CN103760494B - Method and system for estimating battery capacity online - Google Patents

Method and system for estimating battery capacity online Download PDF

Info

Publication number
CN103760494B
CN103760494B CN201410028099.6A CN201410028099A CN103760494B CN 103760494 B CN103760494 B CN 103760494B CN 201410028099 A CN201410028099 A CN 201410028099A CN 103760494 B CN103760494 B CN 103760494B
Authority
CN
China
Prior art keywords
battery
capacity
parameter
capacity attenuation
tested
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410028099.6A
Other languages
Chinese (zh)
Other versions
CN103760494A (en
Inventor
韩雪冰
欧阳明高
卢兰光
李建秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Key Power Technology Co ltd
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201410028099.6A priority Critical patent/CN103760494B/en
Publication of CN103760494A publication Critical patent/CN103760494A/en
Application granted granted Critical
Publication of CN103760494B publication Critical patent/CN103760494B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Secondary Cells (AREA)

Abstract

本发明属于锂电池技术领域,公开了一种电池容量在线估计方法,包括:S1.提供容量衰减模型并初始化容量衰减模型参数;S2.将待测电池充放电循环Δn次;S3.计算得到当前待测电池的估计相对容量衰减量;S4.测试得到待测电池的真实相对容量衰减量;S5.计算估计误差;S6.若估计误差大于预设允许误差,则利用估计误差对容量衰减模型参数进行修正更新,然后跳至步骤S2;S7.若估计误差小于等于预设允许误差,则确定最后一次修正后的容量衰减模型参数作为最终容量衰减模型参数,得到待测电池对应的准确容量衰减模型,进而在未来对待测电池的相对容量衰减量和电池容量进行估计。本发明还公开了一种电池容量在线估计系统。本发明的方法和系统操作简便,准确度高。

The invention belongs to the technical field of lithium batteries, and discloses an online battery capacity estimation method, comprising: S1. providing a capacity decay model and initializing capacity decay model parameters; S2. charging and discharging the battery to be tested Δn times; S3. calculating the current Estimated relative capacity attenuation of the battery to be tested; S4. Test to obtain the real relative capacity attenuation of the battery to be tested; S5. Calculate the estimated error; S6. If the estimated error is greater than the preset allowable error, use the estimated error to adjust the capacity attenuation model parameters Perform correction and update, and then jump to step S2; S7. If the estimated error is less than or equal to the preset allowable error, then determine the last corrected capacity fading model parameter as the final capacity fading model parameter, and obtain the accurate capacity fading model corresponding to the battery to be tested , and then estimate the relative capacity fading and battery capacity of the battery to be tested in the future. The invention also discloses an online battery capacity estimation system. The method and system of the invention are easy to operate and have high accuracy.

Description

电池容量在线估计方法及系统Battery capacity online estimation method and system

技术领域technical field

本发明涉及锂电池技术领域,具体涉及一种电池容量在线估计方法及系统。The invention relates to the technical field of lithium batteries, in particular to a battery capacity online estimation method and system.

背景技术Background technique

在环境污染、能源危机、温室效应等问题日益严重的大背景下,开发新型能源技术成为重中之重,其中,电池技术作为新型能源技术之一,愈来愈受到大家的普遍关注。尤其是锂离子动力电池,现在发展非常迅猛,在电动车、储能站等领域均得到了非常广泛的应用。然而,随着电池的循环充放电,电池会逐渐老化,其性能会逐渐衰减,尤其是其容量会逐渐减少。Against the backdrop of increasingly serious problems such as environmental pollution, energy crisis, and greenhouse effect, the development of new energy technologies has become a top priority. Among them, battery technology, as one of the new energy technologies, has attracted more and more attention from everyone. Lithium-ion power batteries, in particular, are developing very rapidly and have been widely used in electric vehicles, energy storage stations and other fields. However, as the battery is charged and discharged cyclically, the battery will gradually age and its performance will gradually decline, especially its capacity will gradually decrease.

在实际情况中,电池容量减少,会影响电池内部存储的能量的多少,如在电动车上,会直接影响电动车的续驶里程。如果没有对电池容量衰减的一个准确估计,就有可能会由于对续驶里程的错误估计,而导致在野外抛锚等事故的发生。而且如果对容量衰减没有一个合理的认知,有可能导致对电池的过度使用,进而导致电池的寿命急剧衰减。因此,在实际电池使用过程中,相应的电池管理系统应该对电池容量有合理的估计算法。In actual situations, the reduction of battery capacity will affect the amount of energy stored inside the battery. For example, in electric vehicles, it will directly affect the driving range of electric vehicles. If there is no accurate estimation of battery capacity attenuation, accidents such as breaking down in the wild may occur due to misestimation of driving range. Moreover, if there is no reasonable understanding of capacity fading, it may lead to excessive use of the battery, which will lead to a sharp decline in battery life. Therefore, in the actual battery use process, the corresponding battery management system should have a reasonable estimation algorithm for the battery capacity.

对电池容量最准确的估计方法就是在实验室中,通过电池容量试验精确的测定电池的容量,一般来讲即为小倍率恒流充放电试验。不过对于实车上的电池来讲,其充电有可能是在充电桩上进行,因此其充电工况可能是标准的恒流充电或者恒流恒压充电,但是其放电通常是由实际路况和驾驶员习惯等决定的,肯定不可能是标准的恒流放电工况,而且电池也不一定每次都能够放电放到空,因此实际每次电池放出的电量往往不等于其容量,而对于动态情况下的电池的容量估计,非常困难。如果通过定期的校正,可以得到精确值,不过如果校正太频繁,则用户体验较差,而校正频率太低,除了刚校正过后的一段时间之外,其他时间内效果较差。The most accurate way to estimate the battery capacity is to accurately measure the capacity of the battery through the battery capacity test in the laboratory, generally speaking, it is a small rate constant current charge and discharge test. However, for the battery on the real car, its charging may be carried out on the charging pile, so its charging condition may be standard constant current charging or constant current and constant voltage charging, but its discharge is usually determined by the actual road conditions and driving conditions. It is definitely not possible to be a standard constant current discharge condition, and the battery may not be able to be discharged every time, so the actual power discharged by the battery each time is often not equal to its capacity, and for dynamic conditions It is very difficult to estimate the capacity of the next battery. If the calibration is performed regularly, accurate values can be obtained, but if the calibration is too frequent, the user experience will be poor, and if the calibration frequency is too low, the effect will be poor in other time periods except for a period of time immediately after the calibration.

本发明的目的在于提出一种基于模型的容量开环估计加定期标定校正的电池容量估计方法,以能够在实际的电池管理系统中,合理的估计电池容量。The purpose of the present invention is to propose a battery capacity estimation method based on a model-based open-loop capacity estimation plus periodic calibration correction, so as to be able to reasonably estimate the battery capacity in an actual battery management system.

发明内容Contents of the invention

本发明旨在至少解决现有技术中存在的操作复杂、准确度低的问题。The present invention aims at at least solving the problems of complex operation and low accuracy in the prior art.

为此,本发明的一个目的在于提出一种操作简便、准确度高的电池容量在线估计方法。Therefore, an object of the present invention is to provide an online battery capacity estimation method with simple operation and high accuracy.

本发明的另一目的在于提出一种操作简便、准确度高的电池容量在线估计系统。Another object of the present invention is to provide an online battery capacity estimation system with simple operation and high accuracy.

为了实现上述目的,根据本发明一个方面的实施例的电池容量在线估计方法,包括:S1.提供容量衰减模型并初始化容量衰减模型参数;S2.将待测电池充放电循环Δn次,其中Δn为预设的正整数;S3.根据所述容量衰减模型和容量衰减模型参数,得到当前所述待测电池的估计相对容量衰减量;S4.测试当前所述待测电池的真实容量,得到所述待测电池的真实相对容量衰减量;S5.将所述真实相对容量衰减量与所述估计相对容量衰减量相减,得到估计误差;S6.若所述估计误差大于预设允许误差,则利用所述估计误差对所述容量衰减模型参数进行修正更新,然后跳至步骤S2;S7.若所述估计误差小于等于所述预设允许误差,则确定最后一次修正后的容量衰减模型参数作为最终容量衰减模型参数,得到所述待测电池对应的准确容量衰减模型,其中所述准确容量衰减模型用于未来对所述待测电池的相对容量衰减量和电池容量进行估计。In order to achieve the above object, the battery capacity online estimation method according to an embodiment of one aspect of the present invention includes: S1. providing a capacity fading model and initializing the parameters of the capacity fading model; S2. charging and discharging the battery to be tested Δn times, wherein Δn is A preset positive integer; S3. According to the capacity fading model and capacity fading model parameters, obtain the estimated relative capacity fading of the current battery under test; S4. Test the actual capacity of the current battery under test to obtain the The actual relative capacity attenuation of the battery to be tested; S5. Subtracting the real relative capacity attenuation from the estimated relative capacity attenuation to obtain an estimated error; S6. If the estimated error is greater than the preset allowable error, use The estimated error corrects and updates the parameters of the capacity fading model, and then jumps to step S2; S7. If the estimated error is less than or equal to the preset allowable error, then determine the last corrected capacity fading model parameter as the final capacity fading model parameters to obtain an accurate capacity fading model corresponding to the battery under test, wherein the accurate capacity fading model is used to estimate the relative capacity fading amount and battery capacity of the battery under test in the future.

根据本发明实施例的电池容量在线估计方法,具有操作简便、准确度高的优点。The battery capacity online estimation method according to the embodiment of the present invention has the advantages of simple operation and high accuracy.

另外,根据本发明实施例的电池容量在线估计方法还具有如下附加技术特征:In addition, the battery capacity online estimation method according to the embodiment of the present invention also has the following additional technical features:

在本发明的一个示例中,所述待测电池的容量衰减模型为:其中,为所述待测电池在第n次充放电循环后的估计相对容量衰减量,为所述待测电池在第n-1次充放电循环后的估计相对容量衰减量,T为所述待测电池进行第n次充放电循环时的环境温度,A表示的第一参数,表示第二参数,z表示第三参数。In an example of the present invention, the capacity fading model of the battery to be tested is: in, is the estimated relative capacity fading of the battery under test after the nth charge-discharge cycle, is the estimated relative capacity decay of the battery under test after the n-1 charge-discharge cycle, T is the ambient temperature when the battery under test is carried out for the n-th charge-discharge cycle, and the first parameter represented by A, Indicates the second parameter, and z indicates the third parameter.

在本发明的一个示例中,所述初始化容量衰减模型参数包括:选取与所述待测电池同类型的、已知最终容量衰减模型参数的所述参考电池,初始化所述A为所述参考电池对应的容量衰减模型中的第一参数,初始化所述为所述参考电池对应的容量衰减模型中的第二参数,初始化所述z为所述参考电池对应的容量衰减模型中的第三参数。In an example of the present invention, the initializing the parameters of the capacity fading model includes: selecting the reference battery of the same type as the battery to be tested and whose final capacity fading model parameters are known, and initializing the A as the reference battery Corresponding to the first parameter in the capacity fading model, initialize the is the second parameter in the capacity fading model corresponding to the reference battery, and initializes z to be the third parameter in the capacity fading model corresponding to the reference battery.

在本发明的一个示例中,所述待测电池的真实相对容量衰减量的计算公式为其中,C为检测到的当前所述待测电池的真实容量,C0为所述待测电池的初始容量。In an example of the present invention, the calculation formula of the true relative capacity fading of the battery under test is Wherein, C is the detected real capacity of the battery under test at present, and C0 is the initial capacity of the battery under test.

在本发明的一个示例中,所述利用所述估计误差对所述容量衰减模型参数进行修正更新具体包括:对所述第一参数进行更新,第一参数修正公式为:Ak=Ak-1+k1×Δξ;对所述第二参数进行更新,第二参数修正公式为:对所述第三参数进行更新,第三参数修正公式为:zk=zk-1+k3×Δξ,其中,下标中的k表示修正后的参数,下标中的k-1表示修正前的参数,k1表示预设的第一修正系数,k2表示预设的第二修正系数,k3表示预设的第三修正系数,Δξ表示所述估计误差。In an example of the present invention, the correcting and updating the parameters of the capacity fading model by using the estimation error specifically includes: updating the first parameter, and the formula for correcting the first parameter is: A k =A k- 1 +k 1 ×Δξ; to update the second parameter, the second parameter correction formula is: The third parameter is updated, and the third parameter correction formula is: z k =z k-1 +k 3 ×Δξ, wherein, k in the subscript represents the corrected parameter, and k-1 in the subscript represents For parameters before correction, k 1 represents a preset first correction coefficient, k 2 represents a preset second correction coefficient, k 3 represents a preset third correction coefficient, and Δξ represents the estimation error.

根据本发明另一方面的实施例的电池容量在线估计系统,包括:充放电循环计数模块,用于记录待测电池的充放电循环次数,每当充放电循环次数到达Δn次后又重新从零开始计数;容量衰减模型参数存储单元,用于存储容量衰减模型参数;估计相对容量衰减量计算模块,所述估计相对容量衰减量计算模块分别与所述充放电循环计数模块和所述容量衰减模型参数存储单元相连,用于每完成1次充放电循环就将所述容量衰减模型参数带入容量衰减模型得到所述待测电池的估计相对容量衰减量;真实相对容量衰减量测试模块,所述真实相对容量衰减量计算模块与所述充放电循环计数模块相连,用于每当所述充放电循环次数为Δn次时,测试所述待测电池的真实容量,并计算所述待测电池的真实相对容量衰减量;比较判断模块,所述比较判断模块分别与所述估计相对容量衰减量计算模块和所述真实相对容量衰减量测试模块相连,所述比较判断模块用于将所述真实相对容量衰减量与所述估计相对容量衰减量进行比较,得到估计误差,并判断所述估计误差与预设允许误差的大小关系;容量衰减模型参数修正模块,所述容量衰减模型参数修正模块分别与所述比较判断模块和所述容量衰减模型参数存储单元相连,当所述比较判断模块的判断结果为所述估计误差大于预设允许误差时,所述容量衰减模型参数修正模块利用所述估计误差对所述容量衰减模型参数进行修正更新,并将更新后的容量衰减模型参数存入所述容量衰减模型参数存储单元;最终容量衰减模型输出模块,所述最终容量衰减模型输出模块分别与所述比较判断模块和所述容量衰减模型参数存储单元相连,当所述比较判断模块的判断结果为所述估计误差小于等于预设允许误差时,所述最终容量衰减模型输出模块将所述容量衰减模型参数存储单元中存储的容量衰减模型参数作为最终容量衰减模型参数,得到最终容量衰减模型并输出,其中所述最终容量衰减模型用于未来对所述待测电池的相对容量衰减量和电池容量进行估计。The battery capacity online estimation system according to another embodiment of the present invention includes: a charging and discharging cycle counting module, which is used to record the number of charging and discharging cycles of the battery to be tested, and restarts from zero every time the number of charging and discharging cycles reaches Δn times Start counting; the capacity fading model parameter storage unit is used to store the capacity fading model parameters; the estimated relative capacity fading calculation module, the estimated relative capacity fading calculation module is respectively connected with the charge-discharge cycle counting module and the capacity fading model The parameter storage unit is connected, and is used to bring the parameters of the capacity fading model into the capacity fading model to obtain the estimated relative capacity fading of the battery under test every time a charge-discharge cycle is completed; the real relative capacity fading test module, the The real relative capacity attenuation calculation module is connected to the charge-discharge cycle counting module, and is used to test the real capacity of the battery under test and calculate the capacity of the battery under test whenever the number of charge-discharge cycles is Δn times. Real relative capacity attenuation; a comparison and judgment module, the comparison and judgment module is respectively connected with the estimated relative capacity attenuation calculation module and the real relative capacity attenuation test module, and the comparison and judgment module is used to compare the real relative capacity attenuation Comparing the amount of capacity attenuation with the estimated relative capacity attenuation to obtain an estimation error, and judging the size relationship between the estimation error and the preset allowable error; the capacity attenuation model parameter correction module, the capacity attenuation model parameter correction module and the capacity attenuation model parameter correction module respectively The comparison and judgment module is connected to the capacity fading model parameter storage unit, and when the judgment result of the comparison and judgment module is that the estimation error is greater than a preset allowable error, the capacity fading model parameter correction module uses the estimation error Correcting and updating the capacity fading model parameters, and storing the updated capacity fading model parameters into the capacity fading model parameter storage unit; the final capacity fading model output module, the final capacity fading model output module and the said final capacity fading model output module respectively The comparison and judgment module is connected to the parameter storage unit of the capacity fading model, and when the judgment result of the comparison and judgment module is that the estimated error is less than or equal to the preset allowable error, the final capacity fading model output module converts the capacity fading model to The parameters of the capacity fading model stored in the parameter storage unit are used as the parameters of the final capacity fading model, and the final capacity fading model is obtained and output, wherein the final capacity fading model is used to carry out the relative capacity fading and battery capacity of the battery under test in the future. estimate.

根据本发明实施例的电池容量在线估计系统,具有操作简便、准确度高的优点。The battery capacity online estimation system according to the embodiment of the present invention has the advantages of simple operation and high accuracy.

另外,根据本发明实施例的电池容量在线估计系统还具有如下附加技术特征:In addition, the battery capacity online estimation system according to the embodiment of the present invention also has the following additional technical features:

在本发明的一个示例中,所述待测电池的容量衰减模型为:其中,为所述待测电池在第n次充放电循环后的估计相对容量衰减量,为所述待测电池在第n-1次充放电循环后的估计相对容量衰减量,T为所述待测电池进行第n次充放电循环时的环境温度,A表示的第一参数,表示第二参数,z表示第三参数。In an example of the present invention, the capacity fading model of the battery to be tested is: in, is the estimated relative capacity fading of the battery under test after the nth charge-discharge cycle, is the estimated relative capacity decay of the battery under test after the n-1 charge-discharge cycle, T is the ambient temperature when the battery under test is carried out for the n-th charge-discharge cycle, and the first parameter represented by A, Indicates the second parameter, and z indicates the third parameter.

在本发明的一个示例中,容量衰减模型参数存储单元中,初始化的所述容量衰减模型参数包括:选取与所述待测电池同类型的、已知最终容量衰减模型参数的所述参考电池,初始化所述A为所述参考电池对应的容量衰减模型中的第一参数,初始化所述为所述参考电池对应的容量衰减模型中的第二参数,初始化所述z为所述参考电池对应的容量衰减模型中的第三参数。In an example of the present invention, in the capacity fading model parameter storage unit, the initialization of the capacity fading model parameters includes: selecting the reference battery of the same type as the battery to be tested and whose final capacity fading model parameters are known, Initializing the A as the first parameter in the capacity fading model corresponding to the reference battery, initializing the is the second parameter in the capacity fading model corresponding to the reference battery, and initializes z to be the third parameter in the capacity fading model corresponding to the reference battery.

在本发明的一个示例中,所述真实相对容量衰减量测试模块中,所述待测电池的真实相对容量衰减量的计算公式为其中,C为检测到的当前所述待测电池的真实容量,C0为所述待测电池的初始容量。In an example of the present invention, in the real relative capacity fading test module, the formula for calculating the real relative capacity fading of the battery to be tested is: Wherein, C is the detected real capacity of the battery under test at present, and C0 is the initial capacity of the battery under test.

在本发明的一个示例中,所述容量衰减模型参数修正模块具体包括:第一参数修正模块,用于对所述第一参数进行更新,第一参数修正公式为:Ak=Ak-1+k1×Δξ;第二参数修正模块,用于对所述第二参数进行更新,第二参数修正公式为:第三参数修正模块,用于对所述第三参数进行更新,第三参数修正公式为:zk=zk-1+k3×Δξ,其中,下标中的k表示修正后的参数,下标中的k-1表示修正前的参数,k1表示预设的第一修正系数,k2表示预设的第二修正系数,k3表示预设的第三修正系数,Δξ表示所述估计误差。In an example of the present invention, the capacity fading model parameter correction module specifically includes: a first parameter correction module, configured to update the first parameter, and the first parameter correction formula is: A k =A k-1 +k 1 ×Δξ; the second parameter correction module is used to update the second parameter, and the second parameter correction formula is: The third parameter correction module is used to update the third parameter. The third parameter correction formula is: z k =z k-1 +k 3 ×Δξ, where k in the subscript represents the corrected parameter, The k-1 in the subscript represents the parameter before correction, k 1 represents the preset first correction coefficient, k 2 represents the preset second correction coefficient, k 3 represents the preset third correction coefficient, Δξ represents the Estimate error.

本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。Additional aspects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention.

附图说明Description of drawings

本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and comprehensible from the description of the embodiments in conjunction with the following drawings, wherein:

图1是本发明一个实施例的电池容量在线估计方法的流程图。Fig. 1 is a flowchart of an online battery capacity estimation method according to an embodiment of the present invention.

图2是本发明一个实施例的电池容量在线估计系统的结构框图。Fig. 2 is a structural block diagram of an online battery capacity estimation system according to an embodiment of the present invention.

图3是本发明一个实施例的电池容量在线估计系统中的容量衰减模型参数修正模块的内部结构框图。Fig. 3 is a block diagram of the internal structure of the capacity fading model parameter correction module in the battery capacity online estimation system according to an embodiment of the present invention.

图4是本发明一个实施例的容量衰减模型参数变化情况和估计误差变化情况的示意图。Fig. 4 is a schematic diagram of the variation of the parameters of the capacity fading model and the variation of the estimation error according to an embodiment of the present invention.

图5是本发明一个实施例的在线估计曲线和实验测试曲线的对比图。Fig. 5 is a comparison chart of an online estimation curve and an experimental test curve according to an embodiment of the present invention.

图6是本发明的电池容量在线估计的原理图。Fig. 6 is a principle diagram of the battery capacity online estimation of the present invention.

具体实施方式detailed description

下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。Embodiments of the present invention are described in detail below, examples of which are shown in the drawings, wherein the same or similar reference numerals designate the same or similar elements or elements having the same or similar functions throughout. The embodiments described below by referring to the figures are exemplary and are intended to explain the present invention and should not be construed as limiting the present invention.

在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。In the description of the present invention, it should be understood that the terms "first" and "second" are used for description purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, a feature defined as "first" and "second" may explicitly or implicitly include one or more of these features. In the description of the present invention, "plurality" means two or more, unless otherwise specifically defined.

在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。In the present invention, unless otherwise clearly specified and limited, terms such as "installation", "connection", "connection" and "fixation" should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection , or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components or the interaction relationship between two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in the present invention according to specific situations.

流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。Any process or method descriptions in flowcharts or otherwise described herein may be understood to represent modules, segments or portions of code comprising one or more executable instructions for implementing specific logical functions or steps of the process , and the scope of preferred embodiments of the invention includes alternative implementations in which functions may be performed out of the order shown or discussed, including substantially concurrently or in reverse order depending on the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present invention pertain.

在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。The logic and/or steps represented in the flowcharts or otherwise described herein, for example, can be considered as a sequenced listing of executable instructions for implementing logical functions, can be embodied in any computer-readable medium, For use with instruction execution systems, devices, or devices (such as computer-based systems, systems including processors, or other systems that can fetch instructions from instruction execution systems, devices, or devices and execute instructions), or in conjunction with these instruction execution systems, devices or equipment for use.

应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。It should be understood that various parts of the present invention can be realized by hardware, software, firmware or their combination. In the embodiments described above, various steps or methods may be implemented by software or firmware stored in memory and executed by a suitable instruction execution system. For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques known in the art: Discrete logic circuits, ASICs with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.

本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。上述提到的存储介质可以是只读存储器,磁盘或光盘等。Those of ordinary skill in the art can understand that all or part of the steps carried by the methods of the above embodiments can be completed by instructing related hardware through a program, and the program can be stored in a computer-readable storage medium. During execution, one or a combination of the steps of the method embodiments is included. The storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk, and the like.

此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。In addition, each functional unit in each embodiment of the present invention may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one module. The above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. If the integrated modules are realized in the form of software function modules and sold or used as independent products, they can also be stored in a computer-readable storage medium.

如图1所示,根据本发明一个实施例的电池容量在线估计方法可以包括如下步骤:As shown in Figure 1, the method for online estimation of battery capacity according to one embodiment of the present invention may include the following steps:

S1.提供容量衰减模型并初始化容量衰减模型参数。S1. Provide a capacity fading model and initialize parameters of the capacity fading model.

在本发明的一个示例中,待测电池的容量衰减模型为:其中,为待测电池在第n次充放电循环后的估计相对容量衰减量,为待测电池在第n-1次充放电循环后的估计相对容量衰减量,T为待测电池进行第n次充放电循环时的环境温度,A表示的第一参数,表示第二参数,z表示第三参数。In an example of the present invention, the capacity fading model of the battery to be tested is: in, is the estimated relative capacity fading of the battery under test after the nth charge-discharge cycle, is the estimated relative capacity fading of the battery under test after the n-1 charge-discharge cycle, T is the ambient temperature when the battery under test performs the n-th charge-discharge cycle, the first parameter represented by A, Indicates the second parameter, and z indicates the third parameter.

在本发明的一个示例中,初始化容量衰减模型参数的过程具体包括:选取与待测电池同类型的、已知最终容量衰减模型参数的参考电池,初始化A为参考电池对应的容量衰减模型中的第一参数,初始化为参考电池对应的容量衰减模型中的第二参数,初始化z为参考电池对应的容量衰减模型中的第三参数。In an example of the present invention, the process of initializing the parameters of the capacity fading model specifically includes: selecting a reference battery of the same type as the battery to be tested and whose final capacity fading model parameters are known, and initializing A as the value in the capacity fading model corresponding to the reference battery The first parameter, initialized To be the second parameter in the capacity fading model corresponding to the reference battery, initialize z to be the third parameter in the capacity fading model corresponding to the reference battery.

S2.将待测电池充放电循环Δn次,其中Δn为预设的正整数。S2. Charge and discharge the battery to be tested Δn times, wherein Δn is a preset positive integer.

例如,Δn可以取值为90次,也可以为其他任意次数。For example, Δn may take a value of 90 times, or any other number of times.

S3.根据容量衰减模型和容量衰减模型参数,得到当前待测电池的估计相对容量衰减量。S3. According to the capacity fading model and the parameters of the capacity fading model, an estimated relative capacity fading amount of the current battery to be tested is obtained.

具体地,每充放电循环一次,就利用容量衰减模型和容量衰减模型参数计算一次待测电池的估计相对容量衰减量。如果前面累计充放电循环了k*Δn次,则也通过k*Δn次计算得到待测电池当前的估计相对容量衰减量。Specifically, the estimated relative capacity fading of the battery under test is calculated by using the capacity fading model and the parameters of the capacity fading model every charge and discharge cycle. If the accumulative charging and discharging cycles have been performed k*Δn times before, the current estimated relative capacity fading of the battery under test is also calculated through k*Δn times.

S4.测试当前待测电池的真实容量,得到待测电池的真实相对容量衰减量。S4. Test the real capacity of the current battery under test to obtain the real relative capacity attenuation of the battery under test.

在本发明的一个示例中,待测电池的真实相对容量衰减量的计算公式为其中,C为检测到的当前待测电池的真实容量,C0为待测电池的初始容量。需要说明的是,测试当前待测电池的真实容量通常需要在实验室内进行,操作麻烦。因此优选并不是每次充放电循环后都测试待测电池的真实容量,而是每充放电循环Δn次后才测试1次当前待测电池的真实容量。In an example of the present invention, the calculation formula of the true relative capacity decay of the battery to be tested is Wherein, C is the detected real capacity of the current battery under test, and C 0 is the initial capacity of the battery under test. It should be noted that testing the actual capacity of the current battery to be tested usually needs to be performed in a laboratory, and the operation is cumbersome. Therefore, it is preferable not to test the real capacity of the battery under test after every charge and discharge cycle, but to test the real capacity of the current battery under test once after every charge and discharge cycle Δn times.

S5.将真实相对容量衰减量与估计相对容量衰减量相减,得到估计误差。S5. Subtracting the actual relative capacity fading from the estimated relative capacity fading to obtain an estimation error.

即估计误差其中,ξ为检测得到的待测电池的真实相对容量衰减量,为计算得到的待测电池的估计相对容量衰减量。the estimation error Among them, ξ is the detected real relative capacity fading of the battery under test, is the calculated estimated relative capacity fading of the battery under test.

S6.若估计误差大于预设允许误差,则利用估计误差对容量衰减模型参数进行修正更新,然后跳至步骤S2。S6. If the estimated error is greater than the preset allowable error, the estimated error is used to correct and update the parameters of the capacity fading model, and then skip to step S2.

在本发明的一个示例中,具体地,对第一参数进行更新,第一参数修正公式为:Ak=Ak-1+k1×Δξ;对第二参数进行更新,第二参数修正公式为:对第三参数进行更新,第三参数修正公式为:zk=zk-1+k3×Δξ。其中,下标中的k表示修正后的参数,下标中的k-1表示修正前的参数,k1表示预设的第一修正系数,k2表示预设的第二修正系数,k3表示预设的第三修正系数,Δξ表示估计误差。修正好后,跳至步骤S2,开始新一轮迭代修正。In an example of the present invention, specifically, to update the first parameter, the first parameter correction formula is: A k =A k-1 +k 1 ×Δξ; to update the second parameter, the second parameter correction formula for: The third parameter is updated, and the third parameter correction formula is: z k =z k-1 +k 3 ×Δξ. Among them, k in the subscript represents the parameter after correction, k-1 in the subscript represents the parameter before correction, k 1 represents the preset first correction coefficient, k 2 represents the preset second correction coefficient, and k 3 represents the preset third correction coefficient, and Δξ represents the estimation error. After the correction is completed, skip to step S2 to start a new round of iterative correction.

S7.若估计误差小于等于预设允许误差,则确定最后一次修正后的容量衰减模型参数作为最终容量衰减模型参数,得到待测电池对应的准确容量衰减模型,其中准确容量衰减模型用于未来对待测电池的相对容量衰减量和电池容量进行估计。S7. If the estimated error is less than or equal to the preset allowable error, then determine the capacity fading model parameters after the last correction as the final capacity fading model parameters, and obtain the accurate capacity fading model corresponding to the battery to be tested, wherein the accurate capacity fading model is used for future treatment Estimate the relative capacity fading and battery capacity of the measured battery.

具体地,最终确定好第一参数、第二参数和第三参数后,可以得到准确容量衰减模型。根据该准确容量衰减模型,可以求出每次充放电循环后的相对容量衰减量,然后根据公式C=(1-ξ)C0,可以在线估计电池容量。Specifically, after the first parameter, the second parameter and the third parameter are finally determined, an accurate capacity fading model can be obtained. According to the accurate capacity fading model, the relative capacity fading amount after each charge-discharge cycle can be obtained, and then according to the formula C=(1-ξ)C 0 , the battery capacity can be estimated online.

根据本发明上述实施例的电池容量在线估计方法,具有操作简单,准确度高的优点。The battery capacity online estimation method according to the above embodiments of the present invention has the advantages of simple operation and high accuracy.

如图2所示,根据本发明一个实施例的电池容量在线估计系统可以包括如下部分:充放电循环计数模块10、容量衰减模型参数存储单元20、估计相对容量衰减量计算模块30、真实相对容量衰减量测试模块40、比较判断模块50、容量衰减模型参数修正模块60以及最终容量衰减模型输出模块70。As shown in Figure 2, the battery capacity online estimation system according to one embodiment of the present invention may include the following parts: charge and discharge cycle counting module 10, capacity decay model parameter storage unit 20, estimated relative capacity decay calculation module 30, real relative capacity Attenuation testing module 40 , comparison and judgment module 50 , capacity fading model parameter correction module 60 and final capacity fading model output module 70 .

充放电循环计数模块10用于记录待测电池的充放电循环次数,每当充放电循环次数到达Δn次后又重新从零开始计数。The charging and discharging cycle counting module 10 is used to record the number of charging and discharging cycles of the battery under test, and restart counting from zero every time the number of charging and discharging cycles reaches Δn times.

容量衰减模型参数存储单元20用于存储容量衰减模型参数。The capacity fading model parameter storage unit 20 is used for storing capacity fading model parameters.

在本发明的一个示例中,容量衰减模型参数存储单元20中,最初存储的(即初始化的)容量衰减模型参数包括:选取与待测电池同类型的、已知最终容量衰减模型参数的参考电池,初始化A为参考电池对应的容量衰减模型中的第一参数,初始化为参考电池对应的容量衰减模型中的第二参数,初始化z为参考电池对应的容量衰减模型中的第三参数。In an example of the present invention, in the capacity fading model parameter storage unit 20, the initially stored (i.e. initialized) capacity fading model parameters include: selecting a reference battery of the same type as the battery to be tested and whose final capacity fading model parameters are known , initialize A as the first parameter in the capacity fading model corresponding to the reference battery, and initialize To be the second parameter in the capacity fading model corresponding to the reference battery, initialize z to be the third parameter in the capacity fading model corresponding to the reference battery.

估计相对容量衰减量计算模块30分别与充放电循环计数模块10和容量衰减模型参数存储单元20相连。估计相对容量衰减量计算模块30用于每完成1次充放电循环就将容量衰减模型参数带入容量衰减模型得到待测电池的估计相对容量衰减量。The estimated relative capacity fading calculation module 30 is connected to the charging and discharging cycle counting module 10 and the capacity fading model parameter storage unit 20 respectively. The estimated relative capacity fading calculation module 30 is used to bring the parameters of the capacity fading model into the capacity fading model to obtain the estimated relative capacity fading of the battery to be tested every time a charge-discharge cycle is completed.

在本发明的一个示例中,待测电池的容量衰减模型为:其中,为待测电池在第n次充放电循环后的估计相对容量衰减量,为待测电池在第n-1次充放电循环后的估计相对容量衰减量,T为待测电池进行第n次充放电循环时的环境温度,A表示的第一参数,表示第二参数,z表示第三参数。In an example of the present invention, the capacity fading model of the battery to be tested is: in, is the estimated relative capacity fading of the battery under test after the nth charge-discharge cycle, is the estimated relative capacity fading of the battery under test after the n-1 charge-discharge cycle, T is the ambient temperature when the battery under test performs the n-th charge-discharge cycle, the first parameter represented by A, Indicates the second parameter, and z indicates the third parameter.

需要说明的是,待测电池每充放电循环一次,估计相对容量衰减量计算模块30就利用容量衰减模型和容量衰减模型参数计算一次待测电池的估计相对容量衰减量。如果前面累计充放电循环了k*Δn次,则也通过k*Δn次计算得到待测电池当前的估计相对容量衰减量。It should be noted that, every charge and discharge cycle of the battery under test, the estimated relative capacity fading calculation module 30 calculates the estimated relative capacity fading of the battery under test by using the capacity fading model and the parameters of the capacity fading model. If the accumulative charging and discharging cycles have been performed k*Δn times before, the current estimated relative capacity fading of the battery under test is also calculated through k*Δn times.

真实相对容量衰减量计算模块40与充放电循环计数模块10相连。真实相对容量衰减量测试模块40用于每当充放电循环次数为Δn次时,测试待测电池的真实容量,并计算待测电池的真实相对容量衰减量。The real relative capacity decay calculation module 40 is connected to the charging and discharging cycle counting module 10 . The real relative capacity fading test module 40 is used to test the real capacity of the battery under test and calculate the real relative capacity fading of the battery under test every time the number of charge and discharge cycles is Δn.

在本发明的一个示例中,真实相对容量衰减量测试模块40中,待测电池的真实相对容量衰减量的计算公式为其中,C为检测到的当前待测电池的真实容量,C0为待测电池的初始容量。In an example of the present invention, in the real relative capacity fading test module 40, the calculation formula of the real relative capacity fading of the battery to be tested is: Wherein, C is the detected real capacity of the current battery under test, and C 0 is the initial capacity of the battery under test.

比较判断模块50分别与估计相对容量衰减量计算模块30和真实相对容量衰减量测试模块40相连。比较判断模块50用于将真实相对容量衰减量与估计相对容量衰减量进行比较,得到估计误差,并判断估计误差与预设允许误差的大小关系。The comparison judgment module 50 is connected to the estimated relative capacity fading calculation module 30 and the real relative capacity fading testing module 40 respectively. The comparison and judgment module 50 is used to compare the actual relative capacity attenuation with the estimated relative capacity attenuation to obtain an estimation error, and judge the magnitude relationship between the estimation error and the preset allowable error.

具体地,计算估计误差其中,ξ为检测得到的待测电池的真实相对容量衰减量,为计算得到的待测电池的估计相对容量衰减量。然后判断估计误差与预设允许误差比较大小。Specifically, calculate the estimation error Among them, ξ is the detected real relative capacity fading of the battery under test, is the calculated estimated relative capacity fading of the battery under test. Then judge the size of the estimation error compared with the preset allowable error.

容量衰减模型参数修正模块60分别与比较判断模块50和容量衰减模型参数存储单元20相连。当比较判断模块50的判断结果为估计误差大于预设允许误差时,容量衰减模型参数修正模块60利用估计误差对容量衰减模型参数进行修正更新,并将更新后的容量衰减模型参数存入容量衰减模型参数存储单元20。The capacity fading model parameter correction module 60 is connected to the comparison judgment module 50 and the capacity fading model parameter storage unit 20 respectively. When the judgment result of the comparison judgment module 50 is that the estimation error is greater than the preset allowable error, the capacity fading model parameter correction module 60 uses the estimation error to correct and update the capacity fading model parameters, and stores the updated capacity fading model parameters into the capacity fading Model parameter storage unit 20 .

在本发明的一个示例中,如图3所示,容量衰减模型参数修正模块60具体包括:第一参数修正模块610、第二参数修正模块620和第三参数修正模块630。其中第一参数修正模块610用于对第一参数进行更新,第一参数修正公式为:Ak=Ak-1+k1×Δξ。第二参数修正模块620用于对第二参数进行更新,第二参数修正公式为:第三参数修正模块630用于对第三参数进行更新,第三参数修正公式为:zk=zk-1+k3×Δξ。上述公式中,下标中的k表示修正后的参数,下标中的k-1表示修正前的参数,k1表示预设的第一修正系数,k2表示预设的第二修正系数,k3表示预设的第三修正系数,Δξ表示估计误差。In an example of the present invention, as shown in FIG. 3 , the capacity fading model parameter correction module 60 specifically includes: a first parameter correction module 610 , a second parameter correction module 620 and a third parameter correction module 630 . The first parameter correction module 610 is used to update the first parameter, and the first parameter correction formula is: A k =A k-1 +k 1 ×Δξ. The second parameter correction module 620 is used to update the second parameter, and the second parameter correction formula is: The third parameter correction module 630 is used to update the third parameter, and the third parameter correction formula is: z k =z k-1 +k 3 ×Δξ. In the above formula, k in the subscript represents the parameter after correction, k-1 in the subscript represents the parameter before correction, k 1 represents the preset first correction coefficient, k 2 represents the preset second correction coefficient, k 3 represents a preset third correction coefficient, and Δξ represents an estimation error.

最终容量衰减模型输出模块70分别与比较判断模块50和容量衰减模型参数存储单元20相连。当比较判断模块50的判断结果为估计误差小于等于预设允许误差时,最终容量衰减模型输出模块70将容量衰减模型参数存储单元20中存储的容量衰减模型参数作为最终容量衰减模型参数,得到最终容量衰减模型并输出。其中最终容量衰减模型用于未来对待测电池的相对容量衰减量和电池容量进行估计。The final capacity fading model output module 70 is connected to the comparison judgment module 50 and the capacity fading model parameter storage unit 20 respectively. When the judgment result of the comparison judgment module 50 is that the estimation error is less than or equal to the preset allowable error, the final capacity fading model output module 70 uses the capacity fading model parameters stored in the capacity fading model parameter storage unit 20 as the final capacity fading model parameters to obtain the final Capacity decay model and output. The final capacity fading model is used to estimate the relative capacity fading and battery capacity of the battery to be tested in the future.

具体地,最终确定好第一参数、第二参数和第三参数后,可以得到准确容量衰减模型。根据该准确容量衰减模型,可以求出每次充放电循环后的相对容量衰减量,然后根据公式C=(1-ξ)C0,可以在线估计电池容量。Specifically, after the first parameter, the second parameter and the third parameter are finally determined, an accurate capacity fading model can be obtained. According to the accurate capacity fading model, the relative capacity fading amount after each charge-discharge cycle can be obtained, and then according to the formula C=(1-ξ)C 0 , the battery capacity can be estimated online.

根据本发明实施例的电池容量在线估计系统,具有操作简便、准确度高的优点。The battery capacity online estimation system according to the embodiment of the present invention has the advantages of simple operation and high accuracy.

为使本领域技术人员更好地理解本发明的效果,申请人举一个具体实施例如下。In order to enable those skilled in the art to better understand the effects of the present invention, the applicant cites a specific example as follows.

在一个正极为磷酸铁锂、负极为石墨的锂离子电池中,先利用同型号的已知确定参数的参考电池确定初始电池容量衰减模型参数为:A=0.15,Ea/R=1400,z=0.5。这个容量衰减模型参数和电池的实际模型参数略有差别。通过本发明上述的估计方法和系统,步步迭代修正,经过一段时间后的修正,电池容量衰减模型参数逐步修正,在开环估计的时候对容量的估计误差基本小于1%,模型参数也逐步收敛到固定值,参考图4。确定最终的容量衰减模型参数之后,对电池进行在线估计。从图5可以看出,利用本发明的方法和系统得到的锂电池相对容量在线估计曲线与实验测试曲线重合度很高,说明在线估计的结果准确度高。In a lithium-ion battery with lithium iron phosphate as the positive electrode and graphite as the negative electrode, first use a reference battery of the same type with known parameters to determine the initial battery capacity decay model parameters: A=0.15, Ea/R=1400, z= 0.5. The parameters of this capacity fading model are slightly different from the actual model parameters of the battery. Through the above-mentioned estimation method and system of the present invention, iterative corrections are made step by step. After a period of time, the parameters of the battery capacity attenuation model are gradually corrected. During the open-loop estimation, the estimation error of the capacity is basically less than 1%, and the model parameters are also gradually corrected. Converge to a fixed value, refer to Figure 4. After determining the final capacity fading model parameters, the battery is estimated online. It can be seen from FIG. 5 that the online estimation curve of the relative capacity of the lithium battery obtained by the method and system of the present invention has a high degree of coincidence with the experimental test curve, indicating that the accuracy of the online estimation result is high.

总而言之,本发明的电池容量在线估计的思路即为在电池成组与管理系统阶段,为了降低成本,电池容量衰减模型参数不具体进行测试,而采用同类型的电池容量衰减标准参数;在运行的时候,利用容量衰减模型,根据电池的充放电电流、环境温度、充放电深度等关键参数,开环的估计电池的容量,对于容量估计的结果可以用于电池管理系统的管理算法,以至于整车的能量管理算法等;每隔一段时间,对电池进行标定,测量其真实容量,测量结果与模型估计结果进行对比,利用模型估计误差反馈修正模型参数,同时将用实测的容量数据更新电池管理系统的电池容量值。整个容量在线估计的逻辑框图如图6所示。这样的估计算法,估计精度高,系统成本低,而且可以自适应不同厂家不同批次的电池。All in all, the idea of battery capacity online estimation in the present invention is that in order to reduce costs in the stage of battery grouping and management system, the battery capacity decay model parameters are not tested specifically, but the same type of battery capacity decay standard parameters are used; At this time, the capacity decay model is used to estimate the capacity of the battery in an open loop according to key parameters such as battery charge and discharge current, ambient temperature, and charge and discharge depth. The result of capacity estimation can be used in the management algorithm of the battery management system, so that the entire system Car energy management algorithms, etc.; every once in a while, calibrate the battery, measure its real capacity, compare the measurement results with the model estimation results, use the model estimation error feedback to correct the model parameters, and update the battery management with the measured capacity data The battery capacity value of the system. The logic block diagram of online estimation of the entire capacity is shown in Fig. 6 . Such an estimation algorithm has high estimation accuracy, low system cost, and can adapt to different batches of batteries from different manufacturers.

在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。In the description of this specification, descriptions referring to the terms "one embodiment", "some embodiments", "example", "specific examples", or "some examples" mean that specific features described in connection with the embodiment or example , structure, material or characteristic is included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the described specific features, structures, materials or characteristics may be combined in any suitable manner in any one or more embodiments or examples. In addition, those skilled in the art can combine and combine different embodiments or examples described in this specification.

尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it can be understood that the above embodiments are exemplary and should not be construed as limiting the present invention, those skilled in the art can make the above-mentioned The embodiments are subject to changes, modifications, substitutions and variations.

Claims (6)

1. An online estimation method for battery capacity is characterized by comprising the following steps:
s1, providing a capacity attenuation model and initializing capacity attenuation model parameters, wherein the capacity attenuation model of the battery to be tested is as follows:wherein,the estimated relative capacity attenuation of the battery to be tested after the nth charge-discharge cycle,is the estimated relative capacity attenuation of the battery to be tested after the n-1 th charge-discharge cycle, T is the ambient temperature of the battery to be tested when the battery to be tested is subjected to the n-th charge-discharge cycle, A represents a first parameter,represents a second parameter, z represents a third parameter;
s2, circulating charge and discharge of the battery to be tested for delta n times, wherein delta n is a preset positive integer;
s3, obtaining the estimated relative capacity attenuation of the current battery to be tested according to the capacity attenuation model and the capacity attenuation model parameters;
s4, testing the current real capacity of the battery to be tested to obtain the real relative capacity attenuation of the battery to be tested, wherein the calculation formula of the real relative capacity attenuation of the battery to be tested isWherein C is the detected real capacity of the current battery to be detected, C0The initial capacity of the battery to be tested is obtained;
s5, subtracting the real relative capacity attenuation amount from the estimated relative capacity attenuation amount to obtain an estimation error;
s6, if the estimation error is larger than a preset allowable error, correcting and updating the capacity attenuation model parameters by using the estimation error, and then jumping to the step S2;
and S7, if the estimation error is less than or equal to the preset allowable error, determining the capacity attenuation model parameter after the last correction as a final capacity attenuation model parameter to obtain an accurate capacity attenuation model corresponding to the battery to be measured, wherein the accurate capacity attenuation model is used for estimating the relative capacity attenuation and the battery capacity of the battery to be measured in the future.
2. The online estimation method of battery capacity according to claim 1, characterized in that the initializing capacity fading model parameters comprises: selecting a reference battery with the same type as the battery to be tested and known final capacity attenuation model parameters, initializing the A as a first parameter in a capacity attenuation model corresponding to the reference battery, and initializing the AInitializing z as a third parameter in the capacity fading model corresponding to the reference battery for a second parameter in the capacity fading model corresponding to the reference battery.
3. The method according to claim 1, wherein the modifying and updating the capacity fading model parameters by using the estimation error specifically comprises:
updating the first parameter, wherein a first parameter correction formula is as follows: a. thek=Ak-1+k1×Δξ;
Updating the second parameter, wherein the second parameter modification formula is as follows:
updating the third parameter, wherein a third parameter correction formula is as follows: z is a radical ofk=zk-1+k3×Δξ,
Wherein k in the subscript represents the parameter after correction, k-1 in the subscript represents the parameter before correction, k1Representing a preset first correction factor, k2Representing a preset second correction factor, k3Represents a preset third correction coefficient, and Δ ξ represents the estimation error.
4. An online estimation system for battery capacity, comprising:
the charging and discharging cycle counting module is used for recording the charging and discharging cycle times of the battery to be tested, and counting from zero again when the charging and discharging cycle times reach delta n times;
a capacity fading model parameter storage unit is used for storing capacity fading model parameters, wherein a capacity fading model of a battery to be tested is as follows:wherein,the estimated relative capacity attenuation of the battery to be tested after the nth charge-discharge cycle,is the estimated relative capacity attenuation of the battery to be tested after the n-1 th charge-discharge cycle, T is the ambient temperature of the battery to be tested when the battery to be tested is subjected to the n-th charge-discharge cycle, A represents a first parameter,represents a second parameter, z represents a third parameter;
the estimated relative capacity attenuation calculation module is respectively connected with the charge-discharge cycle counting module and the capacity attenuation model parameter storage unit and is used for substituting the capacity attenuation model parameters into a capacity attenuation model to obtain the estimated relative capacity attenuation of the battery to be measured every time 1 charge-discharge cycle is completed;
the real relative capacity attenuation testing module is connected with the charging and discharging cycle counting module and used for testing the real capacity of the battery to be tested and calculating the real relative capacity attenuation of the battery to be tested when the charging and discharging cycle times are delta n times, wherein in the real relative capacity attenuation testing module, the calculation formula of the real relative capacity attenuation of the battery to be tested is thatWherein C is the detected real capacity of the current battery to be detected, C0The initial capacity of the battery to be tested is obtained;
the comparison and judgment module is respectively connected with the estimation relative capacity attenuation calculation module and the real relative capacity attenuation test module, and is used for comparing the real relative capacity attenuation with the estimation relative capacity attenuation to obtain an estimation error and judging the size relationship between the estimation error and a preset allowable error;
the capacity attenuation model parameter correction module is respectively connected with the comparison judgment module and the capacity attenuation model parameter storage unit, and when the judgment result of the comparison judgment module is that the estimation error is larger than a preset allowable error, the capacity attenuation model parameter correction module corrects and updates the capacity attenuation model parameter by using the estimation error and stores the updated capacity attenuation model parameter into the capacity attenuation model parameter storage unit;
and the final capacity attenuation model output module is respectively connected with the comparison and judgment module and the capacity attenuation model parameter storage unit, and when the judgment result of the comparison and judgment module is that the estimation error is less than or equal to a preset allowable error, the final capacity attenuation model output module takes the capacity attenuation model parameters stored in the capacity attenuation model parameter storage unit as final capacity attenuation model parameters to obtain and output a final capacity attenuation model, wherein the final capacity attenuation model is used for estimating the relative capacity attenuation and the battery capacity of the battery to be detected in the future.
5. The battery capacity online estimation system according to claim 4, wherein in the capacity fading model parameter storage unit, the initialized capacity fading model parameters include: selecting the power to be testedInitializing a reference battery with the same type of battery and known final capacity attenuation model parameters, wherein A is a first parameter in a capacity attenuation model corresponding to the reference battery, and initializing the reference batteryInitializing z as a third parameter in the capacity fading model corresponding to the reference battery for a second parameter in the capacity fading model corresponding to the reference battery.
6. The system for online estimation of battery capacity according to claim 4, wherein the capacity fading model parameter modification module specifically comprises:
a first parameter modification module, configured to update the first parameter, where the first parameter modification formula is: a. thek=Ak-1+k1×Δξ;
A second parameter modification module, configured to update the second parameter, where the second parameter modification formula is:
a third parameter modification module, configured to update the third parameter, where the third parameter modification formula is: z is a radical ofk=zk-1+k3×Δξ,
Wherein k in the subscript represents the parameter after correction, k-1 in the subscript represents the parameter before correction, k1Representing a preset first correction factor, k2Representing a preset second correction factor, k3Represents a preset third correction coefficient, and Δ ξ represents the estimation error.
CN201410028099.6A 2014-01-21 2014-01-21 Method and system for estimating battery capacity online Active CN103760494B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410028099.6A CN103760494B (en) 2014-01-21 2014-01-21 Method and system for estimating battery capacity online

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410028099.6A CN103760494B (en) 2014-01-21 2014-01-21 Method and system for estimating battery capacity online

Publications (2)

Publication Number Publication Date
CN103760494A CN103760494A (en) 2014-04-30
CN103760494B true CN103760494B (en) 2017-02-01

Family

ID=50527763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410028099.6A Active CN103760494B (en) 2014-01-21 2014-01-21 Method and system for estimating battery capacity online

Country Status (1)

Country Link
CN (1) CN103760494B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020420A (en) * 2014-05-14 2014-09-03 可牛网络技术(北京)有限公司 Residual cell electricity determination method, device and mobile terminal
CN105116337B (en) * 2015-06-30 2017-10-27 中国人民解放军国防科学技术大学 A kind of full electric charge storage life evaluation method of lithium ion battery
CN106291386B (en) * 2016-09-20 2019-06-11 深圳市鑫彩翼科技有限公司 A kind of method of quick detection rechargeable battery capacity
EP3591800B1 (en) * 2018-07-03 2023-11-15 Schneider Electric IT Corporation Uninterruptible power suppy and non-transitory computer-readable medium
CN110764009B (en) * 2019-10-31 2021-09-28 重庆长安新能源汽车科技有限公司 Method for estimating battery pack circulation capacity and health state of electric automobile
CN112345954B (en) * 2020-10-21 2024-04-09 一汽解放汽车有限公司 Battery life prediction method, device, electronic equipment and medium
CN112986828B (en) * 2021-04-12 2025-02-28 上海电享信息科技有限公司 Methods for estimating battery health
CN115372849A (en) * 2021-05-21 2022-11-22 加百裕工业股份有限公司 How to detect the state of battery power
CN113702854B (en) * 2021-08-23 2024-01-02 欣旺达电子股份有限公司 Capacity aging calculation method, system, battery energy storage device and storage medium
CN115267546B (en) * 2022-06-24 2024-07-23 重庆长安汽车股份有限公司 Battery life model parameter fitting method
CN119064806B (en) * 2024-10-30 2025-03-18 宁德时代新能源科技股份有限公司 A differential capacitance measurement method, device, electronic equipment and medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900793A (en) * 2010-07-30 2010-12-01 盈正豫顺电子股份有限公司 Method for estimating residual time of battery discharge
CN103257323A (en) * 2013-06-03 2013-08-21 清华大学 Method for estimating lithium ion battery remaining available capacity

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11346444A (en) * 1998-06-02 1999-12-14 Toyota Motor Corp Estimating method of battery charged condition
US8154252B2 (en) * 2008-03-31 2012-04-10 Vanner, Inc. System and method for monitoring the state of charge of a battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900793A (en) * 2010-07-30 2010-12-01 盈正豫顺电子股份有限公司 Method for estimating residual time of battery discharge
CN103257323A (en) * 2013-06-03 2013-08-21 清华大学 Method for estimating lithium ion battery remaining available capacity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Integrated System Identification and State-of-Charge Estimation of Battery Systems;Lezhang Liu et al.;《IEEE TRANSACTIONS ON ENERGY CONVERSION》;20130331;第28卷(第1期);全文 *
插电式串联混合动力汽车的系统匹配与仿真;吴晓刚等;《汽车工程》;20130731;第35卷(第7期);全文 *

Also Published As

Publication number Publication date
CN103760494A (en) 2014-04-30

Similar Documents

Publication Publication Date Title
CN103760494B (en) Method and system for estimating battery capacity online
Xiong et al. A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles
CN107991623B (en) Battery ampere-hour integral SOC estimation method considering temperature and aging degree
US10466304B2 (en) Method for estimating a battery state of health
US10436850B2 (en) Power storage apparatus and controlling method for the same
Chu et al. Non-destructive fast charging algorithm of lithium-ion batteries based on the control-oriented electrochemical model
Xiong et al. A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles
Duong et al. Online state of charge and model parameters estimation of the LiFePO4 battery in electric vehicles using multiple adaptive forgetting factors recursive least-squares
Xiong et al. A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles
CN107576918B (en) Method and system for estimating residual electric quantity of lithium battery
CN102124354B (en) Apparatus and method for estimating battery resistance characteristics using battery voltage behavior
Huria et al. Simplified extended kalman filter observer for soc estimation of commercial power-oriented lfp lithium battery cells
US8046181B2 (en) Apparatus and method for estimating state of health of battery based on battery voltage variation pattern
US10101401B2 (en) Energy storage device management apparatus, energy storage device management method, energy storage device module, energy storage device management program, and movable body
US11022653B2 (en) Deterioration degree estimation device and deterioration degree estimation method
US11982720B2 (en) Method and battery management system for ascertaining a state of health of a secondary battery
CN108594135A (en) A kind of SOC estimation method for the control of lithium battery balance charge/discharge
US9983270B2 (en) State of charge estimation device and method of estimating state of charge
US20220082626A1 (en) Method for estimating state of health of battery
CN111416397A (en) Cell balancing method and device, control device, and computer-readable storage medium
KR102722271B1 (en) Battery management appratus, battery management method and battery pack
CN112213659B (en) Battery capacity correction method and test system
CN112666475B (en) State of charge estimation method for battery pack of electric vehicle
CN110133510B (en) A Hybrid Estimation Method for State of Charge (SOC) of Li-ion Batteries
KR102577581B1 (en) Method and system for estimating state of health(soh) of a battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210121

Address after: 833400 room 402, 4th floor, enterprise service center, management committee of Comprehensive Bonded Zone, Alashankou City, Bortala Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region

Patentee after: Alashankou Keyi innovation Equity Investment Co.,Ltd.

Address before: 100084-82 box 100084, Beijing, Haidian District

Patentee before: TSINGHUA University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220909

Address after: Department of Automotive Engineering, No. 1 Tsinghua Park, Haidian District, Beijing 100084

Patentee after: Hua Jianfeng

Patentee after: Tian Shuo

Address before: 833400 room 402, 4th floor, enterprise service center, management committee of Comprehensive Bonded Zone, Alashankou City, Bortala Mongolian Autonomous Prefecture, Xinjiang Uygur Autonomous Region

Patentee before: Alashankou Keyi innovation Equity Investment Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20221012

Address after: 011, 1f, building 91, No. 7, Jiuxianqiao North Road, Chaoyang District, Beijing 100015

Patentee after: BEIJING KEY POWER TECHNOLOGY Co.,Ltd.

Address before: Department of Automotive Engineering, No. 1 Tsinghua Park, Haidian District, Beijing 100084

Patentee before: Hua Jianfeng

Patentee before: Tian Shuo

TR01 Transfer of patent right