CN103794673B - Platinum silicon nanowires Infrared Detectors and preparation method thereof - Google Patents
Platinum silicon nanowires Infrared Detectors and preparation method thereof Download PDFInfo
- Publication number
- CN103794673B CN103794673B CN201410081602.4A CN201410081602A CN103794673B CN 103794673 B CN103794673 B CN 103794673B CN 201410081602 A CN201410081602 A CN 201410081602A CN 103794673 B CN103794673 B CN 103794673B
- Authority
- CN
- China
- Prior art keywords
- platinum
- silicon
- layer
- film
- photosensitive area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XRZCZVQJHOCRCR-UHFFFAOYSA-N [Si].[Pt] Chemical compound [Si].[Pt] XRZCZVQJHOCRCR-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 239000002070 nanowire Substances 0.000 title claims abstract description 42
- 238000002360 preparation method Methods 0.000 title 1
- 239000010408 film Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 42
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 38
- 239000010703 silicon Substances 0.000 claims abstract description 38
- 239000000758 substrate Substances 0.000 claims abstract description 27
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 26
- 229920005591 polysilicon Polymers 0.000 claims abstract description 26
- 239000010409 thin film Substances 0.000 claims abstract description 19
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 32
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 229910052697 platinum Inorganic materials 0.000 claims description 16
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 13
- 238000011065 in-situ storage Methods 0.000 claims description 9
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 9
- 235000012239 silicon dioxide Nutrition 0.000 claims description 9
- 239000000377 silicon dioxide Substances 0.000 claims description 9
- 238000004544 sputter deposition Methods 0.000 claims description 9
- 238000009792 diffusion process Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 8
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000000137 annealing Methods 0.000 claims description 5
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 5
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 238000001020 plasma etching Methods 0.000 claims description 3
- 238000001039 wet etching Methods 0.000 claims description 3
- 239000004411 aluminium Substances 0.000 claims 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 3
- 229910052760 oxygen Inorganic materials 0.000 claims 3
- 239000001301 oxygen Substances 0.000 claims 3
- 238000001259 photo etching Methods 0.000 claims 3
- 238000005260 corrosion Methods 0.000 claims 2
- 230000007797 corrosion Effects 0.000 claims 2
- 239000012528 membrane Substances 0.000 claims 2
- NICDRCVJGXLKSF-UHFFFAOYSA-N nitric acid;trihydrochloride Chemical compound Cl.Cl.Cl.O[N+]([O-])=O NICDRCVJGXLKSF-UHFFFAOYSA-N 0.000 claims 2
- 230000002093 peripheral effect Effects 0.000 claims 2
- 239000004020 conductor Substances 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- -1 phosphonium ion Chemical class 0.000 claims 1
- 238000005286 illumination Methods 0.000 abstract description 6
- 230000000694 effects Effects 0.000 abstract description 5
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 239000003574 free electron Substances 0.000 abstract description 3
- 238000012858 packaging process Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000000206 photolithography Methods 0.000 description 6
- QZPSXPBJTPJTSZ-UHFFFAOYSA-N aqua regia Chemical compound Cl.O[N+]([O-])=O QZPSXPBJTPJTSZ-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 3
- VLJQDHDVZJXNQL-UHFFFAOYSA-N 4-methyl-n-(oxomethylidene)benzenesulfonamide Chemical compound CC1=CC=C(S(=O)(=O)N=C=O)C=C1 VLJQDHDVZJXNQL-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910021340 platinum monosilicide Inorganic materials 0.000 description 2
- 230000005684 electric field Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F77/00—Constructional details of devices covered by this subclass
- H10F77/10—Semiconductor bodies
- H10F77/14—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies
- H10F77/143—Shape of semiconductor bodies; Shapes, relative sizes or dispositions of semiconductor regions within semiconductor bodies comprising quantum structures
- H10F77/1437—Quantum wires or nanorods
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Light Receiving Elements (AREA)
Abstract
一种铂硅纳米线红外探测器,所述铂硅纳米线红外探测器包括P型外延硅衬底层、铂硅薄膜光敏层、P型多晶硅盖帽层、减反射膜层,P型外延硅衬底层、铂硅薄膜光敏层、P型多晶硅盖帽层、减反射膜层依次层叠在一起;所述铂硅薄膜光敏层即为铂硅纳米线;所述铂硅纳米线红外探测器的工作模式采用正照方式。本发明的有益技术效果是:利用铂硅纳米线可增加吸收率,同时,铂硅纳米线顶端存在极大的边缘场,产生雪崩倍增效应,大幅度提高铂硅红外探测器的量子效率;增加P型多晶硅盖帽层,可使光生热空穴的逃逸机率增加一倍,并且阻止了减反射膜层内的可动电荷与光生自由电子交换,降低铂硅红外探测器的噪声及暗电流;探测器采用正照方式,大幅简化了封装工艺,提高了器件的可靠性。
A platinum-silicon nanowire infrared detector, the platinum-silicon nanowire infrared detector comprising a P-type epitaxial silicon substrate layer, a platinum-silicon film photosensitive layer, a P-type polysilicon capping layer, an antireflection film layer, and a P-type epitaxial silicon substrate layer , platinum-silicon thin-film photosensitive layer, P-type polysilicon capping layer, and anti-reflection film layers are stacked together in sequence; the platinum-silicon thin-film photosensitive layer is platinum-silicon nanowire; the working mode of the platinum-silicon nanowire infrared detector adopts positive Way. The beneficial technical effects of the present invention are: the use of platinum silicon nanowires can increase the absorption rate, and at the same time, there is a huge fringe field at the top of the platinum silicon nanowires, which produces an avalanche multiplication effect and greatly improves the quantum efficiency of platinum silicon infrared detectors; The P-type polysilicon cap layer can double the escape probability of photogenerated heat holes, and prevent the exchange of mobile charges and photogenerated free electrons in the anti-reflection film layer, reducing the noise and dark current of platinum silicon infrared detectors; The device adopts the positive illumination method, which greatly simplifies the packaging process and improves the reliability of the device.
Description
技术领域 technical field
本发明涉及一种红外探测器,尤其涉及一种铂硅纳米线红外探测器及其制作方法。 The invention relates to an infrared detector, in particular to a platinum-silicon nanowire infrared detector and a manufacturing method thereof.
背景技术 Background technique
采用PtSi/P-Si肖特基势垒探测器制作的铂硅红外焦平面阵列器件具有像元集成度高、光响应均匀性好、芯片稳定性好等特点,应用范围十分广泛,但与InSb、HgTeCd红外探测器比较,铂硅红外探测器量子效率低1个数量级以上;多年来,技术人员一直致力于提高铂硅红外探测器量子效率的研究。 The platinum silicon infrared focal plane array device made of PtSi/P-Si Schottky barrier detector has the characteristics of high pixel integration, good photoresponse uniformity, good chip stability, etc., and has a wide range of applications. , HgTeCd infrared detectors, platinum-silicon infrared detector quantum efficiency of more than one order of magnitude lower; for many years, technicians have been committed to improving the quantum efficiency of platinum-silicon infrared detector research.
发明内容 Contents of the invention
针对背景技术中的问题,本发明提出了一种铂硅纳米线红外探测器,其结构为:所述铂硅纳米线红外探测器包括P型外延硅衬底层、铂硅薄膜光敏层、P型多晶硅盖帽层、减反射膜层,P型外延硅衬底层、铂硅薄膜光敏层、P型多晶硅盖帽层、减反射膜层依次层叠在一起;所述铂硅薄膜光敏层即为铂硅纳米线;所述铂硅纳米线红外探测器的工作模式采用正照方式。 Aiming at the problems in the background technology, the present invention proposes a platinum-silicon nanowire infrared detector, the structure of which is: the platinum-silicon nanowire infrared detector includes a P-type epitaxial silicon substrate layer, a platinum-silicon film photosensitive layer, a The polysilicon capping layer, the anti-reflection film layer, the P-type epitaxial silicon substrate layer, the platinum silicon thin film photosensitive layer, the P-type polysilicon cap layer, and the anti-reflection film layer are stacked together in sequence; the platinum silicon thin film photosensitive layer is the platinum silicon nanowire ; The working mode of the platinum-silicon nanowire infrared detector adopts the positive illumination mode.
前述铂硅纳米线红外探测器的工作原理是:红外辐射从正面入射,经减反射膜层透射后,光子能量小于Si禁带宽度的红外光穿过P型多晶硅盖帽层到达铂硅薄膜光敏层,并在铂硅薄膜光敏层中激发出电子-空穴对,能量超过势垒高度的热空穴越过PtSi/P-Si势垒,进入P型外延硅衬底层和P型多晶硅盖帽层,这就使得铂硅薄膜光敏层内有电子的积累,而P型外延硅衬底层和P型多晶硅盖帽层内有空穴的积累,P型外延硅衬底层和P型多晶硅盖帽层均接地,铂硅薄膜光敏层内积累的电子通过二极管收集,完成对红外辐射的探测;由于红外光线在铂硅薄膜光敏层内的铂硅纳米线之间多次反射,增加了铂硅薄膜对红外辐射的吸收率,纳米结构的铂硅薄膜光敏层与P型外延硅衬底层形成肖特基势垒接触,存在较大的边缘场效应,产生较大的边缘电场,光生电子发生雪崩倍增效应,增加探测器的量子效率;在铂硅钠米上增加一层P型多晶硅盖帽层,可使光生热空穴的逃逸机率增加一倍,并且阻止了减反射膜中的可动电荷与光生自由电子交换,降低铂硅红外探测器的噪声及暗电流;同时,本发明的探测器采用正照方式,可实现对紫外、可见光、中波红外多光谱探测,与背照方式相比,除了存在前述优点外,还大幅简化了封装工艺,提高了器件的可靠性。 The working principle of the aforementioned platinum-silicon nanowire infrared detector is: infrared radiation is incident from the front, and after being transmitted through the anti-reflection film layer, the infrared light with photon energy less than the forbidden band width of Si passes through the P-type polysilicon capping layer and reaches the platinum-silicon film photosensitive layer , and excite electron-hole pairs in the platinum-silicon film photosensitive layer, and the hot holes whose energy exceeds the barrier height cross the PtSi/P-Si barrier and enter the P-type epitaxial silicon substrate layer and the P-type polysilicon cap layer, which This makes the accumulation of electrons in the photosensitive layer of the platinum silicon thin film, and the accumulation of holes in the P-type epitaxial silicon substrate layer and the P-type polysilicon cap layer. Both the P-type epitaxial silicon substrate layer and the P-type polysilicon cap layer are grounded. The electrons accumulated in the photosensitive layer of the thin film are collected by diodes to complete the detection of infrared radiation; due to the multiple reflections of infrared light between the platinum-silicon nanowires in the photosensitive layer of the platinum-silicon thin film, the absorption rate of infrared radiation by the platinum-silicon thin film is increased , the nanostructured platinum-silicon film photosensitive layer forms a Schottky barrier contact with the P-type epitaxial silicon substrate layer, and there is a large fringe field effect, which generates a large fringe electric field, and the avalanche multiplication effect of photo-generated electrons increases the detector’s Quantum efficiency: Adding a P-type polysilicon capping layer on the platinum silicon nanometer can double the escape probability of photogenerated heat holes, and prevent the exchange of mobile charges in the anti-reflection film with photogenerated free electrons, reducing platinum Noise and dark current of the silicon infrared detector; at the same time, the detector of the present invention adopts the front-illumination mode, which can realize multi-spectral detection of ultraviolet, visible light and mid-wave infrared. Compared with the back-illumination mode, in addition to the aforementioned advantages, it also greatly The packaging process is simplified and the reliability of the device is improved.
基于现有红外探测器上的常规结构,本发明的铂硅纳米线红外探测器上也设置有输出二极管、P+沟阻、电极引线、P+扩散地和N保护环。 Based on the conventional structure of the existing infrared detector, the platinum-silicon nanowire infrared detector of the present invention is also provided with an output diode, a P+ channel resistance, an electrode lead, a P+ diffusion ground and an N protection ring.
为了进一步提高铂硅薄膜光敏层对红外辐射的吸收率,所述P型外延硅衬底层表面还层叠有铝反射镜层;经P型外延硅衬底层透射出的未被铂硅薄膜光敏层吸收的红外线,由铝反射镜层反射后,可以再次到达铂硅纳米线光敏层并被其吸收。 In order to further improve the absorptivity of the platinum-silicon thin-film photosensitive layer to infrared radiation, the surface of the P-type epitaxial silicon substrate layer is also laminated with an aluminum reflector layer; The infrared rays, after being reflected by the aluminum mirror layer, can reach the photosensitive layer of platinum-silicon nanowires again and be absorbed by it.
优选地,所述减反射膜层采用氧化铪薄膜。 Preferably, the anti-reflection film layer is made of hafnium oxide thin film.
基于前述器件,本发明还提出了一种铂硅纳米线红外探测器制作方法,其工艺步骤为: Based on the aforementioned devices, the present invention also proposes a method for manufacturing a platinum-silicon nanowire infrared detector, the process steps of which are:
1)提供P型外延硅衬底层; 1) Provide P-type epitaxial silicon substrate layer;
2)在P型外延硅衬底层的上表面生长栅氧介质层,在栅氧介质层表面淀积氮化硅介质层; 2) growing a gate oxide dielectric layer on the upper surface of the P-type epitaxial silicon substrate layer, and depositing a silicon nitride dielectric layer on the surface of the gate oxide dielectric layer;
3)采用硼扩散工艺在P型外延硅衬底层上形成P+沟阻和P+扩散地; 3) Form P+ channel resistance and P+ diffusion ground on the P-type epitaxial silicon substrate layer by boron diffusion process;
4)采用磷离子注入工艺在P型外延硅衬底层上分别形成输出二极管和N保护环; 4) The output diode and the N guard ring are respectively formed on the P-type epitaxial silicon substrate layer by phosphorus ion implantation process;
5)采用等离子刻蚀工艺将光敏区范围内的氮化硅介质层刻蚀掉;采用湿法腐蚀工艺将光敏区范围内的栅氧介质层腐蚀掉;裸露出来的P型外延硅衬底层区域为光敏区窗口; 5) The silicon nitride dielectric layer within the photosensitive area is etched away by plasma etching process; the gate oxide dielectric layer within the photosensitive area is etched away by wet etching process; the exposed P-type epitaxial silicon substrate layer area is the photosensitive area window;
6)采用超高真空溅射工艺在光敏区范围淀积铂膜并原位退火;采用铂辅助刻蚀工艺湿法腐蚀光敏区窗口,形成硅纳米线,用王水腐蚀去掉铂膜; 6) Using ultra-high vacuum sputtering process to deposit platinum film in the range of photosensitive area and in-situ annealing; use platinum-assisted etching process to wet-etch the window of photosensitive area to form silicon nanowires, and remove platinum film with aqua regia;
7)腐蚀掉硅纳米线上的自然氧化层,采用超高真空溅射工艺在光敏区淀积铂膜并原位退火,在硅纳米线上生成铂硅薄膜,形成铂硅纳米线,铂硅纳米线即为铂硅薄膜光敏层;用王水腐蚀去掉未反应的铂膜; 7) Etch away the natural oxide layer on the silicon nanowires, deposit a platinum film on the photosensitive area by ultra-high vacuum sputtering process and anneal in situ, and form a platinum silicon film on the silicon nanowires to form platinum silicon nanowires, platinum silicon The nanowire is the photosensitive layer of the platinum-silicon film; the unreacted platinum film is removed by etching with aqua regia;
8)利用PECVD工艺在光敏区及光敏区外围淀积低温二氧化硅薄膜; 8) Deposit low-temperature silicon dioxide film on the photosensitive area and the periphery of the photosensitive area by PECVD process;
9)采用光刻工艺将光敏区范围内的低温二氧化硅薄膜腐蚀掉; 9) The low-temperature silicon dioxide film in the photosensitive area is etched away by photolithography;
10)采用超高真空溅射工艺在光敏区及光敏区外围淀积P型多晶硅薄膜,原位退火,形成P型多晶硅盖帽层。 10) Deposit a P-type polysilicon thin film on and around the photosensitive area by using an ultra-high vacuum sputtering process, and anneal in situ to form a P-type polysilicon capping layer.
11)采用腐蚀剥离的方法,去掉光敏区外围的低温二氧化硅及P型多晶硅薄膜; 11) Use the method of etching and stripping to remove the low-temperature silicon dioxide and P-type polysilicon film on the periphery of the photosensitive area;
12)采用磁控溅射工艺在P形多晶硅盖帽层上淀积氧化铪减反射膜层; 12) Deposit a hafnium oxide anti-reflection film layer on the P-shaped polysilicon cap layer by magnetron sputtering process;
13)采用光刻工艺形成引线孔; 13) Lead hole is formed by photolithography process;
14)利用磁控溅射工艺在探测器正面淀积铝膜,光刻形成电极引线; 14) Aluminum film is deposited on the front of the detector by magnetron sputtering process, and electrode leads are formed by photolithography;
15)背面抛光,利用磁控溅射工艺在探测器背面淀积铝膜,形成铝反射镜层。 15) Backside polishing, using magnetron sputtering process to deposit an aluminum film on the backside of the detector to form an aluminum mirror layer.
本发明的有益技术效果是:利用铂硅纳米线可增加吸收率,同时,铂硅纳米线顶端存在极大的边缘场,产生雪崩倍增效应,大幅度提高铂硅红外探测器的量子效率;增加P型多晶硅盖帽层,可使光生热空穴的逃逸机率增加一倍,并且阻止了减反射膜层内的可动电荷与光生自由电子交换,降低铂硅红外探测器的噪声及暗电流;探测器采用正照方式,大幅简化了封装工艺,提高了器件的可靠性。 The beneficial technical effects of the present invention are: the utilization of platinum-silicon nanowires can increase the absorption rate, and at the same time, there is a huge fringe field at the top of the platinum-silicon nanowires, which produces an avalanche multiplication effect and greatly improves the quantum efficiency of platinum-silicon infrared detectors; The P-type polysilicon cap layer can double the escape probability of photogenerated heat holes, and prevent the exchange of mobile charges and photogenerated free electrons in the anti-reflection film layer, reducing the noise and dark current of platinum silicon infrared detectors; detection The device adopts the positive illumination method, which greatly simplifies the packaging process and improves the reliability of the device.
附图说明 Description of drawings
图1、本发明的结构示意图; Fig. 1, structural representation of the present invention;
图中各个标记所对应的名称分别为:铝反射镜层1、P型外延硅衬底层2、铂硅薄膜光敏层3、P型多晶硅盖帽层4、减反射膜层5、输出二极管6、P+沟阻7、电极引线8、P+扩散地9、N保护环10、栅氧介质层11、氮化硅介质层12。 The names corresponding to each mark in the figure are: aluminum mirror layer 1, P-type epitaxial silicon substrate layer 2, platinum-silicon thin film photosensitive layer 3, P-type polysilicon cap layer 4, anti-reflection film layer 5, output diode 6, P+ Channel resistance 7 , electrode leads 8 , P+ diffusion ground 9 , N guard ring 10 , gate oxide dielectric layer 11 , and silicon nitride dielectric layer 12 .
具体实施方式 detailed description
一种铂硅纳米线红外探测器,其结构为:所述铂硅纳米线红外探测器包括P型外延硅衬底层2、铂硅薄膜光敏层3、P型多晶硅盖帽层4、减反射膜层5,P型外延硅衬底层2、铂硅薄膜光敏层3、P型多晶硅盖帽层4、减反射膜层5依次层叠在一起;所述铂硅薄膜光敏层3即为铂硅纳米线;所述铂硅纳米线红外探测器的工作模式采用正照方式。 A platinum-silicon nanowire infrared detector, the structure of which is: the platinum-silicon nanowire infrared detector comprises a P-type epitaxial silicon substrate layer 2, a platinum-silicon thin film photosensitive layer 3, a P-type polysilicon capping layer 4, and an anti-reflection film layer 5. P-type epitaxial silicon substrate layer 2, platinum silicon thin-film photosensitive layer 3, P-type polysilicon capping layer 4, and anti-reflection film layer 5 are stacked together in sequence; the platinum-silicon thin-film photosensitive layer 3 is platinum silicon nanowire; The working mode of the platinum-silicon nanowire infrared detector described above adopts the positive illumination method.
进一步地,所述铂硅纳米线红外探测器上还设置有输出二极管6、P+沟阻7、电极引线8、P+扩散地9和N保护环10。 Further, the platinum-silicon nanowire infrared detector is also provided with an output diode 6 , a P+ channel resistance 7 , an electrode lead 8 , a P+ diffusion ground 9 and an N guard ring 10 .
进一步地,所述P型外延硅衬底层2背面还层叠有铝反射镜层1。 Further, an aluminum mirror layer 1 is stacked on the back of the P-type epitaxial silicon substrate layer 2 .
进一步地,所述减反射膜层5采用氧化铪薄膜。 Further, the anti-reflection film layer 5 is made of hafnium oxide thin film.
一种铂硅纳米线红外探测器制作方法,其步骤为: A method for manufacturing a platinum-silicon nanowire infrared detector, the steps of which are:
1)提供P型外延硅衬底层2; 1) Provide a P-type epitaxial silicon substrate layer 2;
2)在P型外延硅衬底层2的上表面生长栅氧介质层11,在栅氧介质层11表面淀积氮化硅介质层12; 2) growing a gate oxide dielectric layer 11 on the upper surface of the P-type epitaxial silicon substrate layer 2, and depositing a silicon nitride dielectric layer 12 on the surface of the gate oxide dielectric layer 11;
3)采用硼扩散工艺在P型外延硅衬底层2上形成P+沟阻7和P+扩散地9; 3) Forming the P+ channel resistance 7 and the P+ diffusion ground 9 on the P-type epitaxial silicon substrate layer 2 by boron diffusion process;
4)采用磷离子注入工艺在P型外延硅衬底层2上分别形成输出二极管6和N保护环10; 4) The output diode 6 and the N guard ring 10 are respectively formed on the P-type epitaxial silicon substrate layer 2 by using a phosphorus ion implantation process;
5)采用等离子刻蚀工艺将光敏区范围内的氮化硅介质层12刻蚀掉;采用湿法腐蚀工艺将光敏区范围内的栅氧介质层11腐蚀掉;裸露出来的P型外延硅衬底层2区域为光敏区窗口; 5) The silicon nitride dielectric layer 12 within the photosensitive area is etched away by plasma etching process; the gate oxide dielectric layer 11 within the photosensitive area is etched away by wet etching process; the exposed P-type epitaxial silicon lining The bottom 2 area is the photosensitive area window;
6)采用超高真空溅射工艺在光敏区范围淀积铂膜并原位退火;采用铂辅助刻蚀工艺湿法腐蚀光敏区窗口,形成硅纳米线,用王水腐蚀去掉铂膜; 6) Using ultra-high vacuum sputtering process to deposit platinum film in the range of photosensitive area and in-situ annealing; use platinum-assisted etching process to wet-etch the window of photosensitive area to form silicon nanowires, and remove platinum film with aqua regia;
7)腐蚀掉硅纳米线上的自然氧化层,采用超高真空溅射工艺在光敏区淀积铂膜并原位退火,在硅纳米线上生成铂硅薄膜,形成铂硅纳米线,铂硅纳米线即为铂硅薄膜光敏层3;用王水腐蚀去掉未反应的铂膜; 7) Etch away the natural oxide layer on the silicon nanowires, deposit a platinum film on the photosensitive area by ultra-high vacuum sputtering process and anneal in situ, and form a platinum silicon film on the silicon nanowires to form platinum silicon nanowires, platinum silicon The nanowire is the platinum-silicon film photosensitive layer 3; the unreacted platinum film is removed by etching with aqua regia;
8)利用PECVD工艺在光敏区及光敏区外围淀积低温二氧化硅薄膜; 8) Deposit low-temperature silicon dioxide film on the photosensitive area and the periphery of the photosensitive area by PECVD process;
9)采用光刻工艺将光敏区范围内的低温二氧化硅薄膜腐蚀掉; 9) The low-temperature silicon dioxide film in the photosensitive area is etched away by photolithography;
10)采用超高真空溅射工艺在光敏区及光敏区外围淀积P型多晶硅薄膜,原位退火,形成P型多晶硅盖帽层4。 10) Deposit a P-type polysilicon thin film on and around the photosensitive area by using an ultra-high vacuum sputtering process, and anneal in situ to form a P-type polysilicon capping layer 4 .
11)采用腐蚀剥离的方法,去掉光敏区外围的低温二氧化硅及P型多晶硅薄膜; 11) Use the method of etching and stripping to remove the low-temperature silicon dioxide and P-type polysilicon film on the periphery of the photosensitive area;
12)采用磁控溅射工艺在P形多晶硅盖帽层4上淀积氧化铪减反射膜层5; 12) Depositing a hafnium oxide anti-reflection film layer 5 on the P-shaped polysilicon cap layer 4 by using a magnetron sputtering process;
13)采用光刻工艺形成引线孔; 13) Lead hole is formed by photolithography process;
14)利用磁控溅射工艺在探测器正面淀积铝膜,光刻形成电极引线8; 14) Deposit aluminum film on the front of the detector by magnetron sputtering process, and form electrode leads 8 by photolithography;
15)背面抛光,利用磁控溅射工艺在探测器背面淀积铝膜,形成铝反射镜层1。 15) The back is polished, and an aluminum film is deposited on the back of the detector by magnetron sputtering to form an aluminum mirror layer 1 .
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410081602.4A CN103794673B (en) | 2014-03-07 | 2014-03-07 | Platinum silicon nanowires Infrared Detectors and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410081602.4A CN103794673B (en) | 2014-03-07 | 2014-03-07 | Platinum silicon nanowires Infrared Detectors and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103794673A CN103794673A (en) | 2014-05-14 |
CN103794673B true CN103794673B (en) | 2016-01-20 |
Family
ID=50670164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410081602.4A Active CN103794673B (en) | 2014-03-07 | 2014-03-07 | Platinum silicon nanowires Infrared Detectors and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103794673B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104143581A (en) * | 2014-08-12 | 2014-11-12 | 中国电子科技集团公司第四十四研究所 | Palladium silicon nanowire room temperature infrared detector and its manufacturing method |
CN105841823A (en) * | 2016-04-14 | 2016-08-10 | 董友强 | Manganese-silicon nanowire infrared detector and manufacturing method thereof |
US10312391B2 (en) * | 2016-10-04 | 2019-06-04 | Omnivision Technologies, Inc. | Apparatus and method for single-photon avalanche-photodiode detectors with reduced dark count rate |
CN107394000B (en) * | 2017-08-08 | 2019-01-29 | 中国电子科技集团公司第四十四研究所 | Silicon substrate platinum nano-tube detector and preparation method thereof |
CN108847427A (en) * | 2018-05-08 | 2018-11-20 | 广东工业大学 | A kind of two-dimensional material photodetector of embedded reflecting mirror and its preparation method and application |
CN112582495B (en) * | 2020-12-03 | 2024-04-09 | 无锡中微晶园电子有限公司 | Infrared reinforced silicon-based photoelectric detector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4536658A (en) * | 1983-01-05 | 1985-08-20 | The United States Of America As Represented By The Secretary Of The Air Force | Hybrid Schottky infrared focal plane array |
US4544939A (en) * | 1981-08-25 | 1985-10-01 | Rca Corporation | Schottky-barrier diode radiant energy detector with extended longer wavelength response |
US4875082A (en) * | 1986-06-20 | 1989-10-17 | Ford Aerospace Corporation | Schottky barrier photodiode structure |
CN102030309A (en) * | 2010-11-10 | 2011-04-27 | 中国科学院理化技术研究所 | Preparation method of Mn27Si47-Si heterostructure nanowire array or Mn27Si47 nanowire array |
-
2014
- 2014-03-07 CN CN201410081602.4A patent/CN103794673B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4544939A (en) * | 1981-08-25 | 1985-10-01 | Rca Corporation | Schottky-barrier diode radiant energy detector with extended longer wavelength response |
US4536658A (en) * | 1983-01-05 | 1985-08-20 | The United States Of America As Represented By The Secretary Of The Air Force | Hybrid Schottky infrared focal plane array |
US4875082A (en) * | 1986-06-20 | 1989-10-17 | Ford Aerospace Corporation | Schottky barrier photodiode structure |
CN102030309A (en) * | 2010-11-10 | 2011-04-27 | 中国科学院理化技术研究所 | Preparation method of Mn27Si47-Si heterostructure nanowire array or Mn27Si47 nanowire array |
Also Published As
Publication number | Publication date |
---|---|
CN103794673A (en) | 2014-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103794673B (en) | Platinum silicon nanowires Infrared Detectors and preparation method thereof | |
TWI559565B (en) | Vertical column structure photovoltaic device with mirror and optical coating | |
TWI438904B (en) | Thin film solar cell and method of manufacturing same | |
US8384179B2 (en) | Black silicon based metal-semiconductor-metal photodetector | |
JP6106403B2 (en) | Photoelectric conversion element and method for producing photoelectric conversion element | |
CN103348486B (en) | Nano wire array based solar energy harvesting device | |
CN102428570B (en) | Enhanced efficiency solar cells and method of manufacture | |
JP2011523226A (en) | Solar volume structure | |
JP2015029126A (en) | Solar cell and method for manufacturing the same | |
CN104300027B (en) | Graphene/silicon dioxide/silicon based avalanche photodetector and preparation method | |
JP6722117B2 (en) | Passivation of light receiving surface of solar cell using crystalline silicon | |
CN105841823A (en) | Manganese-silicon nanowire infrared detector and manufacturing method thereof | |
TW201424022A (en) | Multi-joint multi-head photovoltaic device | |
WO2024041126A1 (en) | Solar cell and manufacturing method therefor | |
JP2017539093A (en) | Optoelectronic device having textured surface and method of manufacturing the same | |
JP2024529031A (en) | Passivating contact structure, its manufacturing method and solar cell using the same | |
US20190288136A1 (en) | Thin film photovoltaic cell with back contacts | |
US10665731B2 (en) | Photoelectric conversion element | |
US8822259B2 (en) | Methods for enhancing light absorption during PV applications | |
CN110326116B (en) | Semiconductor structure and its manufacture | |
CN116598369B (en) | Low-noise single photon detector and preparation method thereof | |
CN110970512A (en) | A kind of high-efficiency PIN photodiode with wide spectrum of visible light and preparation method thereof | |
CN110676327A (en) | Ultraviolet detector integrated with antireflection film layer and preparation method thereof | |
US20140360584A1 (en) | Manufacturing method of solar cell | |
US20130127005A1 (en) | Photovoltaic device and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C41 | Transfer of patent application or patent right or utility model | ||
TR01 | Transfer of patent right |
Effective date of registration: 20160331 Address after: 401331 Chongqing city Shapingba District West Wing Town Road No. 367 west wing micro power Patentee after: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC CO.,LTD. Address before: 400060 Chongqing District, Huayuan Road City, No. 14, No. 44 Patentee before: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION NO.44 Research Institute |
|
CP03 | Change of name, title or address | ||
CP03 | Change of name, title or address |
Address after: No.23 Xiyong Avenue, Shapingba District, Chongqing 401332 Patentee after: CETC Chip Technology (Group) Co.,Ltd. Address before: No. 367 Xiyong Road, Weidian Garden, Xiyong Town, Shapingba District, Chongqing, 401331 Patentee before: CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION CHONGQING ACOUSTIC-OPTIC-ELECTRONIC CO.,LTD. |