CN103761367B - 一种基于位移控制目标的弦支梁结构内力的解析计算方法 - Google Patents

一种基于位移控制目标的弦支梁结构内力的解析计算方法 Download PDF

Info

Publication number
CN103761367B
CN103761367B CN201310755621.6A CN201310755621A CN103761367B CN 103761367 B CN103761367 B CN 103761367B CN 201310755621 A CN201310755621 A CN 201310755621A CN 103761367 B CN103761367 B CN 103761367B
Authority
CN
China
Prior art keywords
string
section
strutbeam
upper strata
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310755621.6A
Other languages
English (en)
Other versions
CN103761367A (zh
Inventor
闫翔宇
于敬海
陈志华
贾莉
王亨
何彩云
韩娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University Research Institute of Architectrual Design and Urban Planning
Original Assignee
Tianjin University Research Institute of Architectrual Design and Urban Planning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University Research Institute of Architectrual Design and Urban Planning filed Critical Tianjin University Research Institute of Architectrual Design and Urban Planning
Priority to CN201310755621.6A priority Critical patent/CN103761367B/zh
Publication of CN103761367A publication Critical patent/CN103761367A/zh
Application granted granted Critical
Publication of CN103761367B publication Critical patent/CN103761367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

本发明公开了一种基于位移控制目标的弦支梁结构内力的解析计算方法,基于结构静力平衡和截面内力平衡的方法构造受力平衡方程组,所述受力平衡方程组是关于在弦支梁横坐标为x的任意位置处上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb以及下层拉索的截面轴力T和弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx平衡关系的方程组;基于结构跨中挠度等于位移控制目标构建的方程,求解得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于弦支梁横坐标x的表达式。采用本发明能够快速并较为准确地估算弦支梁结构上层梁、下层拉索的构件内力,为截面承载力复核验算提供数据。

Description

一种基于位移控制目标的弦支梁结构内力的解析计算方法
技术领域
本发明属于建筑结构计算分析领域,涉及一种结构内力计算方法,更具体地说是一种基于位移控制目标的弦支梁结构内力的解析计算方法。
背景技术
弦支梁作为一种建筑形态适应强、结构受力合理的结构体系,目前已广泛用于各种体育场馆、会展中心和多功能厅等工程,其分析设计理论研究成果也较丰富,但这些成果多通过模型试验和精细化的有限元分析获得,而关于弦支梁结构数值计算方法则较少,这就给弦支梁结构的普及应用带来了两方面问题:一是在方案阶段,缺少一种能够快速估算弦支梁截面尺寸的方法,无法快速高效地给建筑方案提供有效的数据支撑;二是在详细分析设计阶段,缺少一种能够对有限元分析结果进行判断的概念性计算方法。
目前对于弦支梁的近似计算方法的研究主要有:陈汉翔(平面张弦梁结构的计算分析,广东土木与建筑,2002,(10):9-12)在假定拱梁与索之间的联系撑杆是连续分布且是刚性的,提出一种简化模型,推导了预应力阶段和使用荷载阶段的微分方程;苏旭霖等(基于瑞利-里兹法的预应力张弦梁变形与内力分析,空间结构,2009,15(1):49-54)在上述假定且进一步假定上弦的曲率半径大于上弦截面高度的10倍,采用瑞利-里兹法分别推导了结构在荷载态与张拉状态下的变形与内力的计算公式;刘开国(双向张弦梁结构的分析,建筑钢结构进展,2009,11(5):37-40)采用连续化的数学模型,给出了下弦索网所在曲面的偏微分方程,并用变分法进行预应力分析,对双向张弦梁结构的静力与动力特性采用能量变分原理进行了分析。
上述三种弦支梁简化计算方法都需要求解偏微分方程,且都在计算过程中首先需要做一些位移函数等相关假定,需要较为深厚扎实的数学基础知识,不易为普通工程技术人员所掌握,且不能清晰地反映基本的结构受力状态。
发明内容
本发明为解决公知技术中存在的技术问题而提供一种基于位移控制目标的弦支梁结构内力的解析计算方法,该方法便于掌握,简便快捷,并且采用该方法获得的数值结果能够较好地反映结构的基本受力状态。
本发明为解决公知技术中存在的技术问题所采取的技术方案是:一种基于位移控制目标的弦支梁结构内力的解析计算方法,所述弦支梁包括上层梁、下层拉索和撑杆,该计算方法包括以下步骤:
S1.定义平面直角坐标系,以弦支梁的左端为原点,以弦支梁跨度方向为横轴,横坐标x的取值范围为[0,L],L为弦支梁的跨度;求解在弦支梁横坐标为x的任意位置处因外荷载引起的弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx,Mx和Vx均是关于x的表达式;
S2.基于结构静力平衡和截面内力平衡的方法构造受力平衡方程组,所述受力平衡方程组是关于在弦支梁横坐标为x的任意位置处上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb以及下层拉索的截面轴力T和弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx平衡关系的方程组;
S3.求解步骤S2中的受力平衡方程组得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于下层拉索的截面轴力水平分量To和弦支梁横坐标x的表达式;
S4.计算上层梁的挠曲线w(x),并结合上层梁两端位移为零的边界条件,计算得到w(x)关于弦支梁横坐标x和下层拉索的截面轴力水平分量To的表达式;
S5.根据结构跨中挠度等于位移控制目标构建并求解方程得到弦支梁下层拉索的截面轴力水平分量To
S6.将下层拉索的截面轴力水平分量To代入步骤S3中的表达式,即可得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于弦支梁横坐标x的表达式。
所述步骤S2中的方程组为:
其中,Mx:弦支梁的整体截面弯矩,Vx:弦支梁的整体截面剪力,Mb:上层梁的截面弯矩,Vb:上层梁的截面剪力,Nb:上层梁的截面轴力,T:下层拉索的截面轴力,To:弦支梁下层拉索的截面轴力水平分量,hx=y1-y2,在弦支梁横坐标为x的任意位置处弦支梁整体截面的高度,y1是上层梁的纵坐标,y2是下层拉索的纵坐标,α:在弦支梁横坐标为x的任意位置处上层梁截面法线方向与横坐标轴的夹角,β:在弦支梁横坐标为x的任意位置处下层拉索截面法线方向与横坐标轴的夹角。
所述上层梁的轴线方程y1=F1(x)是凸曲线,所述下层索的轴线方程y2=F2(x)是凹曲线。
所述上层梁的轴线方程y1=F1(x)是圆弧形曲线或抛物线形曲线,所述下层索的轴线方程y2=F2(x)是圆弧形曲线或抛物线形曲线。
本发明具有的优点和积极效果是:计算过程中主要基于较为容易理解的结构及截面的内力平衡和结构设计中常用的位移控制指标,避免了现有方法中先假定基函数而引起的级数展开、积分运算以及求解微分方程等复杂的数值计算过程,同时克服了采用专用软件进行非线性分析的复杂性,具有应用范围广和计算简便的优点,便于为一般工程设计人员掌握,可以在结构方案设计阶段快速确定结构尺寸大小为建筑方案设计提供依据,同时也可对后期详细设计阶段中软件分析结果进行校核。
附图说明
图1为本发明的流程图;
图2为本发明采用的弦支梁结构受力分析模型示意图;
图3为本发明中任意位置截面内力平衡示意图。
具体实施方式
为能进一步了解本发明的发明内容、特点及功效,兹例举以下实施例,并配合附图详细说明如下:
请参阅图1~图3,一种基于位移控制目标的弦支梁结构内力的解析计算方法,所述弦支梁包括上层梁1、下层拉索3和撑杆2,该计算方法包括以下步骤:
S1.定义平面直角坐标系,以弦支梁的左端为原点O,以弦支梁跨度方向为横轴,横坐标x的取值范围为[0,L],L为弦支梁的跨度;求解在弦支梁横坐标为x的任意位置A-A处因外荷载引起的弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx,Mx和Vx均是关于x的表达式。
在本实施例中,Mx和Vx的表达式为:
其中,q:弦支梁所受的外荷载。
S2.基于结构静力平衡和截面内力平衡的方法构造受力平衡方程组,所述受力平衡方程组是在弦支梁横坐标为x的任意位置A-A处上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb以及下层拉索的截面轴力T和弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx平衡关系的方程组。
在本实施例中,上述受力平衡方程组为:
其中,Mx:弦支梁的整体截面弯矩,Vx:弦支梁的整体截面剪力,Mb:上层梁的截面弯矩,Vb:上层梁的截面剪力,Nb:上层梁的截面轴力,T:下层拉索的截面轴力,To:弦支梁下层拉索的截面轴力水平分量,hx=y1-y2,在弦支梁横坐标为x的任意位置处任意位置A-A处弦支梁整体截面的高度,y1是上层梁的纵坐标,y2是下层拉索的纵坐标,α:在弦支梁横坐标为x的任意位置处上层梁截面法线方向与横坐标轴的夹角,β:在弦支梁横坐标为x的任意位置处下层拉索截面法线方向与横坐标轴的夹角。
S3.求解步骤S2中的受力平衡方程组得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于下层拉索的截面轴力水平分量To和弦支梁横坐标x的表达式;
在本实施例中,
在上面的表达式中,β是弦支梁横坐标x的函数,因此,下层拉索的截面轴力T是关于下层拉索的截面轴力水平分量To和弦支梁横坐标x的函数。
S4.计算上层梁的挠曲线w(x),并结合上层梁两端位移为零的边界条件,计算得到w(x)关于弦支梁横坐标x和下层拉索的截面轴力水平分量To的表达式;
在本实施例中,
边界条件:ω(0)=ω(L)=0。
S5.根据结构跨中挠度等于位移控制目标构建并求解方程:
得到弦支梁下层拉索的截面轴力水平分量To,式中,δ*L是弦支梁结构跨中竖向位移控制目标。
S6.将下层拉索的截面轴力水平分量To代入步骤S3中的表达式,即可得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于弦支梁横坐标x的表达式。
采用上述表达式可根据公知的相关规范进行上层梁构件和下层拉索构件的承载力验算。
在本实施例中,所述上层梁的轴线方程y1=F1(x)是凸曲线,如圆弧形曲线或抛物线形曲线,所述下层索的轴线方程y2=F2(x)是凹曲线,如圆弧形曲线或抛物线形曲线。
下面结合具体实例对本发明的基于位移控制目标的弦支梁结构内力的解析计算方法进行详细说明。该弦支梁跨度Lm,承担均布荷载q,其中上层梁材料弹性模型Es,截面面积As,截面贯性矩Is,下层拉索材料弹性模型Eca,截面面积Aca,结构位移控制指标δ*L,上层梁矢高f1,下层拉索垂度f2,上弦梁和下层索的轴线方程均为抛物线,则其轴线方程分别为:
根据图1所给的计算步骤,图2所示的计算模型,计算步骤如下:
步骤S1,求解任意位置处弦支梁整体截面内力为:
步骤S2,构造任意位置处A-A处上层梁内力(包括弯矩Mb、剪力Vb和轴力Nb)及下层拉索内力(拉力T)与整体截面内力平衡关系的方程式为:
步骤S3,求解上述方程式得到上层梁内力弯矩Mb、轴力Nb和拉力T为:
步骤S4,计算上层梁的挠曲线w(x)为:
步骤S5,根据结构跨中挠度等于位移控制目标:
求解拉索内力水平分量To为:
步骤S6,把To代人到步骤S3的表达式可得上层梁与下层拉索的内力解析表达式为:
本发明的基于位移控制目标的弦支梁结构内力解析计算方法是依据整体结构静力平衡和截面内力平衡来进行计算的,可以快速并较为准确估算弦支梁结构上层梁、下层拉索的构件内力,为截面承载力复核验算提供数据。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以做出很多形式,这些均属于本发明的保护范围之内。

Claims (4)

1.一种基于位移控制目标的弦支梁结构内力的解析计算方法,所述弦支梁包括上层梁、下层拉索和撑杆,其特征在于,该计算方法包括以下步骤:
S1.定义平面直角坐标系,以弦支梁的左端为原点,以弦支梁跨度方向为横轴,横坐标x的取值范围为[0,L],L为弦支梁的跨度;求解在弦支梁横坐标为x的任意位置处因外荷载引起的弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx,Mx和Vx均是关于x的表达式;
S2.基于结构静力平衡和截面内力平衡的方法构造受力平衡方程组,所述受力平衡方程组是关于在弦支梁横坐标为x的任意位置处上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb以及下层拉索的截面轴力T和弦支梁的整体截面弯矩Mx以及弦支梁的整体截面剪力Vx平衡关系的方程组;
S3.求解步骤S2中的受力平衡方程组得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于下层拉索的截面轴力水平分量T0和弦支梁横坐标x的表达式;
S4.计算上层梁的挠曲线w(x),并结合上层梁两端位移为零的边界条件,计算得到w(x)关于弦支梁横坐标x和下层拉索的截面轴力水平分量T0的表达式;
S5.根据结构跨中挠度等于位移控制目标构建并求解方程得到弦支梁下层拉索的截面轴力水平分量T0
S6.将下层拉索的截面轴力水平分量T0代入步骤S3中的表达式,即可得到上层梁的截面弯矩Mb、上层梁的截面剪力Vb、上层梁的截面轴力Nb和下层拉索的截面轴力T关于弦支梁横坐标x的表达式。
2.根据权利要求1所述的基于位移控制目标的弦支梁结构内力的解析计算方法,其特征在于,所述步骤S2中的方程组为:
M b + T · h x · cos ( β ) = M x T · sin ( β ) + N b · sin ( α ) + V b · cos ( α ) = V x T · cos ( β ) - N b · cos ( α ) + V b · sin ( α ) = 0 T · cos ( β ) = T 0 - - - ( 1 )
其中,Mx:弦支梁的整体截面弯矩,Vx:弦支梁的整体截面剪力,Mb:上层梁的截面弯矩,Vb:上层梁的截面剪力,Nb:上层梁的截面轴力,T:下层拉索的截面轴力,T0:弦支梁下层拉索的截面轴力水平分量,hx=y1-y2,是在弦支梁横坐标为x的任意位置处弦支梁整体截面的高度,y1是上层梁的纵坐标,y2是下层拉索的纵坐标,α:在弦支梁横坐标为x的任意位置处上层梁截面法线方向与横坐标轴的夹角,β:在弦支梁横坐标为x的任意位置处下层拉索截面法线方向与横坐标轴的夹角。
3.根据权利要求1所述的基于位移控制目标的弦支梁结构内力的解析计算方法,其特征在于,上层梁的轴线方程y1=F1(x)是凸曲线,下层索的轴线方程y2=F2(x)是凹曲线。
4.根据权利要求3所述的基于位移控制目标的弦支梁结构内力的解析计算方法,其特征在于,所述上层梁的轴线方程y1=F1(x)是圆弧形曲线或抛物线形曲线,所述下层索的轴线方程y2=F2(x)是圆弧形曲线或抛物线形曲线。
CN201310755621.6A 2013-12-27 2013-12-27 一种基于位移控制目标的弦支梁结构内力的解析计算方法 Active CN103761367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310755621.6A CN103761367B (zh) 2013-12-27 2013-12-27 一种基于位移控制目标的弦支梁结构内力的解析计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310755621.6A CN103761367B (zh) 2013-12-27 2013-12-27 一种基于位移控制目标的弦支梁结构内力的解析计算方法

Publications (2)

Publication Number Publication Date
CN103761367A CN103761367A (zh) 2014-04-30
CN103761367B true CN103761367B (zh) 2017-02-15

Family

ID=50528603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310755621.6A Active CN103761367B (zh) 2013-12-27 2013-12-27 一种基于位移控制目标的弦支梁结构内力的解析计算方法

Country Status (1)

Country Link
CN (1) CN103761367B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106503385B (zh) * 2016-11-07 2019-06-21 中国石油大学(华东) 一种点阵夹层材料等效弹性模量的计算方法
CN108052782B (zh) * 2018-01-25 2021-04-09 上海交通大学 以最大位移为控制目标的伺服钢支撑系统轴力确定方法
CN110487496B (zh) * 2019-07-08 2021-03-23 扬州市市政建设处 基于长标距应变的改进弯矩面积法识别桥梁挠度方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582095A (zh) * 2009-06-19 2009-11-18 东南大学 确定索杆系静力平衡状态的非线性动力有限元法
CN103397740A (zh) * 2013-08-05 2013-11-20 东南大学 一种空间张弦梁结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582095A (zh) * 2009-06-19 2009-11-18 东南大学 确定索杆系静力平衡状态的非线性动力有限元法
CN103397740A (zh) * 2013-08-05 2013-11-20 东南大学 一种空间张弦梁结构

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
基于瑞利-里兹法的预应力张弦梁变形与内力分析;苏旭霖 等;《空间结构》;20090331;第15卷(第1期);全文 *
大跨度张弦梁结构计算分析及设计;于泳;《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅱ辑》;20050315(第1期);全文 *
张弦梁结构的预应力和矢高优化;艾威;《中国优秀博硕士学位论文全文数据库 (硕士) 工程科技Ⅱ辑》;20060615(第06期);全文 *

Also Published As

Publication number Publication date
CN103761367A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
Fivet et al. Robert Maillart's key methods from the Salginatobel Bridge design process (1928)
CN102243671A (zh) 大跨钢桥扁平钢箱梁的温度梯度效应分析方法
Wei et al. Modal analysis of a cable-stayed bridge
CN103761367B (zh) 一种基于位移控制目标的弦支梁结构内力的解析计算方法
Zhou et al. Shear performance analysis of a tapered beam with trapezoidally corrugated steel webs considering the Resal effect
Mesnil et al. Stability of pseudo-funicular elastic grid shells
Li et al. Wind-induced collapse mechanism and failure criteria of super-large cooling tower based on layered shell element model
Deng et al. Intelligent active correction technology and application of tower displacement in arch bridge cable lifting construction
CN103761425A (zh) 一种弦支梁结构内力的数值计算方法
Hincz Nonlinear analysis of cable net structures suspended from arches with block and tackle suspension system, taking into account the friction of the pulleys
Hou et al. Time-domain model for prediction of generalized 3DOF buffeting response of tall buildings using 2D aerodynamic sectional properties
Jiang et al. Dynamic response analyses of plastic greenhouse structure considering fluctuating wind load
CN103161348B (zh) 工程结构多目标性能化抗震评估方法
Lu et al. Conceptual design and experimental verification study of a special-shaped composite arch bridge
Zhang et al. Evolution of suspension bridge structural systems, design theories, and shape-finding methods: A literature survey
Xiong et al. Seismic vulnerability analysis of simply supported continuous bridge during construction
CN102305739A (zh) Gfrp管钢骨高强混凝土偏压柱受力模拟测试方法
Mascolo et al. Lateral torsional buckling of compressed open thin walled beams: Experimental confirmations
Deng et al. Nonlinear Stability Analysis of a Composite Girder Cable‐Stayed Bridge with Three Pylons during Construction
Chen et al. Effects of installation location on the in-service wind load of a tower crane
Wang et al. Influence of lateral motion of cable stays on cable-stayed bridges
Xu et al. Seismic damage evaluation of historical masonry towers through numerical model
Yazdani-Paraei et al. Optimum design of cable-stayed bridges
Cosenza et al. Simplified assessment of bending moment capacity for RC members with circular cross-section
Schmidt et al. Architectural columns as a result of shape optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 300072 Tianda architectural creative building (Science and Technology Park), No.192, Anshan West Road, Nankai District, Tianjin

Patentee after: Tianjin University architectural design and Planning Research Institute Co.,Ltd.

Address before: No.192 Anshan West Road, Nankai District, Tianjin 300073

Patentee before: TIANJIN University RESEARCH INSTITUTE OF ARCHITECTRUAL DESIGN & URBAN PLANNING

CP03 Change of name, title or address