CN103778308A - 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法 - Google Patents

叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法 Download PDF

Info

Publication number
CN103778308A
CN103778308A CN201410075536.XA CN201410075536A CN103778308A CN 103778308 A CN103778308 A CN 103778308A CN 201410075536 A CN201410075536 A CN 201410075536A CN 103778308 A CN103778308 A CN 103778308A
Authority
CN
China
Prior art keywords
design
mould
die
compensation
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410075536.XA
Other languages
English (en)
Other versions
CN103778308B (zh
Inventor
张士宏
程明
宋鸿武
叶能永
徐勇
邰清安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CN201410075536.XA priority Critical patent/CN103778308B/zh
Publication of CN103778308A publication Critical patent/CN103778308A/zh
Application granted granted Critical
Publication of CN103778308B publication Critical patent/CN103778308B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及冷辊轧成形模具设计技术领域,具体为一种叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,包括基于虚拟成形的冷辊轧叶片模具型面初始设计、基于拓扑补偿的模具型面重构设计、基于虚拟修模的模具型面模糊优化设计。首先通过虚拟成形确定叶片冷辊轧后的变形误差;再利用拓扑补偿技术进行叶片型面的反变形误差补偿设计,实现辊轧模型面的几何重构;最后根据虚拟修模的试模情况与叶片设计的几何要求进行对比,采用双目标模糊优化算法(DOFO)实现无余量冷辊轧叶片加工模具的全局优化设计,解决叶片辊轧模具型面设计简单考虑回弹补偿导致试修模次数多、废品率高、设计周期长等问题,以此为基础实现叶片无余量冷辊轧成形。

Description

叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法
技术领域
本发明涉及一种基于虚拟成形拓扑补偿的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,属于冷辊轧成形模具设计技术领域。
背景技术
随着现代工业的发展,在高性能、高指标的推动下,一些零件面临着复杂型面精密加工的制造难题。如:发动机叶片的特点是叶身薄,前、后缘半径小,型面扭曲,叶身型面和边缘半径的允许偏差十分严格。通过冷辊轧方式实现叶片的近净成形是一种先进的叶片制造技术,中国发明专利(专利号200710157510.X)介绍了一种GH150合金高压压气机动、静叶片冷辊轧工艺。中国发明专利(专利号200710159074.X)提出了一种轧制无余量叶片用辊轧模的设计方法,通过叶片型面的处理以及与轧模截面的换算来实现叶片辊轧盆模和背模主要项目的设计。虽然,在该设计方法中考虑了叶片的辊轧方向、平衡角、中截面、型面边缘及轧模咬口和出口的设计问题,但由于没有考虑加工变形补偿,加之叶片形状的特殊性,其辊轧过程不同于平板轧制,工件和模具的受力情况都很复杂,容易出现侧向弯曲、型槽不易充满、叶身型面失真等工艺缺陷,这些问题严重影响了产品质量,增加了试修模次数并限制了叶片真正实现无余量加工。
孔祥伟等[范群,孔祥伟,张岩.叶片辊锻回弹及模具补偿研究.舰船电子工程,2013,229(7):139-142]提出基于对应点矢量方向反向偏移的回弹补偿法对辊锻模具进行补偿控制,但该方法未考虑材料流动带来的变形误差,且由于基于型面上逐点的局部补偿,在精度和效率上都存在问题。
为实现叶片等复杂型面零件无余量辊轧加工,必须建立考虑模具型面拓扑补偿的设计方法。目前应用较多的还是根据经验方法预测加工变形误差,进而对模具型面进行补偿设计,在实际生产中还需要一系列的试验与修正。
发明内容
本发明的目的在于提供一种基于虚拟成形拓扑补偿的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,可解决现有技术中叶片辊轧模具型面设计简单考虑回弹补偿导致试修模次数多、废品率高、设计周期长的技术问题。
本发明的技术方案是:
一种叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,该设计方法包括基于虚拟成形的冷辊轧叶片模具型面初始设计方法、基于拓扑补偿的模具型面重构设计方法和基于虚拟修模的模具型面模糊优化设计方法;为获得精确的无余量辊轧模几何设计,首先通过虚拟成形确定叶片冷辊轧后的变形误差;再利用拓扑补偿技术进行叶片型面的反变形误差补偿设计,实现辊轧模型面的几何重构;最后根据虚拟修模的试模情况与叶片设计的几何要求进行对比,采用双目标模糊优化算法实现无余量冷辊轧叶片加工模具的全局优化设计。
所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,基于虚拟成形的冷辊轧叶片模具型面初始设计方法包括如下步骤:
a)确定冷辊轧成形的工艺参数;
b)根据《轧制无余量叶片用辊轧模的设计方法》设计出盆模和背模的基础型面;
c)对盆模、背模和叶片预制坯模型划分网格,进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构。
所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,冷辊轧成形的工艺参数包括辊轧模宽度、轧辊转速、型槽圆心角和摩擦因子等。
所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,基于拓扑补偿的模具型面重构设计方法包括以下步骤:
a)将该拓扑结构离散化并与叶片设计结构进行比较,获得第一轮扭转变形误差和弯曲变形误差;
b)根据扭转变形误差和弯曲变形误差采用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,基于虚拟修模的模具型面模糊优化设计方法包括以下步骤:
a)利用盆模和背模的重构型面在相同的工艺参数下再次进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构;
b)将该拓扑结构离散化并与叶片设计结构进行比较,获得第二轮扭转变形误差和弯曲变形误差,检验以上变形误差是否满足叶片精度要求;
c)如不满足精度要求,以扭转变形误差和弯曲变形误差为目标函数,以第一轮和第二轮的扭转变形误差和弯曲变形误差为初始样本点集,以满足以上变形误差符合叶片精度要求为PID控制终止条件,采用双目标模糊优化算法DOFO计算新的样本点集;
d)根据计算获得的扭转变形误差和弯曲变形误差利用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
本发明的优点及有益效果是:
本发明设计方法包括基于虚拟成形的冷辊轧叶片模具型面的初始设计、基于拓扑补偿的模具型面重构设计、基于虚拟修模的模具型面模糊优化设计。本发明是在基于几何截面换算基础上未考虑变形误差补偿无余量冷辊轧叶片加工模具设计中,引入虚拟成形、拓扑补偿、型面重构、虚拟修模和模糊优化方法,采用本发明的设计方法可以减少试修模次数、降低废品率、缩短设计周期,为叶片无余量冷辊轧加工模具设计提供了一种新方法。
附图说明
图1为本发明原理框图。
图2为叶片的外貌示意图。
图3为盆模和背模的基础型面示意图。图中,1盆模;2背模。
图4为冷辊轧成形过程有限元模型图。图中,1盆模;2背模;3叶片。
图5为叶片的空间拓扑结构示意图。
图6(a)-图6(b)为补偿前各截面的扭转误差量tI和弯曲误差量rI示意图。其中,图6(a)扭转误差量tI曲线;图6(b)弯曲误差量rI曲线。
图7为完成补偿后的模具型面图。图中,1盆模;2背模。
图8为轧制叶片的空间拓扑结构示意图。
图9(a)-图9(b)为补偿后各截面的扭转误差量tII和弯曲误差量rII示意图。其中,图9(a)扭转误差量tII曲线;图9(b)弯曲误差量rII曲线。
图10为双目标模糊优化算法DOFO(Double Objective Fuzzy Optimization)计算新的样本点集流程图。
图11(a)-图11(b)为经模糊优化后的扭转误差补偿量T和弯曲误差补偿量R示意图。其中,图11(a)扭转误差补偿量T曲线;图11(b)弯曲误差补偿量R曲线。
图12为利用反向逼近分别对盆模和背模的基础型面进行拓扑补偿示意图。图中,1盆模;2背模。
图13为经修边处理后叶片示意图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步详细说明。
如图1所示,本发明叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法包括:基于虚拟成形的冷辊轧叶片模具型面初始设计、基于拓扑补偿的模具型面重构设计、基于虚拟修模的模具型面模糊优化设计三个阶段。第一阶段基于虚拟成形的复杂型面零件冷辊轧模具型面的初始设计作为第二阶段基于拓扑补偿的模具型面重构设计的输入。第二阶段基于拓扑补偿的模具型面重构设计作为第三阶段基于虚拟修模的模具型面模糊优化设计的输入。在变形误差不满足叶片设计几何精度要求的条件下,第三阶段形成内循环响应,直至最终轧制叶片变形误差满足精度要求,获得优化的冷辊轧叶片模具型面设计方案。其中,
基于虚拟成形的冷辊轧叶片模具型面初始设计方法完成基于冷辊轧模具基础型面的虚拟成形过程仿真,包括如下步骤:
a)确定冷辊轧成形的工艺参数,包括辊轧模宽度、轧辊转速、型槽圆心角和摩擦因子等;
b)根据《轧制无余量叶片用辊轧模的设计方法》设计出盆模和背模的基础型面;
c)对盆模、背模和叶片预制坯模型划分网格,进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构。
其中,《轧制无余量叶片用辊轧模的设计方法》参见:刘随建、崔树森、李深亮、杨景金、郑渠英等人的中国发明专利ZL200710159074.X“轧制无余量叶片用辊轧模的设计方法”。
基于拓扑补偿的模具型面重构设计完成冷辊轧模具型面的拓扑补偿计算以及补偿后的模具型面重构工作,包括如下步骤:
a)将该拓扑结构离散化并与叶片设计结构进行比较,获得第一轮扭转变形误差和弯曲变形误差;
b)根据扭转变形误差和弯曲变形误差采用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
基于虚拟修模的模具型面模糊优化设计完成基于重构型面的虚拟成形过程仿真以及根据变形误差修正模糊优化模具型面设计,包括以下步骤:
a)利用盆模和背模的重构型面在相同的工艺参数下再次进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构;
b)将该拓扑结构离散化并与叶片设计结构进行比较,获得第二轮扭转变形误差和弯曲变形误差,检验以上变形误差是否满足叶片精度要求;
c)如不满足精度要求,以扭转变形误差和弯曲变形误差为目标函数,以第一轮和第二轮的扭转变形误差和弯曲变形误差为初始样本点集,以满足以上变形误差符合叶片精度要求为PID控制终止条件,采用双目标模糊优化算法DOFO计算新的样本点集;
d)根据计算获得的扭转变形误差和弯曲变形误差利用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
实施例:GH4169合金发动机压气机转子叶片冷辊轧模具的设计
本实施例是对无余量辊轧模的精确几何型面进行设计和优化,参照附图2-13对本发明做进一步说明。以GH4169合金发动机压气机转子叶片的冷辊轧模具型面为设计目标,叶片的外貌如图2所示。
该型叶片无余量辊轧模的设计优化过程包括如下步骤:
1、确定冷辊轧成形的工艺参数,包括辊轧模宽度50-55mm、轧辊转速0.3rad/s、型槽圆心角60°和摩擦因子0.15。
2、根据《轧制无余量叶片用辊轧模的设计方法》设计出盆模1和背模2的基础型面如图3所示。其中,《轧制无余量叶片用辊轧模的设计方法》参见刘随建、崔树森、李深亮、杨景金、郑渠英等人的中国发明专利ZL200710159074.X“轧制无余量叶片用辊轧模的设计方法”。
3、对盆模1、背模2和叶片3预制坯模型划分网格,建立冷辊轧成形过程有限元模型,如图4所示。
4、进行有限元分析,获得轧制叶片的空间拓扑结构,如图5所示。
5、将该拓扑结构离散化并与叶片的设计结构进行比较,获得第一轮扭转变形误差和弯曲变形误差。根据扭转变形误差和弯曲变形误差采用反向逼近分别对盆模1和背模2的基础型面进行拓扑补偿,分别如图6(a)和图6(b)所示。
6、完成盆模1和背模2的基础型面补偿后,模具型面的重构设计与光顺,如图7所示。
7、利用盆模和背模的重构型面在相同的工艺参数下,再次进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构,如图8所示;
8、将该拓扑结构离散化并与叶片设计结构进行比较,获得第二轮扭转变形误差和弯曲变形误差。经检验以上变形误差不能满足叶片精度要求,如图9(a)和图9(b)所示。
9、以扭转变形误差t和弯曲变形误差r为目标函数,以第一轮和第二轮的扭转变形误差(tI、tII)和弯曲变形误差(rI、rII)为初始样本点集,以满足以上变形误差符合叶片精度要求为PID控制终止条件,采用双目标模糊优化算法DOFO计算新的样本点集。如图10所示,双目标模糊优化算法DOFO计算新的样本点集流程如下,输入初始样本点集t、r、t、r→计算偏差集:ec1=t-t;ec2=r-r→赋值t=t;r=r→ec1、ec2、t、r模糊化→模糊正定ΔKp、ΔK、ΔKD→计算当前的Kp、K、KD→PID控制运算→输出样本点集T和R。其中,t为各截面第一轮扭转变形误差量,t为各截面第二轮扭转变形误差量,t为扭转变形误差中间赋值量,r为各截面第一轮弯曲变形误差量,r为各截面第二轮弯曲变形误差量,r为弯曲变形误差中间赋值量,ec1为各截面扭转变形误差偏差量,ec2为各截面弯曲变形误差偏差量,Kp为PID控制器的比例系数,K为PID控制器的积分系数,KD为PID控制器的微分系数,ΔKp为误差比例,ΔK为误差积分,ΔKD为误差微分,T为优化后各截面扭转误差补偿量,R为各截面弯曲误差补偿量。
10、根据计算获得的扭转变形误差T和弯曲变形误差R利用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,分别如图11(a)和图11(b)所示。
11、完成盆模1和背模2的基础型面补偿后,模具型面的重构设计与光顺,如图12所示。
12、利用设计优化后的冷辊轧模具加工的叶片,经修边处理后如图13所示。经检验,满足设计精度要求。
实施例结果表明,为获得精确的无余量辊轧模几何设计,本发明首先通过虚拟成形确定叶片冷辊轧后的变形误差;再利用拓扑补偿技术进行叶片型面的反变形误差补偿设计,实现辊轧模型面的几何重构;最后根据虚拟修模的试模情况与叶片设计的几何要求进行对比,采用双目标模糊优化算法(DOFO)实现无余量冷辊轧叶片加工模具的全局优化设计。

Claims (5)

1.一种叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,其特征在于,该设计方法包括基于虚拟成形的冷辊轧叶片模具型面初始设计方法、基于拓扑补偿的模具型面重构设计方法和基于虚拟修模的模具型面模糊优化设计方法;为获得精确的无余量辊轧模几何设计,首先通过虚拟成形确定叶片冷辊轧后的变形误差;再利用拓扑补偿技术进行叶片型面的反变形误差补偿设计,实现辊轧模型面的几何重构;最后根据虚拟修模的试模情况与叶片设计的几何要求进行对比,采用双目标模糊优化算法实现无余量冷辊轧叶片加工模具的全局优化设计。
2.按照权利要求1所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,其特征在于,基于虚拟成形的冷辊轧叶片模具型面初始设计方法包括如下步骤:
a)确定冷辊轧成形的工艺参数;
b)根据《轧制无余量叶片用辊轧模的设计方法》设计出盆模和背模的基础型面;
c)对盆模、背模和叶片预制坯模型划分网格,进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构。
3.按照权利要求1所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,其特征在于,冷辊轧成形的工艺参数包括辊轧模宽度、轧辊转速、型槽圆心角和摩擦因子等。
4.按照权利要求1所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,其特征在于,基于拓扑补偿的模具型面重构设计方法包括以下步骤:
a)将该拓扑结构离散化并与叶片设计结构进行比较,获得第一轮扭转变形误差和弯曲变形误差;
b)根据扭转变形误差和弯曲变形误差采用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
5.按照权利要求1所述的叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法,其特征在于,基于虚拟修模的模具型面模糊优化设计方法包括以下步骤:
a)利用盆模和背模的重构型面在相同的工艺参数下再次进行冷辊轧成形过程的有限元分析,获得轧制叶片的空间拓扑结构;
b)将该拓扑结构离散化并与叶片设计结构进行比较,获得第二轮扭转变形误差和弯曲变形误差,检验以上变形误差是否满足叶片精度要求;
c)如不满足精度要求,以扭转变形误差和弯曲变形误差为目标函数,以第一轮和第二轮的扭转变形误差和弯曲变形误差为初始样本点集,以满足以上变形误差符合叶片精度要求为PID控制终止条件,采用双目标模糊优化算法DOFO计算新的样本点集;
d)根据计算获得的扭转变形误差和弯曲变形误差利用反向逼近分别对盆模和背模的基础型面进行拓扑补偿,完成补偿后模具型面的重构设计与光顺。
CN201410075536.XA 2014-03-03 2014-03-03 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法 Expired - Fee Related CN103778308B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410075536.XA CN103778308B (zh) 2014-03-03 2014-03-03 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410075536.XA CN103778308B (zh) 2014-03-03 2014-03-03 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法

Publications (2)

Publication Number Publication Date
CN103778308A true CN103778308A (zh) 2014-05-07
CN103778308B CN103778308B (zh) 2016-08-17

Family

ID=50570538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410075536.XA Expired - Fee Related CN103778308B (zh) 2014-03-03 2014-03-03 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法

Country Status (1)

Country Link
CN (1) CN103778308B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104331560A (zh) * 2014-11-05 2015-02-04 沈阳黎明航空发动机(集团)有限责任公司 一种辊轧模具型面补偿设计的方法
CN109605121A (zh) * 2018-12-15 2019-04-12 浙江大学自贡创新中心 一种减小航空叶片加工变形误差的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159970A1 (en) * 2001-12-18 2004-08-19 3M Innovative Properties Company Tooling with helical coils for structured surface articles
CN101339574A (zh) * 2008-08-12 2009-01-07 江苏大学 基于回弹补偿的混凝土搅拌叶片模具型面设计系统及方法
CN103600012A (zh) * 2013-10-19 2014-02-26 沈阳黎明航空发动机(集团)有限责任公司 一种无榫头深度端弯叶片的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040159970A1 (en) * 2001-12-18 2004-08-19 3M Innovative Properties Company Tooling with helical coils for structured surface articles
CN101339574A (zh) * 2008-08-12 2009-01-07 江苏大学 基于回弹补偿的混凝土搅拌叶片模具型面设计系统及方法
CN103600012A (zh) * 2013-10-19 2014-02-26 沈阳黎明航空发动机(集团)有限责任公司 一种无榫头深度端弯叶片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐正扬: "发动机叶片精密电解加工关键技术研究", 《中国优秀博士学位论文全文数据库(工程科技I辑)》 *
毛君等: "叶片辊轧过程动力学仿真研究", 《锻压技术》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104331560A (zh) * 2014-11-05 2015-02-04 沈阳黎明航空发动机(集团)有限责任公司 一种辊轧模具型面补偿设计的方法
CN104331560B (zh) * 2014-11-05 2017-07-28 沈阳黎明航空发动机(集团)有限责任公司 一种辊轧模具型面补偿设计的方法
CN109605121A (zh) * 2018-12-15 2019-04-12 浙江大学自贡创新中心 一种减小航空叶片加工变形误差的方法

Also Published As

Publication number Publication date
CN103778308B (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
CN102982200B (zh) 一种飞机框肋类钣金零件工艺模型设计方法
Hou et al. Geometric modelling of thin-walled blade based on compensation method of machining error and design intent
CN102231170B (zh) 一种涡轮叶片模具型腔的参数化定型方法
CN105160059A (zh) 一种基于bp和ga的叶片加工切削用量优化选择方法
CN102867097B (zh) 计及静弹性变形影响的光固化快速成型风洞模型设计方法
CN103586737A (zh) 一种叶片型面高精度数控铣加工的补偿方法
CN104200037B (zh) 一种小双曲度钣金件的成形模具设计方法
Gong et al. 5-axis flank milling free-form surfaces considering constraints
CN102222149A (zh) 基于数模重构的整体涡轮叶片加工误差补偿方法
CN107577874A (zh) 一种空心涡轮叶片精铸模具设计收缩率的确定方法
CN100545850C (zh) 轧制无余量叶片用辊轧模的设计方法
CN106971029A (zh) 一种基于局部加载成形筋板件预制坯的优化方法
CN110125214A (zh) 一种航空发动机w型封严环制造方法
CN103699727A (zh) 一种强力旋压的可旋性分析数值方法
CN103514325A (zh) 轮辐三旋轮错距强力旋压工艺的有限元数值模拟方法
CN110639988A (zh) 一种大曲率半圆弧状管口加强件滚弯成型模具和成型方法
CN104317251A (zh) 基于Obrechkoff算法的三次NURBS曲线实时插补方法
CN103778308A (zh) 叶片无余量冷辊轧加工模具的拓扑补偿模糊优化设计方法
CN105574221A (zh) 一种改进cst翼型参数化方法
CN115146405A (zh) 一种基于非刚性配准变形的薄壁零件模型重构方法
CN112395698B (zh) 一种可实现空心结构设计的空心叶片毛坯计算方法
CN103530452A (zh) 一种空心叶片近净成形展平毛坯计算方法
CN113496064A (zh) 一种数控机床直线度的补偿调整方法
Zheng et al. Research on the mold release motion for spiral bevel gear forging
CN105302995B (zh) 一种数值模拟优化叶片辊轧模具及毛坯设计的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160817

Termination date: 20170303

CF01 Termination of patent right due to non-payment of annual fee