的起始位置用xII来表示。
所述校正规则包括大致为坡形或者阶梯形的函数,所述函数具有阶跃形或者坡形的上升部分、拥有以确定的最大振幅为基本上恒定的值的中间区域以及具有阶跃形或者坡形的下降部分。其令人吃惊地指出,尤其在使用这样的阶跃或者坡形函数时可以通过简单的控制在没有闭合的伺服回路时另外将其更改为压力下降和流量量下降的下降的幂函数。
其中所述坡形或者阶梯形函数的所述前部侧面被分配给预定的活塞位置。这些可以利用模拟试验或者从实践中确定。同样的也适用于坡形或者阶梯形函数的宽度。
根据本发明的设计方案,控制装置在所述压缩阶段的起始阶段中在所述压缩活塞-缸装置的缸体积内检测所述介质的压力,在所述压缩阶段的起始阶段中基本上还没有通过绝热压缩来执行对所述介质的加热,并且作为所述时间的函数或所述相关活塞位置的函数外推所述压力趋势,并且计算所述时间点t1或者所述活塞位置xI,在此时间点上或者在此位置上该描述等温趋势的外推曲线达到用于所述系统压力的一个值,所述值在理想化热压缩时会产生在所述压缩阶段的结尾。因此控制装置可以确定所述时间点t2或者所述相关活塞的位置xII,在此时间点上或者此位置上所述预压缩阶段被终止,并且可以作为用于确定所述校正规则至少一个参数的核心值而采用所述计算得出的时间t1与所述检测到的时间t2之间的差值或者所述计算得出的位置xI与所述检测到的位置xII之间的所述差值。
在这种情况下,所述控制装置为了确定所述时间点t1或者所述活塞的所述位置xI,在所述推送阶段开始之前的区域内与所述时间或所述活塞的所述位置相关地对所述泵装置出口处所述介质拥有的所述系统压力进行检测,并且优选直线地外推,并且利用所述计算得出的、描述所述压缩活塞-缸装置相关体积内所述压力的所述等温趋势的曲线来确定用于所述系统压力的所述外推出曲线的所述交点,在所述时间点t1上或者所述活塞的所述位置xI上所述外推的曲线达到用于所述系统压力的值,所述值在理想化的、热压缩的情况下会产生在所述压缩阶段的结尾。
根据另一改进的方案,所述控制装置为了确定所述时间点t1或者所述活塞的所述位置xI,采用所述系统压力的恒定值,所述恒定值被提供给所述控制装置或者由所述控制装置在所述压缩阶段,优选在所述压缩阶段即将结束之前检测所述恒定值,在所述时间点t1上或者所述活塞的所述位置xI上所述外推的曲线达到用于所述系统压力的值,所述值在理想化的、热压缩的情况下会产生在所述压缩阶段的结尾。
根据本发明的另一实施方式,所述控制装置为了确定所述时间点t2或者所述相关活塞的所述位置xII,在所述预压缩阶段与所述时间或者与所述活塞的位置相关地,在一个区域内检测压力并且外推所述压力趋势,在所述区域内,优选直到所述预压缩阶段即将结束之前的时间点所述加热产生的影响显现出来。其中所述控制装置在所述推送阶段开始之前在一个区域内与所述时间或者与所述活塞的位置相关地对所述泵装置出口处所述介质所拥有的所述系统压力进行检测并且优选直线地外推,并且由用于所述系统压力和所述相关活塞-缸装置体积内的所述压力的所述两条外推曲线的所述相关交点来确定所述时间点t2和所述相关活塞的所述位置xII。其中所述控制装置优选在所述预压缩阶段结束前确定所述校正规则并且为了控制所述驱动装置在所述紧接着的推送阶段使用所述校正规则。
前述用于确定校正规则参数的改进的方案具有的优势在于,所有参数能够直接在即将到来的压力下降之前已经确定,使紧接着的压力下降可以被控制地更改。
根据另一可选方案,控制装置可以在所述过渡阶段检测所述介质的系统压力,在所述过渡阶段中执行对所述在压缩阶段被加热的介质的冷却,并且作为用于确定所述校正规则的所述至少一个参数的核心值而采用所述过渡阶段检测到的系统压力与理想化的系统压力之间的偏差。
其中控制装置可以在所述过渡阶段根据以下可选的方案来确定所述理想化的系统压力。
所述控制装置使用所述系统压力的恒定值,该恒定值被传输给所述控制装置或者由所述控制装置在压缩阶段,优选在所述压缩阶段即将结束之前,检测所述恒定值。
所述控制装置在所述推送阶段开始之前在一个区域内与所述时间或者与所述活塞的位置相关地对所述泵装置出口处所述介质所拥有的系统压力进行检测并且优选直线地外推所述检测到的压力趋势。
根据本发明的一个设计方案,其中所述控制装置确定所述检测出的系统压力与理想化的系统压力之间的所述最大偏差并且与所述最大偏差相关地确定至少一个所述校正规则的参数。
在这个改进的方案中,控制装置在至少一个推送阶段控制所述驱动装置时采用所述确定的校正规则,所述至少一个推送阶段跟随其过渡阶段用于确定所述至少一个校正规则的参数而被加入所述推送阶段。
其中所述控制装置优选可以以迭代的方式确定所述至少一个参数的值,使得在相互叠加的周期,优选在直接相互叠加的周期的过渡阶段各个所述相关参数的值得以确定,并且优选添加正确的运算符号以计算的方式结合起来。
如果如前所述,为了更改压力下降的状况而是用幂函数,控制装置就可以相关于至少一个核心值地确定该幂函数的振幅c。如果另外是用一个坡形或者阶梯形(即:矩形)的函数,控制装置就可以与所述幂函数的振幅c成比例地确定所述坡形或者阶梯形的函数的最大振幅。
本发明的其它实施方式由从属权利要求中获得。
以下将结合附图所示的实施方式来详述本发明。图中示出了:
图1根据现有技术的串联双活塞泵的基本组件的示意图;
图2根据本发明具有控制单元的串联双活塞泵的基本组件的示意图;
图3用于说明本发明第一可选方案的工作缸体积内和补偿缸体积内的压力作为时间的函数的曲线图;
图4根据图3的改进方案中用于校正规则的(添加了正确运算符号的)活塞速度作为时间的函数的曲线图;
图5本发明第二可选方案中压力p、更改振幅c以及两个相互叠加的泵周期各自更改振幅之间的差值Δc的曲线图。
图2中所示的串联的双活塞泵装置在硬件上尽量适应于图1中所示的已知的串联双活塞泵1。因此为相同的组件和构件使用了相同的附图标记。根据本发明进一步的改进将尤其显示在图2所示的控制装置32中,该控制装置32通常可以包含一个具有合适软件或者固件的由处理器控制的控制单元。因为已知的泵装置通常具有这样可以柔性配置的控制装置,并且根据本发明的控制器可以通过软件或者固件来实现,所以本发明也能够被整合到存在的泵装置中并且在必要时也能被拆下。
图2中泵装置1的控制装置32将压力传感器13的信号传输给第一活塞-缸装置3和第二活塞-缸装置5。控制装置32可以以下述形式和方法计算该传感器信号并且与其相关地对将待驱动的活塞,即:工作活塞11与补偿活塞21机械式联接起来的驱动装置34进行控制,使活塞11、21以预定的速度向前或者向后运动。
为了解决前面所述的问题,以避免由于对在预压缩阶段加热的、由泵装置推送的液体介质进行冷却而产生的压力下降的情况,控制装置(与时间或者相关活塞的位置相关地)检测压力或者压力趋势并且由此确定校正规则的参数,该校正规则在将不执行对压力下降的更改的阶段用于控制活塞速度而被拉近。
下面将从一般的解决方案出发,对根据本发明的两个具体的改进的解决方案做更详细的说明:
第一改进的解决方案将通过图3来说明,其描述了在第一和第二活塞-缸装置3、5的体积中压力的趋势。其适用于分别拥有为工作盖中的压力42而提供的以及为泵装置出口端的系统压力40而提供的自身的压力传感器。其中该系统压力显然能够在特定的地点被检测到,在不考虑相关液体阻力的情况下,该地点与出口端液态相连。在图3中其为传感器13和23。
从现有知识出发在这个改进的方案中,在利用高压快速压缩液体(如在预压缩阶段执行的一样)时,会出现一个基本上绝热的状态变化,因为短时间内只能排出非常少部分产生的压缩热量。相反在微小压缩的情况下,液体的温度变化很小,使状态的变化可以近乎被视为等温变化,即使很快地执行压缩。
由此产生了,在预压缩阶段由于很快压缩而使压力在下方的压力区域以近乎等温的趋势增长,并且在更高的压力下才可以观察到绝热的状态变化。等温的与绝热的状态变化之间的区别将根据本发明通过对关于已执行压缩的真实压力趋势的分析来确定。这将在下面借助图3例示性地加以说明。
图3示出了在预压缩阶段,即将开始压缩以及压缩之后关于时间的工作盖和补偿盖10、20内的几个压力趋势。在该示例中将从以下出发,即:预压缩执行为直线的,也就是说,以恒定的活塞速度。
直到时间点t0,泵装置1都位于抽吸阶段中。同时工作盖10中的压力与环境压强以及零度相适应并且因此随时间轴降低。系统压力psys在示例中于抽吸阶段和预压缩阶段被假设为恒定的。这将通过线40来表示。
预压缩阶段始于时间点t0。在该时间点上的工作盖体积12中存在被明确定义的液体量并且两个阀门15和16被关闭。从这点出发将压缩工作盖中的液体。
在假设的等温的情况下,即:在不考虑加热的情况下,压力将对应于曲线43而上升,事先准备一个直线性的预压缩,即:工作盖以恒定的速度运动。在这种情况下,工作盖中的压力在时间点t1上将达到系统压力。如上所述,在此时间点上排出阀将打开并且开始推送阶段。
在真实情况下,在预压缩时出现一个绝热的状态变化,因为工作盖10的体积12中的液体通过预压缩被加热。因为工作盖10的体积在t0与t1之间的任何时间点上都通过活塞位置来决定,所以由于缺少体积膨胀的可能性而导致的温度升高引起另一个的压力的升高,使工作盖中的压力趋势跟随图3中的趋势42。压力需要比等温情况下上升的更明显。因此补偿盖中的压力在较早的时间点t2上已经达到了。如上所述,在时间点t2上阀门16打开,并且开始推送阶段。加热的液体通过工作盖10的连通管道24被输送到补偿盖20内。因为对液体施加额外的压缩工作,其因此通过与泵装置1周围较低温度的构件接触而重新冷却。同时出现体积的收缩,其减少了泵出口端30所输送的全部流量量并且在没有采取其它措施的情况下会在推送阶段开始时导致如图3中曲线部分45那样的压力下降。
为了避免这样的压力下降,在该第一改进的方案中确定时间点t1与t2之间的区别。时间点t2可以以简单的方式通过外推实际的压力趋势来确定,因为在该时间点上曲线42(即:在压缩阶段确定的压力趋势)达到了系统压力psys。这本身是已知的并且已经被应用很长时间。时间点t1由假定的等温情况中产生,并且然而也由根据曲线43的实际压力趋势来确定。这也是可行的,因为在下方的压力区域还没有执行值得注意的加热过程并且因此在该区域内曲线42和曲线43走势近似相同。也可以确定测量区间t3至t4,在该区间内压力位于下方的压力p3与上方的压力p4之间,其中在已选择的压力p4由于所负荷的压缩工作还不可以执行相应的提高温度的过程。原则上可将压力p3选择为与环境压力相等。因此在这种情况下t3=t0。有效地将压力p3选择为至少约大于环境压力,因为由此可以减小例如:气孔或者驱动器机械式的游戏的干扰效果所产生的影响。将压力p4选择为明显大于p3,然而,如上面提到的,尽可能大地选择,使绝热的加热效果可以被忽略。p3的有效值位于2MPa至10MPa的范围,尤其位于7MPa至10MPa的范围。p4的有效值位于10MPa至20MPa的范围,尤其位于12MPa至15MPa的范围。这些值当然也在一定程度上与液体的形态有关。
测量区间t3至t4中的压力趋势被外推,以便获得对应于等温的状态变化的曲线43。外推直线可以利用通常数学的方法(例如:直线近似值)由测量区间中的压力趋势计算出。在最简单的情况下此处只考虑测量区间起始和结束位置的测量点。外推直线和具有系统压力psys的曲线43的交点对应于要确定的时间点t1。
时间差Δt=t1-t2是为在预压缩期间对液体加热而提供的范围并且因此是为由于冷却而需要的压力下降所提供的范围并且因此被用于计算活塞速度的更改振幅c。该更改振幅随后被使用,以便在紧随t2的时间区间中在推送阶段提高由两个活塞共同输送的流量并且因此避免了流量以及压力的下降45。
将通过图4对此更改的实现予以说明。因为在推送阶段两个活塞11、21参与了流量的生成,可以选择利用工作活塞、补偿活塞还是两种活塞来执行更改。因此这里用v来表示工作活塞和补偿活塞两个(添加正确运算符号的)活塞速度的总和,其中正的速度表示活塞向前的运动。两个活塞的运动产生所需的额定流量。
图4中线70对应的速度v0为产生设定的流量所需的活塞速度。在所示示例中是从恒定的流量比率出发,因此该速度为恒定的。
为了更改活塞速度该(未更改的)速度以及相关的(未更改的)速度趋势(作为时间的函数或者活塞位置的函数)覆盖一个根据图4的更改分量71。这导致一个具有振幅76的降低的幂函数,该振幅作为前因数和时间常量的前因数由更改振幅c给出。该时间常量τ可以例如通过由流量和预压缩阶段的持续时间以及预压缩路径组成的多项式函数计算得出。更改振幅的值通常位于0%至10%的已设定额定流量之间,并且更有利的位于0%至6%之间。该时间常量通常位于1200ms到200ms的范围内,更有利地位于5000ms到500ms的范围内。
该指数的趋势反映了冷却过程,该过程理论上也伴随着降低的幂函数。通过覆盖以适合的方式确定的更改分量71压力下降45得以补偿,以导致时间点t2上的系统压力跟随趋势41。
试验已经示出了,从工作活塞在时间点72上达到的确定地点位置出发,通过另一更改分量74能够达到额外的改善。其中它是一个阶梯或矩形函数,该函数在时间区间72至73之间的确定范围内起作用并且此处具有恒定的值。因为该时间点与一个固定的活塞位置相对应,其位于越后面,已设定的额定流量就越小。阶梯的高度可以优选选择为与前述的更改分量的指数趋势的更改振幅c成比例和/或另外与系统压力psys成比例。其证明,作为每100MPa阶梯的振幅,大约0.9倍之前计算出的更改振幅c被投入使用更改分量74时间上的长度优选延伸到推送阶段的结尾(时间点73)或者直到随后的抽吸阶段的开始。然而显然它可以通过模拟或者假设式以及各个系数(尤其是泵装置1的机械或者热属性)来加以调整。
除了纯粹阶段形的分量也可以选择通过模拟还是假设式而出现的另一种形式。例如也可以考虑具有坡形上升和同样坡形下降的坡形函数。
更改分量71与74的总和的作用在于,压力下降45在推送阶段方便被完全地补偿。如图4中所示,通过将两个更改71和74相加产生提供给两个活塞11和21的速度和的曲线。
这种方法稳定了泵的流量和压力。在高压梯度泵的情况下也更稳定地保持了介质的混合关系。由此色谱法的再现性得以完善。
此外该方法不需要额外的传感器,并且可以因此在没有硬件变动的情况下单独作为固件溶液而执行。由此甚至可以卸下已存在的泵。另一优势在于,该方法在无需给出液体材料常量的情况下,对全部普通液体自动起作用。相对于已知的溶液无需热交换器或者额外的流量阻体。因为在严格意义上使用了单纯的控制(即:有意放弃了关闭的伺服回路),所以不需要昂贵的并且易受影响的控制技术。
下面描述的,用于在推送阶段,尤其在推送阶段中的起始阶段对活塞速度进行更改的第二改进的方案也适用于这样的、其中不存在用于对工作盖中的压力进行测量的传感器13的泵。在这种情况下,如在前述可选方案中的情况下,不可能对工作盖中的压力趋势42进行测定。如下面将予以说明的,也可以利用泵出口端30上的压力趋势(借助传感器23)来确定更改值。
图5中上方的曲线例示性地示出了泵出口处持续上升的压力趋势50。这样的压力变化可以例如通过如下来产生,即:由于在HPLC中通常的梯度运行而改变了过滤萃取塔的介质的粘度,并且导致该萃取塔压力不是恒定的。一种这样上升的曲线依据事实显然也可以产生在推送阶段中以用于活塞速度更改的前述第一可选方案。除了用于确定时间t1和t2的压力p的恒定值还可以采用下述针对出口端30上系统压力psys压力趋势的外推法(数字上不再恒定)。
在为了更改根据图5的活塞速度的第二可选方案中,分别在第一预压缩阶段即将结束之前通过传感器23对泵出口处压力50的趋势加以测量,取直线近似值并且外推。这在接下来的推送阶段开始时将各产生了一个预期外推的压力趋势541。在推送阶段开始时,差值531由已确定或者已测定的压力511和外推的压力趋势541构成,并由压力下降561产生。该差值531可以为正或者为负,因为除了压力下降也可能出现压力过升的情况(尤其在过更改的情况下)。
该压力差531类似于上述第一可选方案情况中的过程而作为用于确定或者计算更改振幅c(见图5中更改振幅c的曲线55)或者用于确定变更Δc(见图5中更改振幅Δc的曲线55)的标准而采用根据先前泵周期所确定的其中一个更改振幅c。在图5所述的情况下,压力下降561是在压力趋势50中第一个出现的压力下降,该压力下降被考虑用于更改方法。相应的,更改振幅c和其在确定压力差值531的时间点之前的变化仍等于0。因此该压力下降561在还没有更改的情况下完全通过,因为根据该可选方案的更改始终可以在压力下降时先被执行,该压力下降紧随用于确定相关校正规则而被测定的压力下降。因此,更改振幅c以及521在压力下降561之前仍等于0。
基于压力下降561和检测到的压力差531为了确定振幅c的总和而将特定的振幅变化Δc与其当下值相加(或者必要时根据其它数学规则被用于形成振幅值c)。这将在图5中描述的表示更改振幅变化值Δc的值521中产生。表示更改振幅c的值551在此时间点上同样还等于Δc的值,因为c之前还等于0。c的值521被用于在下一泵周期中对所需压力下降进行更改。优选由具有阶梯形部分的指数式下降部分的组合所组成,如同上述第一可选方案的情况一样,同样在使用c的值的情况下来确定。由于更改,图5中描述的下一压力下降562已经明显降到很低。
现在将重新使用前述方法。将外推的压力趋势542与测定的下一压力下降562的压力趋势相比较。更改振幅Δc被重新由压力差532来确定,该压力差533在图5中表示为522。这些被与表示更改振幅c的值551相加(或者根据其它数学规则被用于形成表示更改振幅c的全部值)。表示更改振幅c的新的更大的值552重新被用于更改下一所需的压力下降563。
下一压力下降563也执行相同的过程。将外推的压力趋势543与测定的压力下降563的压力趋势513相比较。更改振幅Δc被重新由压力差533来确定,该压力差533在图5中表示为523。这些被与表示更改振幅c的值552相加(或者根据其它数学规则被用于形成表示更改振幅c的全部值)。表示更改振幅c的新的更大的值553重新被用于更改下一所需的压力下降。
这个过程在每个周期都重复,其中实现为迭代地确定更改振幅c。
在最简单的情况下,对更改振幅的变化Δc的计算可以通过Δc与已测定的压力下降531、532、533的比例关系来实现。因此,已测定的压力下降与更改振幅Δc之间的因数取决于泵的构造,例如:活塞直径,以及取决于所选速度和压力的单位。因此给出普遍适用的因数是不可能的。因此最有效的因数可以假设性的确定并且被确定为,使出现的压力下降在下一周期中被尽可能直地补偿。
在泵启动时,如图5所示,可以例如以更改振幅c=0(没有更改)开始。通过在每个周期中都计算在内的变化来迭代式地自动优化更改振幅,直到脉冲消失。如果压力差重新形成,则重新将变化计算在内。如在前述第一改进的方案中那样来确定更改运动的时间常量。对更改振幅和时间常量的使用将以相同的方式同样地实现。
因为由两个或者更多个平行布置的双活塞泵组成的高压梯度泵此时可能对单个泵产生相反的影响。因为在任何情况下通常在工作盖中拥有压力传感器,所以为其优选前述第一可选方案。
如图1所示,到目前为止已存在的多个实施方式都是关于单个串联的双活塞泵的。本发明可以在此意义上可以用在更多本身已知的泵的实施方式上。
本发明不只可以用于串联的,而且可以用在并联的双活塞泵上,如在专利文献US4753581中已知的。并联的双活塞泵不是利用工作活塞和补偿活塞来工作,而是两个活塞输送交替的流量。此时阀门15和16必须翻倍,即:各设置两个泵头。活塞11和21两个单独产生的流量在两个排出阀16背后通过T形部件被共同引导,其第三连接描述了泵出口30。并联的双活塞泵也需要预压缩过程,然后相关的排出阀19打开并且液体排出到剩余的系统。在预压缩时以及之后如在串联双活塞泵中那样进行相同的过程。因此更改振幅可以如上所述用相同的方式来确定。
对计算出的更改的使用也可以如前述一样用相同的方式来实现,其中当中一个活塞或两个活塞的速度被相应地更改。
此外,本发明可以被有利地用于多个平行设置的单个泵上。其中,每个单个泵在其方面可以选择实现为串联的还是并联的双活塞泵。这样两个或更多个单个泵的并联设置被例如使用,以便产生和混合多个不同的介质流量(例如:高压梯度泵)。因此本发明可以以上述形式和方法被用于每个参与的单个泵上。
即在串联的也在并联的活塞泵上两个活塞都能够通过共同的驱动器(例如:凸轮轴)或者通过独立的驱动器(例如:主轴驱动器)来操作。在两种情况中,如上所述,绝热预压缩的效果根据本发明利用压力信号和活塞位置和/或时间来测算。在具有共同用于活塞的驱动器的泵中,根据本发明通过改变驱动速度来实现更改,由此可以改变两个活塞的速度。在具有独立驱动器的泵中可以相反地选择利用两个活塞中的一个还是利用两个活塞来实现更改。
本发明还可以用在具有可变化的循环活塞冲程振幅的泵上。这样的泵关于内部控制参数,例如:关于已设置的流量比率来改变活塞周期的行程。其中活塞位置被限定式地操纵并且压力被记录下来。同样在这些泵中在预压缩时以及之后会出现本发明消除的问题并且可以在此意义上以相同的方式如上所述地予以解决。
为了应用本发明,压力传感器不必一定设置在泵头中。因此例如用于在系统中测量压力的压力传感器23不必直接设置在补偿头中,而是只需与其液态连接。由此得出,在多个平行设置的泵中唯一共同用于测量系统压力的传感器已经足够。
除了压力传感器,也可以间接地确定压力。例如此时可以检测构件的力以及变形并且根据直接检测到的物理值提出相应的压力。
为了应用本发明非必要的是,预压缩实现为直线的,即:以恒定的活塞速度。在预压缩非直线性的实施方式中与直线性趋势的差值可以通过运算或者除了时间而是利用活塞位置计算出。这也是可行的,因为为了全部所述的效果时间与压力之间的关联比活塞位置与压力时间的关联具有更小的重要性。
在实际应用中这意味着,例如在图2中将X轴从时间换成活塞位置,因此将时间t0至t4相应地换成活塞位置x0至x4来计算。除此之外其它过程没有变化。
本发明的一个改进的方案可以实现,如果泵与另一具有活塞的外部系统,例如:高压喷射系统液态连接起来。在这种情况下,其自身的泵可以将所需压力下降的值和其时间点传达到该外部系统。泵本身不改变活塞速度。这样就实现了外部活塞位置的变化,以便对将被视为压力脉冲45和56的流量误差进行补偿并且此时使用更改振幅和时间常量的值对该外部活塞的运动进行控制。就现有描述而言该外部活塞应被列入泵装置之内,其中将一个“更改活塞”的函数传输给该外部活塞(此外在必要情况下为该活塞另外配置函数)。也可以例如将具有该被列入的外部活塞(必要时被设置在单独系统中)的双活塞泵理解为三活塞泵或者是具有“更改活塞”的双活塞泵。控制装置在这种情况下也可被分配成一个配属于实际的双活塞泵或者多活塞泵的控制装置和另一控制装置,该控制装置属于单独的系统。
因此本发明拥有一个实现以下方法的控制装置,利用该方法能够从泵的压力信号中以简单的方式自动确定用于影响多活塞泵的更改参数。通过应用更改参数利用简单的控制器,泵的脉冲能够得以避免或者被大大降低,并且此时无需复杂的压力调节回路或额外的传感器或者其它的部件。根据本发明的解决方案可以简单地由固件来提供并且因此也可被提供给已有的装置。
1 双活塞泵装置
3 第一活塞缸装置
5 第二活塞缸装置
10 缸/工作盖
11 工作活塞
12 剩余体积
13 压力传感器
14 入口连接部
15 排入阀
16 排出阀
17 密封圈
20 缸/补偿盖
21 补偿活塞
22 剩余体积
23 压力传感器
24 连接管或者连接毛细管
27 密封圈
30 出口毛细管/出口端口
32 控制装置
34 驱动装置
40 出口端预施压阶段恒定的压力趋势
42 施压阶段工作盖内实际的压力趋势
43 等温预施压时工作盖内假想的压力趋势
45 通过对液体降温引起体积收缩的推进开始阶段的压力骤降
psys 系统压力
t0 开始预压缩阶段
t1 在等温压缩时推送阶段的开始
t2 在至少部分绝热压缩时推送阶段的开始
t3 在用于直线外推法的曲线42的上方区域的下压值
t4 在用于直线外推法的曲线42的上方区域的上压值
Claims (16)
1.一种对用于液相色谱分析法,尤其是高效液相色谱分析法的活塞泵装置进行控制的装置,
(a)其具有至少两个相位转移而循环工作的活塞-缸装置,所述活塞-缸装置在出口端产生待被推送液体介质的预定流量,其中在出口端,取决于一个与其连接的液态负载阻体而设置系统压力,
(b)其中在至少一个所述活塞-缸装置的周期的预压缩阶段中实现所述介质的至少部分的绝热压缩从出口压力到系统压力的转变,并且其中在随后的推送阶段中在所述预压缩阶段被绝热加热的所述介质在所述推送阶段的过渡阶段中冷却,在所述推送阶段中所述流量也至少由所述相关的活塞-缸装置来确定;并且
(c)具有控制装置,该控制装置对用于所述至少两个活塞-缸装置的驱动装置就速度进行控制,所述活塞-缸装置的活塞通过所述驱动装置运动;
其特征在于,
(d)所述控制装置被构造成在所述预压缩阶段和/或部分所述推送阶段时在至少一个活塞-缸装置中确定所述介质的压力,其中对所述绝热加热的介质进行的冷却会对流量造成影响,
(e)所述控制装置在所述过渡阶段与至少一个由此前检测到的压力值所确定的核心值相关地对至少一个活塞-缸装置的活塞速度进行控制,使得由所述绝热加热的介质进行冷却所引起的所述系统压力的波动至少部分得以补偿。
2.根据权利要求1所述的装置,其特征在于,在所述过渡阶段在应用所述至少一个核心值的情况下,所述控制装置确定校正规则以控制至少一个所述活塞-缸装置的所述活塞速度,所述校正规则在所述过渡阶段决定了流量,其中所述校正规则优选附加地被用于所述相关活塞的控制指令所覆盖,该控制指令没有考虑对所述经过绝热加热的介质进行冷却的补偿。
3.根据权利要求2所述的装置,其特征在于,所述校正规则包括形式为:vk=c·exp[(t–t2)/τ]或者形式为vk=c·exp[(x–xII)/ε]的下降幂函数,其中所述推送阶段的所述过渡阶段在时间上的起始用t2来表示,时间点t=t2上所述修正函数的振幅用c来表示,所述修正函数的时间常数用τ来表示,所述活塞的位置用x来表示以及所述推送阶段的所述过渡阶段的起始位置用xII来表示。
4.根据权利要求2或3所述的装置,其特征在于,所述校正规则包括大致为坡形或者阶梯形的函数,所述函数具有阶跃形或者坡形的上升部分、拥有以确定的最大振幅为基本上恒定的值的中间区域以及具有阶跃形或者坡形的下降部分。
5.根据权利要求4所述的装置,其特征在于,所述坡形或者阶梯形函数的所述前部侧面被分配给预定的活塞位置。
6.根据权利要求2至5中任一项所述的装置,其特征在于,所述控制装置
(a)在所述压缩阶段的起始阶段中在所述压缩活塞-缸装置的缸体积内检测所述介质的压力,在所述压缩阶段的起始阶段中基本上还没有通过绝热压缩来执行对所述介质的加热,并且作为所述时间的函数或所述相关活塞位置的函数外推所述压力趋势,并且计算所述时间点t1或者所述活塞位置xI,在此时间点上或者在此位置上该描述等温趋势的外推曲线达到用于所述系统压力的一个值,所述值在理想化热压缩时会产生在所述压缩阶段的结尾,
(b)确定所述时间点t2或者所述相关活塞的位置xII,在此时间点上或者此位置上所述预压缩阶段被终止,并且
(c)作为用于确定所述校正规则至少一个参数的核心值而采用所述计算得出的时间t1与所述检测到的时间t2之间的差值或者所述计算得出的位置xI与所述检测到的位置xII之间的所述差值。
7.根据权利要求6所述的装置,其特征在于,所述控制装置为了确定所述时间点t1或者所述活塞的所述位置xI,在所述推送阶段开始之前的区域内与所述时间或所述活塞的所述位置相关地对所述泵装置出口处所述介质拥有的所述系统压力进行检测,并且优选直线地外推,并且利用所述计算得出的、描述所述压缩活塞-缸装置相关体积内所述压力的所述等温趋势的曲线来确定用于所述系统压力的所述外推出曲线的所述交点,在所述时间点t1上或者所述活塞的所述位置xI上所述外推的曲线达到用于所述系统压力的值,所述值在理想化的、热压缩的情况下会产生在所述压缩阶段的结尾。
8.根据权利要求6所述的装置,其特征在于,所述控制装置为了确定所述时间点t1或者所述活塞的所述位置xI,采用所述系统压力的恒定值,所述恒定值被提供给所述控制装置或者由所述控制装置在所述压缩阶段,优选在所述压缩阶段即将结束之前检测所述恒定值,在所述时间点t1上或者所述活塞的所述位置xI上所述外推的曲线达到用于所述系统压力的值,所述值在理想化的、热压缩的情况下会产生在所述压缩阶段的结尾。
9.根据权利要求6至8中任一项所述的装置,其特征在于,
(a)所述控制装置为了确定所述时间点t2或者所述相关活塞的所述位置xII,在所述预压缩阶段与所述时间或者与所述活塞的位置相关地,在一个区域内检测压力并且外推所述压力趋势,在所述区域内,优选直到所述预压缩阶段即将结束之前的时间点所述加热产生的影响显现出来,
(b)所述控制装置在所述推送阶段开始之前在一个区域内与所述时间或者与所述活塞的位置相关地对所述泵装置出口处所述介质所拥有的所述系统压力进行检测并且优选直线地外推,并且
(c)所述控制装置由用于所述系统压力和所述相关活塞-缸装置体积内的所述压力的所述两条外推曲线的所述相关交点来确定所述时间点t2和所述相关活塞的所述位置xII,
(d)其中所述控制装置优选在所述预压缩阶段结束前确定所述校正规则并且为了控制所述驱动装置在所述紧接着的推送阶段使用所述校正规则。
10.根据权利要求2至5中任一项所述的装置,其特征在于,所述控制装置
(a)在所述过渡阶段检测所述介质的系统压力,在所述过渡阶段中执行对所述在压缩阶段被加热的介质的冷却,并且
(b)作为用于确定所述校正规则的所述至少一个参数的核心值而采用所述过渡阶段检测到的系统压力与理想化的系统压力之间的偏差。
11.根据权利要求10所述的装置,其特征在于,所述控制装置在所述过渡阶段根据以下可选的方案来确定所述理想化的系统压力:
(a)所述控制装置使用所述系统压力的恒定值,该恒定值被传输给所述控制装置或者由所述控制装置在压缩阶段,优选在所述压缩阶段即将结束之前,检测所述恒定值;
(b)所述控制装置在所述推送阶段开始之前在一个区域内与所述时间或者与所述活塞的位置相关地对所述泵装置出口处所述介质所拥有的系统压力进行检测并且优选直线地外推所述检测到的压力趋势。
12.根据权利要求10或11所述的装置,其特征在于,所述控制装置确定所述检测出的系统压力与理想化的系统压力之间的所述最大偏差并且与所述最大偏差相关地确定至少一个所述校正规则的参数。
13.根据权利要求10至12中任一项所述的装置,其特征在于,所述控制装置在至少一个推送阶段控制所述驱动装置时采用所述确定的校正规则,所述至少一个推送阶段跟随其过渡阶段用于确定所述至少一个校正规则的参数而被加入所述推送阶段。
14.根据权利要求13所述的装置,其特征在于,所述控制装置以迭代的方式确定所述至少一个参数的值,使得在相互叠加的周期,优选在直接相互叠加的周期的过渡阶段各个所述相关参数的值得以确定,并且优选添加正确的运算符号以计算的方式结合起来。
15.根据权利要求4至14中任一项所述的装置,其大体上也引用权利要求3和4,其特征在于,所述控制装置根据权利要求3相关于至少一个核心值地确定所述幂函数的振幅c并且所述控制装置与所述幂函数的振幅c成比例地确定所述坡形或者阶梯形的函数的最大振幅。
16.用于液相色谱分析法,尤其是高效液相色谱分析法的活塞泵装置,该活塞泵装置具有至少两个相位转移的循环工作的活塞-缸装置,所述活塞-缸装置在出口端产生待被推送液体介质的预定流量;该活塞泵装置还具有根据前述任一权利要求所述的用于控制活塞泵装置的装置。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011052848.2 | 2011-08-19 | ||
DE102011052848.2A DE102011052848B4 (de) | 2011-08-19 | 2011-08-19 | Vorrichtung zur Steuerung einer Kolbenpumpeneinheit für die Flüssigkeitschromatographie |
PCT/DE2012/100193 WO2013026446A1 (de) | 2011-08-19 | 2012-07-02 | Vorrichtung zur steuerung einer kolbenpumpeneinheit für die flüssigkeitschromatographie |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103814292A true CN103814292A (zh) | 2014-05-21 |
CN103814292B CN103814292B (zh) | 2018-01-02 |
Family
ID=47008205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201280040451.7A Active CN103814292B (zh) | 2011-08-19 | 2012-07-02 | 对用于液态色谱分析法的活塞泵装置进行控制的装置 |
Country Status (4)
Country | Link |
---|---|
US (3) | US10801479B2 (zh) |
CN (1) | CN103814292B (zh) |
DE (1) | DE102011052848B4 (zh) |
WO (1) | WO2013026446A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108170173A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108169394A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108171145A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN109212114A (zh) * | 2017-07-07 | 2019-01-15 | 道尼克斯索芙特隆公司 | 泵操作的方法、hplc中的方法的用途、泵、泵系统和hplc系统 |
CN109578258A (zh) * | 2018-10-12 | 2019-04-05 | 迈克医疗电子有限公司 | 液相控制方法和装置、高压恒流泵、存储介质 |
CN112740028A (zh) * | 2018-09-18 | 2021-04-30 | 沃特世科技公司 | 连续可变输出液相色谱泵驱动器 |
CN113167774A (zh) * | 2018-11-27 | 2021-07-23 | 安捷伦科技有限公司 | 从移动相中移除不确定组合物部分 |
CN115461540A (zh) * | 2020-03-10 | 2022-12-09 | 阿特拉斯·科普柯空气动力股份有限公司 | 泵速控制方法和装置、计算机程序和其上存储有由此应用的计算机程序的计算机可读介质和泵 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011052848B4 (de) | 2011-08-19 | 2017-02-09 | Dionex Softron Gmbh | Vorrichtung zur Steuerung einer Kolbenpumpeneinheit für die Flüssigkeitschromatographie |
DE102012105323B4 (de) * | 2012-06-19 | 2017-03-16 | Dionex Softron Gmbh | Steuervorrichtung zur Steuerung einer Kolbenpumpeneinheit für die Flüssigkeitschromatographie, insbesondere die Hochleistungsflüssigkeitschromatographie |
DE102014115087B4 (de) * | 2014-10-16 | 2017-03-30 | Dionex Softron Gmbh | Verfahren für einen Chromatographielauf in der Flüssigkeitschromatographie |
US9829139B2 (en) * | 2015-02-19 | 2017-11-28 | Robert Bosch Gmbh | Method of dampening pressure pulsations in a working fluid within a conduit |
EP3633366A4 (en) * | 2017-04-26 | 2020-10-28 | Shimadzu Corporation | LIQUID SUPPLY DEVICE AND LIQUID CHROMATOGRAPH |
EP3660310B1 (en) | 2017-07-28 | 2021-10-20 | Shimadzu Corporation | Liquid feeding device |
US11077268B2 (en) * | 2017-10-25 | 2021-08-03 | General Electric Company | Anesthesia vaporizer reservoir and system |
JP7498559B2 (ja) * | 2019-12-24 | 2024-06-12 | ジーエルサイエンス株式会社 | 送液装置及び送液方法 |
DE102020105265A1 (de) | 2020-02-28 | 2021-09-02 | Dionex Softron Gmbh | Verfahren zum Fördern eines Fluids durch eine Pumpe |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359312A (en) * | 1978-08-15 | 1982-11-16 | Zumtobel Kg | Reciprocating pump for the pulsation-free delivery of a liquid |
US4797834A (en) * | 1986-09-30 | 1989-01-10 | Honganen Ronald E | Process for controlling a pump to account for compressibility of liquids in obtaining steady flow |
WO2006017121A2 (en) * | 2004-07-13 | 2006-02-16 | Waters Investments Limited | High pressure pump controller |
CN101865109A (zh) * | 2009-04-20 | 2010-10-20 | 安捷伦科技有限公司 | 包含热交换器的串联型泵 |
CN102112741A (zh) * | 2008-08-07 | 2011-06-29 | 安捷伦科技有限公司 | 供应流路的同步 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2263768C2 (de) * | 1972-12-28 | 1974-11-14 | Hewlett-Packard Gmbh, 7030 Boeblingen | Verfahren und Vorrichtung zum Messen des mittleren Durchflusses einer eine Flüssigkeit diskontinuierlich fördernden Pumpe |
US4137011A (en) | 1977-06-14 | 1979-01-30 | Spectra-Physics, Inc. | Flow control system for liquid chromatographs |
DE3035770C2 (de) | 1980-09-23 | 1984-08-16 | Bruker Analytische Meßtechnik GmbH, 7512 Rheinstetten | Mehrfach-Kolbenpumpe mit konstanter Förderleistung |
US4681513A (en) | 1985-02-01 | 1987-07-21 | Jeol Ltd. | Two-stage pump assembly |
GB2180467A (en) | 1985-09-18 | 1987-04-01 | Philips Electronic Associated | Liquid chromatograph |
GB2195473B (en) * | 1986-09-17 | 1990-08-15 | Philips Electronic Associated | Liquid chromatograph |
JP2604362B2 (ja) | 1986-10-22 | 1997-04-30 | 株式会社日立製作所 | 低脈流ポンプ |
US4753581A (en) | 1987-02-10 | 1988-06-28 | Milton Roy Company | Constant suction pump for high performance liquid chromatography |
JP2745526B2 (ja) | 1988-03-28 | 1998-04-28 | 株式会社島津製作所 | 往復動型送液ポンプ |
US5108264A (en) * | 1990-08-20 | 1992-04-28 | Hewlett-Packard Company | Method and apparatus for real time compensation of fluid compressibility in high pressure reciprocating pumps |
US5415489A (en) | 1993-01-11 | 1995-05-16 | Zymark Corporation | Reciprocating driver apparatus |
JP3491948B2 (ja) | 1993-03-05 | 2004-02-03 | ウォーターズ・インベストメンツ・リミテッド | 溶剤ポンプ送り装置 |
US5897781A (en) | 1997-06-06 | 1999-04-27 | Waters Investments Limited | Active pump phasing to enhance chromatographic reproducibility |
WO2005050190A2 (en) | 2003-11-05 | 2005-06-02 | Agilent Technologies, Inc. | Chromatography system |
US7670480B2 (en) | 2005-03-31 | 2010-03-02 | Agilent Technologies, Inc. | Solvent supply with correction of piston movement |
DE602005025974D1 (de) * | 2005-03-31 | 2011-03-03 | Agilent Technologies Inc | Vorrichtung und Verfahren zur Bereitstellung von Lösungsmitteln mit Korrektur der Kolbenbewegung |
JP2007113432A (ja) | 2005-10-19 | 2007-05-10 | Ebara Corp | プランジャポンプ装置 |
JP4511578B2 (ja) | 2007-08-28 | 2010-07-28 | 株式会社日立ハイテクノロジーズ | 送液装置、液体クロマトグラフ、および送液装置の運転方法 |
US8215922B2 (en) | 2008-06-24 | 2012-07-10 | Aurora Sfc Systems, Inc. | Compressible fluid pumping system for dynamically compensating compressible fluids over large pressure ranges |
US8182680B2 (en) | 2009-04-29 | 2012-05-22 | Agilent Technologies, Inc. | Primary piston correction during transfer |
EP2430309B1 (en) | 2009-04-30 | 2013-09-04 | Agilent Technologies, Inc. | Determining fluid compressibility while delivering fluid |
WO2011000407A1 (en) | 2009-06-30 | 2011-01-06 | Agilent Technologies, Inc. | Liquid chromatography adjustment for method-conformally compensating deviations from ideal behavior |
JP5624825B2 (ja) | 2010-07-29 | 2014-11-12 | 株式会社日立ハイテクノロジーズ | 液体クロマトグラフ用ポンプ、および液体クロマトグラフ |
DE102011052848B4 (de) | 2011-08-19 | 2017-02-09 | Dionex Softron Gmbh | Vorrichtung zur Steuerung einer Kolbenpumpeneinheit für die Flüssigkeitschromatographie |
DE102012105323B4 (de) * | 2012-06-19 | 2017-03-16 | Dionex Softron Gmbh | Steuervorrichtung zur Steuerung einer Kolbenpumpeneinheit für die Flüssigkeitschromatographie, insbesondere die Hochleistungsflüssigkeitschromatographie |
-
2011
- 2011-08-19 DE DE102011052848.2A patent/DE102011052848B4/de active Active
-
2012
- 2012-07-02 WO PCT/DE2012/100193 patent/WO2013026446A1/de active Application Filing
- 2012-07-02 US US14/239,762 patent/US10801479B2/en active Active
- 2012-07-02 CN CN201280040451.7A patent/CN103814292B/zh active Active
-
2020
- 2020-10-06 US US17/063,870 patent/US11959467B2/en active Active
-
2024
- 2024-03-05 US US18/596,260 patent/US20240280091A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4359312A (en) * | 1978-08-15 | 1982-11-16 | Zumtobel Kg | Reciprocating pump for the pulsation-free delivery of a liquid |
US4797834A (en) * | 1986-09-30 | 1989-01-10 | Honganen Ronald E | Process for controlling a pump to account for compressibility of liquids in obtaining steady flow |
WO2006017121A2 (en) * | 2004-07-13 | 2006-02-16 | Waters Investments Limited | High pressure pump controller |
CN102112741A (zh) * | 2008-08-07 | 2011-06-29 | 安捷伦科技有限公司 | 供应流路的同步 |
CN101865109A (zh) * | 2009-04-20 | 2010-10-20 | 安捷伦科技有限公司 | 包含热交换器的串联型泵 |
Non-Patent Citations (1)
Title |
---|
JOE P. FOLEY ET AL: "Unavoidable flow-rate errors in high-performance liquid chromatography", 《JOURNAL OF CHROMATOGRAPHY》 * |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109212114B (zh) * | 2017-07-07 | 2020-12-18 | 道尼克斯索芙特隆公司 | 泵操作的方法、hplc中的方法的用途、泵、泵系统和hplc系统 |
CN109212114A (zh) * | 2017-07-07 | 2019-01-15 | 道尼克斯索芙特隆公司 | 泵操作的方法、hplc中的方法的用途、泵、泵系统和hplc系统 |
US10767643B2 (en) | 2017-07-07 | 2020-09-08 | Dionex Softron Gmbh | Method of pump operation, use of the method in HPLC, pump, pump system, and HPLC system |
CN108170173A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108171145A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108169394B (zh) * | 2017-12-26 | 2019-11-29 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108169394A (zh) * | 2017-12-26 | 2018-06-15 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN108171145B (zh) * | 2017-12-26 | 2020-08-28 | 迈克医疗电子有限公司 | 流量控制方法和装置、分析仪器及计算机可读存储介质 |
CN112740028A (zh) * | 2018-09-18 | 2021-04-30 | 沃特世科技公司 | 连续可变输出液相色谱泵驱动器 |
CN109578258A (zh) * | 2018-10-12 | 2019-04-05 | 迈克医疗电子有限公司 | 液相控制方法和装置、高压恒流泵、存储介质 |
CN109578258B (zh) * | 2018-10-12 | 2020-10-30 | 迈克医疗电子有限公司 | 液相控制方法和装置、高压恒流泵、存储介质 |
CN113167774A (zh) * | 2018-11-27 | 2021-07-23 | 安捷伦科技有限公司 | 从移动相中移除不确定组合物部分 |
CN113167774B (zh) * | 2018-11-27 | 2024-01-16 | 安捷伦科技有限公司 | 从移动相中移除不确定组合物部分 |
CN115461540A (zh) * | 2020-03-10 | 2022-12-09 | 阿特拉斯·科普柯空气动力股份有限公司 | 泵速控制方法和装置、计算机程序和其上存储有由此应用的计算机程序的计算机可读介质和泵 |
Also Published As
Publication number | Publication date |
---|---|
DE102011052848B4 (de) | 2017-02-09 |
US20140193275A1 (en) | 2014-07-10 |
US20240280091A1 (en) | 2024-08-22 |
WO2013026446A1 (de) | 2013-02-28 |
US10801479B2 (en) | 2020-10-13 |
US20210017970A1 (en) | 2021-01-21 |
DE102011052848A1 (de) | 2013-02-21 |
US11959467B2 (en) | 2024-04-16 |
CN103814292B (zh) | 2018-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103814292A (zh) | 对用于液态色谱分析法的活塞泵装置进行控制的装置 | |
CN103512986B (zh) | 用于控制针对液相色谱法尤其是高效液相色谱法的活塞泵单元的控制装置 | |
US10876525B2 (en) | Liquid feed device, liquid feed control method for liquid feed device, and liquid feed control program for liquid feed device | |
EP0471930B1 (en) | Method for real time compensation of fluid compressibility in high pressure reciprocating pumps | |
US9459239B2 (en) | Intake monitoring for accurate proportioning | |
US7037081B2 (en) | High pressure reciprocating pump and control of the same | |
JP4887295B2 (ja) | 流れを補償するポンプと注入器の同期のための装置、システム、および方法 | |
WO2007109157A2 (en) | Solvent delivery system for liquid chromatography that maintains fluid integrity and pre-forms gradients | |
US20200032780A1 (en) | Liquid delivery device and fluid chromatograph | |
CN104101658B (zh) | 一种可以控制流速的高效液相色谱仪 | |
US20080047611A1 (en) | Fluid pump having low pressure metering and high pressure delivering | |
US9759694B2 (en) | Liquid chromatograph apparatus and liquid chromatograph analysis method | |
JP5575264B2 (ja) | 噴射工程を測定するためのシステムおよび方法 | |
CN109212114A (zh) | 泵操作的方法、hplc中的方法的用途、泵、泵系统和hplc系统 | |
KR20150067352A (ko) | 연료 필터 가열 공정을 갖는 연료 분사 시스템을 작동시키기 위한 방법 및 연료 분사 시스템 | |
WO2012055579A1 (en) | A servo hydraulic press | |
CN101865109B (zh) | 包含热交换器的串联型泵 | |
CN113892030B (zh) | 送液泵及液相色谱仪 | |
CN104508478A (zh) | 液体色谱仪装置以及送液装置 | |
CN208646132U (zh) | 一种多缸液压机的同步泵控系统 | |
CN117825595A (zh) | 一种实时补偿校正的液相色谱泵压力平稳控制方法 | |
US12000812B2 (en) | Differential refractive index measurement method, measurement device, and measurement program | |
WO2006087037A1 (en) | Fluid pump having high pressure metering and high pressure delivering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |