CN103771649A - 一种1,3-丙二醇生产废水的处理方法 - Google Patents

一种1,3-丙二醇生产废水的处理方法 Download PDF

Info

Publication number
CN103771649A
CN103771649A CN201210404169.4A CN201210404169A CN103771649A CN 103771649 A CN103771649 A CN 103771649A CN 201210404169 A CN201210404169 A CN 201210404169A CN 103771649 A CN103771649 A CN 103771649A
Authority
CN
China
Prior art keywords
treatment
waste water
effect
water
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201210404169.4A
Other languages
English (en)
Other versions
CN103771649B (zh
Inventor
郭宏山
陈中涛
张蕾
李建涛
许莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Original Assignee
China Petroleum and Chemical Corp
Sinopec Fushun Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Fushun Research Institute of Petroleum and Petrochemicals filed Critical China Petroleum and Chemical Corp
Priority to CN201210404169.4A priority Critical patent/CN103771649B/zh
Publication of CN103771649A publication Critical patent/CN103771649A/zh
Application granted granted Critical
Publication of CN103771649B publication Critical patent/CN103771649B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明涉及一种1,3-丙二醇生产废水的处理方法,用于以粗甘油为原料发酵法生产1,3-丙二醇过程中的高浓度有机废水的处理。该法采用多效蒸发处理,再将蒸发冷凝冷却液与其他生产工序的排水混合进行上流式厌氧污泥床发酵、一级好氧生化、臭氧氧化、二级好氧生化组合处理,处理后出水直接达标排放。该法具有高浓度高含盐有机废水可实现达标排放、废水中的废物料得到有效回收和综合利用、高浓度有机污染物被转化成甲烷等得到资源利用等特点,符合循环经济和清洁生产的要求。

Description

一种1,3-丙二醇生产废水的处理方法
技术领域
本发明涉及一种1,3-丙二醇生产废水的处理方法,特别是用于以粗甘油为原料发酵法生产1,3-丙二醇过程中的高浓度有机废水的处理。
背景技术
1,3-丙二醇是一种重要的化工原料,主要用于聚酯、聚醚等高分子合成工业和医药中间体以及增塑剂、洗涤剂、防腐剂、防冻剂、乳化剂等合成工业。其制备方法主要分为化学合成法和生物合成法两种,由于化学合成法设备投资大、原料价位高、技术难度高、存在较大的重金属污染等缺点,越来越被生物合成法所取代。生物合成法依据原料的不同,主要分为葡萄糖路线和甘油路线。近年来随着世界范围内生物柴油工业的飞速发展,作为生物柴油工业的主要副产物粗甘油产量在逐年上升、价格在逐年降低,使得粗甘油为原料发酵法合成1,3-丙二醇工艺变得越来越具竞争优势。然而,以粗甘油为底物发酵法生产1,3-丙二醇生产过程中也存在较大的环保制约因素,特别表现在高浓度有机废水的达标处理问题。
粗甘油发酵法生产1,3-丙二醇主要包括粗甘油发酵、板框过滤、超滤、电渗析、膜蒸发、粗蒸馏和精馏等七个单元,每一生产单元均会产生不同数量的高浓度有机废水,如发酵单元的洗罐废水、板框过滤单元的滤布洗涤废水、膜过滤单元的膜清洗液、电渗析单元排放的浓缩液及蒸馏单元的馏出液等。由于该类废水中含有高浓度的糖类、菌体蛋白以及高温下因发生焦糖化反应和美拉德反应所形成的复杂产物,使得废水呈现高浓度、高色度、难生物降解特性。特别是电渗析单元排放的浓缩液所占比例较大,不仅含有高浓度的有机物(COD达10万~20万mg/L),同时还含有3.5wt%~5.0wt%的无机盐和2000mg/L左右的氨氮,兼有高浓度有机物、无机盐和氨氮废水特性,处理难度极大,是制约污水达标排放的关键,目前国内外尚无成熟的污水处理工艺可以借鉴。江南大学刘建伟等人(刘建伟等.发酵甘油废水的处理工艺[J].无锡轻工大学学报,2004, 23 (6))提出采用Fenton试剂法预处理+UASB+SBR组合工艺处理发酵甘油生产废水,通过Fenton 试剂氧化先使废水中的COD从13500mg/L降至4030mg/L、BOD5/COD值从0.202提高至0.568,再采用上流式厌氧污泥床与SBR组合工艺进行处理,使出水满足达标要求。但该方法一方面存在化学氧化剂消耗量高、处理成本大、处理出水中又带来铁离子二次污染问题;另一方面,由于粗甘油发酵法生产废水中含有较高浓度的无机盐含量,UASB、SBR等传统生化处理中的生物菌将难以适应或得到抑制,无法满足粗甘油发酵法生产1,3-丙二醇废水的达标排放处理。CN101700950A提出一种高浓度发酵废水处理方法,采用厌氧折流板反应器与膜生物反应器串联处理高浓度发酵废水,但主要解决是传统生物工艺和反应器的优化和占地问题,未涉及无机盐含量较高的发酵废水的生物菌适应和抑制问题,仍无法用于粗甘油发酵法生产废水的处理。
基于以上分析,目前对粗甘油发酵法生产1,3-丙二醇过程产生的高浓度、高含盐有机废水还没有技术可靠、经济可行的稳定达标处理技术。
发明内容
针对现有技术的不足,本发明提供一种1,3-丙二醇生产废水的处理方法,特别是用于以粗甘油为原料发酵法生产1,3-丙二醇过程中的高浓度、高含盐有机废水的处理方法。该方法具有高浓度高含盐有机废水可实现达标排放、废水中的废物料得到有效回收和综合利用、高浓度有机污染物被转化成甲烷等得到资源利用等特点,符合循环经济和清洁生产的要求。
本发明1,3-丙二醇生产废水的处理方法主要分为五个处理单元:
(1)多效蒸发处理,来自电渗析单元产生的高浓度含盐废水经换热后进入多效蒸发器,多效蒸发得到的气态物料冷凝为液相,多效蒸发后的浓缩液经干燥后掺入煤中做锅炉燃料;
(2)上流式厌氧污泥床发酵处理,步骤(1)得到的冷凝冷却后的废水与其他生产单元排出的各废水混合后,由上流式厌氧污泥床反应器的下部进入反应器,在厌氧发酵菌作用下发生甲烷化反应,甲烷气体由反应器顶部的气体出口排出装置外予以回收利用,处理出水则由反应器顶部出液口排入一级好氧生化处理单元进行后续处理;
(3)一级好氧生化处理,步骤(2)处理后的出水进行好氧生化处理;
(4)臭氧氧化处理,好氧生化处理后的废水在管道混合器中与臭氧氧化剂充分混合后送入臭氧氧化装置处理;
(5)二级好氧生化处理,臭氧氧化处理后的出水进行二级好氧生化处理,处理后出水达标排放或回用。
本发明中,步骤(1)所述的多效蒸发器可以选择二~六效,但综合考虑到节能和装置投资,最好选择五效;蒸发器可以选用膜式蒸发、滴流式蒸发或其它各种常规蒸发型式,但基于腐蚀因素考虑,最好选择降膜式;多效蒸发器的一效采用外供蒸汽作热源,二效以后依次采用前一效生成的二次蒸汽作热源,各效蒸发产生的二次蒸汽经与原料换热后得到冷凝冷却。多效蒸发是将废水及其中的可挥发性有机物如低分子醇、低分子酸、低分子醛及多环芳烃等由液态转变成气态,并经过与原料换热后重新转化成液态,再经冷却后与其他生产单元产生的各废水混合送入上流式厌氧污泥床发酵处理;蒸发浓缩液,即含有各种无机盐、有机盐、糖和蛋白质及其高温分解产物等的浓缩废水经干燥和换热后送掺入煤中做锅炉燃料。
本发明中,步骤(2)所述的上流式厌氧污泥床发酵处理单元中,废水的停留时间为20~60h,进水容积负荷为5~10kgCOD/(m3·d),操作温度为30~40℃,所获取甲烷气体体积浓度为40v%~60v%。
本发明中,步骤(3)所述的一级好氧生化处理采用常规活性污泥法或生物膜法。
本发明中,步骤(4)所述的臭氧氧化装置采用氧化塔或氧化池,臭氧氧化剂由处理装置外的臭氧发生器提供。臭氧氧化剂的投加量为10~50mg/L废水,最好为20~30mg/L废水;所投加的臭氧氧化剂气体入口浓度为50~120mg/L,最好为100~120mg/L;废水在氧化塔或氧化池中的水力停留时间为10~60min,最好为20~30min。具体过程为一级好氧生化处理后出水在管道混合器中与臭氧氧化剂充分混合后由下部进入臭氧氧化装置,在臭氧氧化剂的作用下,使废水中的高分子难生物降解性有机物发生断链、开环等高级氧化反应,转化成可生化性的低分子有机物,达到提高废水可生化性和脱色的目的,处理后的出水再由臭氧氧化塔或氧化池上部排入二级好氧生化处理单元处理。
本发明中,步骤(5)所述的二级好氧生化处理可以采用常规活性污泥法或生物膜法,但最好采用可保持较高污泥浓度的生物膜法,如MBR、MBBR、BAF等。
本发明方法对以粗甘油发酵法生产1,3-丙二醇过程中电渗析单元产生的高浓度含盐废水采用多效蒸发处理,处理后的浓缩液经干燥后掺入煤中做锅炉燃料,蒸发液经冷凝冷却后做拌料用水或掺入其他工艺单元废水中进一步处理;粗甘油发酵单元的洗罐水、板框过滤单元的滤布洗涤水、超滤膜单元的膜清洗水以及蒸馏单元的馏出液以及来自电渗析单元经冷凝冷却后的蒸发液混合进行上流式厌氧污泥床发酵处理,处理后的出水送入一级好氧生化处理单元处理;一级好氧生化处理后的出水进行臭氧氧化脱色和改善可生化性处理;臭氧氧化处理后的出水进行二级好氧生化处理。经上述过程处理的出水可达标排放。
本发明提出的方法具有高浓度高含盐有机废水可实现达标排放、废水中的废物料得到了有效回收和综合利用、高浓度有机污染物被转化成甲烷等得到资源利用等特点,符合循环经济和清洁生产的要求。
附图说明
图1是本发明一种具体1,3-丙二醇生产废水处理工艺流程示意图。
1-多效蒸发器,2-上流式厌氧污泥床,3-一级好氧生化处理单元,4-臭氧氧化装置,5-二级好氧生化处理单元。
具体实施方式
以下结合附图对本发明方法的具体工艺过程进行说明。本发明中,wt%为质量分数,v%为体积分数。
来自1,3-丙二醇生产过程中电渗析单元排出的高浓度含盐有机废水通过换热器与来自多效蒸发器1的末效蒸汽换热后进入多效蒸发器1中进行连续蒸发处理。在多效蒸发器1中,预热后的高浓度含盐有机废水首先进入一效蒸发单元,以一次蒸汽(外供蒸汽)为间接加热介质,将大部分废水及其废水中所含的低分子醇、醛、酸、多环芳烃等挥发性有机物由液态转变成汽态,作为二效蒸发单元的二次间接加热蒸汽,在此过程中,一效蒸发汽体被转换成冷凝水;一效蒸发后的浓缩液直接进入二效蒸发单元继续进行蒸发处理,蒸出的蒸汽作为三效蒸发单元的二次加热蒸汽,在此过程中,二效蒸发汽体被转换成冷凝水;以此类推处理;末效蒸发单元蒸发处理后的蒸汽经前面所述的换热方法换热后被变成冷凝水,而含有各种无机盐、有机盐、糖和蛋白质及其高温分解产物等的浓缩液经干燥和换热后送掺入煤中做锅炉燃料利用。各效及末效蒸发处理后的蒸发冷凝水经冷却降温至40℃以下后,与生产发酵单元的洗罐废水、板框过滤单元的滤布洗涤废水、膜过滤单元的膜清洗液、蒸馏单元的馏出液等其他低含盐废水混合,由上流式厌氧污泥床(UASB)反应器2的下部进入反应器中,在厌氧甲烷发酵菌的作用下,将废水中的高浓度有机物转化成有机酸和甲烷,并由UASB产气口获取甲烷。UASB处理后的出水送至一级好氧生化处理单元3进行生化降解反应,将废水中的可生物降解物转化成二氧化碳和水,出水在管道混合器中与来自臭氧发生器的臭氧氧化剂充分混合后送入臭氧氧化装置4处理。在臭氧氧化装置4中,在臭氧氧化剂的作用下,废水中的高分子难生物降解性有机物发生断链、开环等高级氧化反应,被转化成低分子有机物,废水的可生化性得到增强,并实现废水脱色,出水再排入二级好氧生化处理单元5处理。在二级好氧生化处理单元5中,经臭氧氧化装置4处理后的低分子有机物及氨氮等进一步被异养菌和硝化菌生物降解,实现废水脱C脱N,满足达标排放要求排放。
本发明多效蒸发器1可以选择二~六效,但综合考虑到蒸汽消耗和装置投资影响,最好选择五效蒸发单元,控制吨处理废水一次蒸汽消耗量在0.28吨以下;蒸发器可以选用膜式蒸发、滴流式蒸发或其它各种常规蒸发型式,但最好选择降膜式蒸发;基于能量最优利用考虑,每效蒸发单元均要设置蒸发预热器和换热器;在末效蒸发浓缩液冷却中要设置盐析器,将浓缩液中处于饱和状态的无机盐和有机盐结晶出来。经多效蒸发处理后的出水盐含量很低,一般为100mg/L以下。多效蒸发装置可连续操作,外供蒸汽采用0.4~0.6MPa饱和蒸汽,消耗量10~20g/h,采用循环水冷却结晶。
本发明所采用的上流式厌氧污泥床反应器2为一种通常的厌氧反应器结构,主要由分配板、颗粒污泥处理区、膨胀污泥再生区、气固液分离器等四部分组成。来自多效蒸发器1的处理出水经冷却降温至40℃以下后,与生产发酵单元的洗罐废水、板框过滤单元的滤布洗涤废水、膜过滤单元的膜清洗液、蒸馏单元的馏出液等其他低含盐废水混合,由上流式厌氧污泥床(UASB)反应器2的下部进入反应器,在厌氧污泥床上通过厌氧发酵菌完成反应后,甲烷气体由反应器顶部的气体出口排出装置外予以回收利用;处理出水则由反应器顶部出液口排入一级好氧生化处理单元3进行后续处理。该单元所获取甲烷气体的体积浓度为40v%~60v%;废水在厌氧反应器内的停留时间为20~50h,进水容积负荷为5~10kgCOD/(m3·d),操作温度为30~40℃。
本发明所采用的一级好氧生化处理单元3可以为传统活性污泥法、间歇式活性污泥法(SBR)、接触氧化法、生物膜法以及任何改进型的好氧生物方法中的一种或多种组合。
本发明所采用的臭氧氧化装置4主要由臭氧氧化塔或氧化池、尾气吸收设施等组成,废水在进入臭氧氧化装置4前的管道混合器中先与臭氧氧化剂均匀混合,臭氧氧化剂的投加量为10~50mg/L废水,最好为20~30mg/L废水;所投加的臭氧氧化剂气体入口浓度为50~120mg/L,最好为100~120mg/L;废水在反应塔或反应池中的水力停留时间为10~60min,最好为20~30min。
本发明所采用的二级好氧生化处理单元5可以为常规活性污泥法或生物膜法,但最好采用可保持较高污泥浓度的生物膜法,如MBR、MBBR、BAF等。
采用本发明方法对以粗甘油为原料发酵法生产1,3-丙二醇过程中的高浓度、高含盐有机废水分别进行多效蒸发、上流式厌氧污泥床发酵、一级好氧生化、臭氧氧化、二级好氧生化组合处理,可使高浓度含盐有机废水中主要的污染物COD由10万mg/L左右降低到100mg/L以下、氨氮由500mg/L左右降低到15mg/L以下,全部满足污水达标排放要求。同时,废水中的大部分有机盐、糖和蛋白质及其副产物等高热值废物被掺入煤中做锅炉燃料得到综合利用;废水中其他的高浓度有机组分则多数被转化成沼气回收利用,实现了节能减排和废物利用的目的。
下面通过实施例进一步说明本发明方法和效果。
实施例1
采用本发明的处理方法对1,3-丙二醇生产废水进行处理。该废水是在以生物柴油工业的主要副产物粗甘油为原料,采用粗甘油底物发酵、板框过滤、超滤、电渗析、膜蒸发、粗蒸馏和精馏等七个工序生产最终产品1,3-丙二醇过程中产生。产生的废水主要包括发酵工序的洗罐水、板框过滤工序的滤布洗涤水、膜过滤工序的膜清洗液、电渗析分离工序的浓缩液、蒸馏工序的馏出液等。其中电渗析分离工序排放的浓缩液是一种高浓度、高含盐有机废水,排放量约占总废水排放量的25wt%,主要污染物COD 104000mg/L(铬法,下同)、BOD5 64600mg/L、无机盐3.54wt%、氨氮2040mg/L;其他混合废水约占总废水排放量的75wt%,主要污染物COD 12000 mg/L、BOD5 6000mg/L、无机盐1.2wt%、氨氮40mg/L。
采用本发明的方法,对上述废水进行组合处理试验。首先将电渗析生产工序排出的高浓度含盐废水先进行多效蒸发处理,再将蒸发液经冷凝冷却后与其他生产工序的排水混合进行上流式厌氧污泥床发酵、一级好氧生化、臭氧氧化、二级好氧生化处理。废水处理规模为200mL/h(多效蒸发为50mL/h),各处理单元的主要实验装置构成、运行条件及处理效果见表1。通过本发明的方法处理后,1,3-丙二醇生产废水中的COD可降低到100mg/L以下、氨氮可降低到15mg/L以下,可以满足污水达标排放的要求。同时,多效蒸发后的浓缩液得到了有效回收利用,高浓度有机污染物被转化成甲烷等得到资源利用。
表1 实施例1的主要处理单元构成及处理效果
处理单元名称 处理装置规模及主要组成 主要运行条件与控制参数 处理出水或效果
1 多效蒸发 降膜式五效蒸发试验装置,玻璃材质。装置废水处理规模为50mL/h,主要包括蒸发柱、预热器、冷凝器和搪瓷结晶槽。 连续操作,外供蒸汽采用0.6MPa饱和蒸汽,消耗量11g/h;各效蒸发水量依次为12、10、8.5、7.0、6.5mL/h;浓缩液6.0mL/h,采用循环水冷却结晶。 出水COD35000mg/L、氨氮180mg/L、无机盐40 mg/L。
2 上流式厌氧污泥床发酵 采用UASB,材质有机玻璃,反应器容积11L。主要包括下部布水板、颗粒污泥床层、污泥缓冲层、气固液三相分离器、排气管、排水管、筛网等构成。 底部连续进水;进水流速200mL/h;废水停留时间40h;进水容积负荷7.8kgCOD/m3.d;操作温度39℃;收集的甲烷气体平均体积浓度55v%。 出水COD 3000mg/L、氨氮75mg/L、无机盐0.9wt%。
3 一级好氧生化 采用传统SBR,材质有机玻璃,反应器容积20L。主要包括下部微孔曝气器充氧曝气、机械搅拌机,以电磁阀、可编程控制器(PLC)程序控制系统控制废水和空气的进入。 间断进出水;日运行两周期;周期运行时间12h,进水4h、曝气10h、沉降0.5h、排水1h、闲置0.5h;周期处理水量2.4L、进水流速0.6L/h;鼓风量100mL/min。 出水COD 500mg/L、氨氮60mg/L、无机盐0.9wt%。
4 臭氧氧化 有机玻璃柱,反应器容积200mL,直径25mm、高450mm;以氧气为原料的臭氧发生器提供臭氧。 连续运行;臭氧投加量30mg/L;臭氧入口气体浓度100mg/L;停留时间20min。 出水COD 400mg/L、氨氮55mg/L、无机盐0.9wt%、色度由浅黄变成无色。
5 二级好氧生化 采用MBBR,材质有机玻璃,反应器容积2L。主要包括下部微孔曝气器充氧曝气、内填充500mL的陶粒。 连续进出水;进水流速0.2L/h;鼓风量30mL/min。 出水COD 80mg/L、氨氮8mg/L、无色度。
由表1可见,通过本发明的方法处理后,1,3-丙二醇生产废水中的COD可降低到100mg/L以下、氨氮可降低到15mg/L以下,可以满足污水达标排放的要求。
实施例2
采用实施例1的处理装置,处理与实施例1相同的污水,改变各处理单元的运行条件所获得的废水处理效果见表2。
表2 实施例2的主要处理单元构成及处理效果
处理单元名称 处理装置规模及主要组成 主要运行条件与控制参数 处理出水或效果
1 多效蒸发 降膜式五效蒸发试验装置,玻璃材质。装置废水处理规模为50mL/h,主要包括蒸发柱、预热器、冷凝器和搪瓷结晶槽 连续操作,外供蒸汽采用0.4MPa饱和蒸汽,消耗量18g/h;各效蒸发水量依次为12.2、10.3、8.7、7.6、6.2mL/h;浓缩液5.0mL/h,采用循环水冷却结晶。 出水COD36000mg/L、氨氮175mg/L、无机盐35 mg/L。
2 上流式厌氧污泥床发酵 采用UASB,材质有机玻璃,反应器容积11L。主要包括下部布水板、颗粒污泥床层、污泥缓冲层、气固液三相分离器、排气管、排水管、筛网等构成。 底部连续进水;进水流速240mL/h;废水停留时间55h;进水容积负荷9.5kgCOD/m3.d;操作温度39℃;收集的甲烷气体平均体积浓度55v%。 出水COD 3600mg/L、氨氮80mg/L、无机盐0.9wt%。
3 一级好氧生化 采用传统SBR,材质有机玻璃,反应器容积20L。主要包括下部微孔曝气器充氧曝气、机械搅拌机,以电磁阀、可编程控制器(PLC)程序控制系统控制废水和空气的进入。 间断进出水;日运行两周期;周期运行时间12h,进水4h、曝气10h、沉降0.5h、排水1h、闲置0.5h;周期处理水量2.4L、进水流速0.6L/h;鼓风量100mL/min。 出水COD 520mg/L、氨氮65mg/L、无机盐0.9wt%。
4 臭氧氧化 有机玻璃柱,反应器容积200mL,直径25mm、高450mm;以氧气为原料的臭氧发生器提供臭氧。 连续运行;臭氧投加量30mg/L;臭氧入口气体浓度120mg/L;停留时间30 min。 出水COD 380mg/L、氨氮53mg/L、无机盐0.9wt%、色度由浅黄变成无色。
5 二级好氧生化 采用MBBR,材质有机玻璃,反应器容积2L。主要包括下部微孔曝气器充氧曝气、内填充500mL的陶粒。 连续进出水;进水流速0.2L/h;鼓风量30mL/min。 出水COD 76mg/L、氨氮8mg/L、无色度。
由表2可见,通过本发明的方法处理后,1,3-丙二醇生产废水中的COD可降低到100mg/L以下、氨氮可降低到15mg/L以下,可以满足污水达标排放的要求。同时,多效蒸发后的浓缩液得到了有效回收利用,高浓度有机污染物被转化成甲烷等得到资源利用。

Claims (9)

1.一种1,3-丙二醇生产废水的处理方法,其特征在于包括如下过程:
(1)多效蒸发处理,来自电渗析单元产生的高浓度含盐废水经换热后进入多效蒸发器,多效蒸发得到的气态物料冷凝为液相,多效蒸发后的浓缩液经干燥后掺入煤中做锅炉燃料;
(2)上流式厌氧污泥床发酵处理,步骤(1)得到的冷凝冷却后的废水与其他生产单元排出的各废水混合后,由上流式厌氧污泥床反应器的下部进入反应器,在厌氧发酵菌作用下发生甲烷化反应,甲烷气体由反应器顶部的气体出口排出装置外予以回收利用,处理出水则由反应器顶部出液口排入一级好氧生化处理单元进行后续处理;
(3)一级好氧生化处理,步骤(2)处理后的出水进行好氧生化处理;
(4)臭氧氧化处理,好氧生化处理后的废水在管道混合器中与臭氧氧化剂充分混合后送入臭氧氧化装置处理;
(5)二级好氧生化处理,臭氧氧化处理后的出水进行二级好氧生化处理,处理后出水达标排放或回用。
2.按照权利要求1所述的方法,其特征在于:步骤(1)所述的多效蒸发器选择二~六效,选用膜式蒸发或滴流式蒸发。
3.按照权利要求1或2所述的方法,其特征在于:所述的多效蒸发器的一效采用外供蒸汽作热源,二效以后依次采用前一效生成的二次蒸汽作热源,各效蒸发产生的二次蒸汽经与原料换热后得到冷凝冷却。
4.按照权利要求1所述的方法,其特征在于:步骤(2)所述上流式厌氧污泥床发酵处理中,废水的停留时间为20~60h,进水容积负荷为5~10kgCOD/(m3·d),操作温度为30~40℃,所获取甲烷气体体积浓度为40v%~60v%。
5.按照权利要求1所述的方法,其特征在于: 步骤(3)所述的一级好氧生化处理采用常规活性污泥法或生物膜法。
6.按照权利要求1所述的方法,其特征在于:步骤(4)所述的臭氧氧化装置采用氧化塔或氧化池,臭氧氧化剂由处理装置外的臭氧发生器提供。
7.按照权利要求1或6所述的方法,其特征在于:臭氧氧化剂的投加量为10~50mg/L废水;所投加的臭氧氧化剂气体入口浓度为50~120mg/L;废水在氧化塔或氧化池中的水力停留时间为10~60min。
8.按照权利要求7所述的方法,其特征在于:臭氧氧化剂的投加量为20~30mg/L废水;所投加的臭氧氧化剂气体入口浓度为100~120mg/L;废水在氧化塔或氧化池中的水力停留时间为20~30min。
9.按照权利要求1所述的方法,其特征在于:步骤(5)所述的二级好氧生化处理采用常规活性污泥法或生物膜法。
CN201210404169.4A 2012-10-23 2012-10-23 一种1,3-丙二醇生产废水的处理方法 Active CN103771649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210404169.4A CN103771649B (zh) 2012-10-23 2012-10-23 一种1,3-丙二醇生产废水的处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210404169.4A CN103771649B (zh) 2012-10-23 2012-10-23 一种1,3-丙二醇生产废水的处理方法

Publications (2)

Publication Number Publication Date
CN103771649A true CN103771649A (zh) 2014-05-07
CN103771649B CN103771649B (zh) 2015-07-22

Family

ID=50564487

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210404169.4A Active CN103771649B (zh) 2012-10-23 2012-10-23 一种1,3-丙二醇生产废水的处理方法

Country Status (1)

Country Link
CN (1) CN103771649B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314794A (zh) * 2014-09-28 2016-02-10 苏州市白云环保工程设备有限公司 一种羧甲基纤维素钠生产废水处理工艺
WO2016074144A1 (zh) * 2014-11-11 2016-05-19 崔楠 一种高浓度含盐废水处理系统
CN106315718A (zh) * 2016-09-27 2017-01-11 广西罗城科潮基业科技发展有限公司 一种节能糖蜜酒精废液处理系统、方法及其蒸发浓缩设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092895A (zh) * 2010-12-16 2011-06-15 北京中兵北方环境科技发展有限责任公司 利用两级生化和一级物化结合处理工业废水的方法
CN102910777A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种纤维乙醇废水的处理方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102092895A (zh) * 2010-12-16 2011-06-15 北京中兵北方环境科技发展有限责任公司 利用两级生化和一级物化结合处理工业废水的方法
CN102910777A (zh) * 2011-08-01 2013-02-06 中国石油化工股份有限公司 一种纤维乙醇废水的处理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105314794A (zh) * 2014-09-28 2016-02-10 苏州市白云环保工程设备有限公司 一种羧甲基纤维素钠生产废水处理工艺
WO2016074144A1 (zh) * 2014-11-11 2016-05-19 崔楠 一种高浓度含盐废水处理系统
CN106315718A (zh) * 2016-09-27 2017-01-11 广西罗城科潮基业科技发展有限公司 一种节能糖蜜酒精废液处理系统、方法及其蒸发浓缩设备
CN106315718B (zh) * 2016-09-27 2019-10-25 广西罗城科潮基业科技发展有限公司 一种节能糖蜜酒精废液处理系统、方法及其蒸发浓缩设备

Also Published As

Publication number Publication date
CN103771649B (zh) 2015-07-22

Similar Documents

Publication Publication Date Title
CN102910777B (zh) 一种纤维乙醇废水的处理方法
CN101585620B (zh) 一种高含盐量有机工业废水的综合处理方法
CN104649510B (zh) 一种环己酮法生产己内酰胺工艺污水的处理方法
CN101549938B (zh) 一种有机硅高浓度废水的处理方法
CN109354347B (zh) 一种硫酸新霉素生产废水的处理方法
CN103482715B (zh) 一种高浓度有机废水蒸发浓缩处理方法
WO2014094484A1 (zh) 一种垃圾沥滤液处理方法及系统
CN109455885A (zh) 一种氮资源热提取回收方法
CN112093981B (zh) 一种同步高效污染物去除及全面资源化回收的污水处理装置和工艺
CN101376550B (zh) 一种甲醇脱水制取二甲醚工艺废水的处理方法
CN108975616A (zh) 处理生物质热解水的系统及方法
CN103771649B (zh) 一种1,3-丙二醇生产废水的处理方法
CN214360828U (zh) 一种同步高效污染物去除及全面资源化回收的污水处理装置
CN202089863U (zh) 一种垃圾沥滤液处理系统
CN103663875A (zh) 提高丙烯腈废水脱氮率的方法
CN103771613A (zh) 一种纤维乙醇生产废水的预处理方法
CN110436707B (zh) 一种没食子酸生产废水生化前处理方法
CN208857099U (zh) 处理生物质热解水的系统
CN109485151B (zh) 合成气制乙二醇生产废水处理的装置及其处理工艺
CN207002529U (zh) 吡唑酮生产废水处理装置
CN102351262B (zh) 一种煤化工污水的处理方法
CN205295072U (zh) 基于厌氧氨氧化的垃圾渗滤液处理装置
CN115259518A (zh) 一种渗滤液浓缩液处理系统及方法
CN107188378A (zh) 吡唑酮生产废水处理装置及其处理工艺
CN209974522U (zh) 一种氮资源热提取回收系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant