CN103755927A - 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法 - Google Patents

硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法 Download PDF

Info

Publication number
CN103755927A
CN103755927A CN201310743487.8A CN201310743487A CN103755927A CN 103755927 A CN103755927 A CN 103755927A CN 201310743487 A CN201310743487 A CN 201310743487A CN 103755927 A CN103755927 A CN 103755927A
Authority
CN
China
Prior art keywords
carbon nanotube
thiophene
dispersion liquid
poly
hexyl thiophene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310743487.8A
Other languages
English (en)
Other versions
CN103755927B (zh
Inventor
王峰
刘恺然
李志林
吉静
刘景军
贾怡
宋夜
覃事永
张良虎
康建忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Bluestar Beijing Chemical Machinery Co Ltd
Original Assignee
Beijing University of Chemical Technology
Bluestar Beijing Chemical Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology, Bluestar Beijing Chemical Machinery Co Ltd filed Critical Beijing University of Chemical Technology
Priority to CN201310743487.8A priority Critical patent/CN103755927B/zh
Publication of CN103755927A publication Critical patent/CN103755927A/zh
Application granted granted Critical
Publication of CN103755927B publication Critical patent/CN103755927B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

本发明一种硫化镉/聚3-己基噻吩/碳纳米管三元复合材料的制备方法,在乙腈、三氯甲烷混合溶剂中,利用化学接枝法制备聚3-己基噻吩接枝碳纳米管复合材料的方法,以及在四氢呋喃体系中,将硫化镉纳米颗粒负载于聚3-己基噻吩接枝碳纳米管表面的方法。本发明简单、易行、可控,制备所得的复合材料中,给体与受体间接触面积增大,提高了载流子的迁移率,适用于光伏器件中的活性层材料。

Description

硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法
技术领域
本发明属于有机-无机光电功能复合纳米材料领域,具体而言,涉及无机半导体纳米颗粒,噻吩类导电聚合物及碳纳米管复合材料的制备方法。
背景技术
相对于无机光电材料,有机光电材料由于其易加工,能大面积制备柔性器件,成本低等优点引起了科学界和工业界的广泛关注。但有机光电材料本身具有很多固有的缺点,如光电转化效率和迁移率相对较低等,限制了这类材料的发展和大规模应用。解决方法是将有机材料与无机材料复合形成杂化体系,充分利用二者优点,即无机材料高的载流子迁移率和有机材料的柔性和较大的光吸收系数, 提高光伏器件转化效率。 
有机光电材料中,聚3-己基噻吩具有规则的结构,合成步骤简单,有合适的溶解度,带宽适宜且有高的空穴传输率( μ=0.2/cm2·v-1·s-1) ,被认为是电子给体的最好材料之一。碳纳米管作为受体材料的研究开始于2002年,它在太阳能电池中的应用尚处于起步阶段。碳纳米管作为新型的光电材料,受到越来愈多的关注。碳纳米管具有独特的一维纳米结构,电子沿轴向运动,有较高载荷迁移率;其能隙宽度可以从零变化到与硅相等,与导电聚合物的能级可以较好的匹配。但是碳纳米管之间存在较强的范德华力,在大多数溶剂或聚合物基体中趋于聚集,难以发挥其优异物理性质。在有机太阳能电池中,有机材料与碳纳米管的兼容性是一个很难解决的问题,常常出现相分离及碳纳米管的团聚现象,减少了有效的给体/受体间的接触面积,进而大大影响电荷的传输。解决的方法是将聚合物共价连接在碳纳米管上,形成 D(给体)-A(受体) 二元体系,使电子和空穴传输得到兼容,减少相分离。硫化镉纳米粒子具有类似于原子中的电子分立能级结构和光跃迁特性,其能级结构可通过改变尺寸的大小进行调节,将硫化镉负载在聚3-己基噻吩层上可有效弥补其载流子迁移率、激子辐射率和荧光量子效率较低的不足。 
近年来,对于硫化镉、聚3-己基噻吩、碳纳米管作为光伏材料应用于太阳能电池的研究较多,但大多集中在两两杂化形成的二元异质结构复合材料,对于通过三种材料的杂化,制备的三元异质结构材料的研究几乎没有。本发明中,硫化镉、聚3-己基噻吩、碳纳米管相互结合形成A-D-A型异质结构材料,可综合三者优势提供大的给体/受体接触面积,使在聚3-己基噻吩层中产生的激子得到有效分离,提高光电转换效率。另外,与单纯的共混相比,由于聚3-己基噻吩与碳纳米管之间由化学键连接,相互作用较强,碳纳米管的桥梁作用更加明显,更有利于电子的传输。
发明内容
本发明的主要目的是提供一种硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料的制备方法。
在本发明中,除非有特殊说明,所述重量份与体积份的比为g/ml。
本发明一方面涉及一种聚3-己基噻吩接枝碳纳米管复合材料的制备方法,所述复合材料中,聚3-己基噻吩均匀包覆于碳纳米管表面,厚度为3~50nm,复合材料中聚3-己基噻吩所占比例为25%~80%,其特征在于所述的制备方法包括如下步骤:
(1)将碳纳米管放于反应容器中,加入二甲基甲酰胺(DMF)、吡啶及氯化亚砜(SOCl2),三者体积比例为1-2:1-2:10-20,其中1重量份的碳纳米管对应加入0.1体积份的氯化亚砜;水浴加热至50~100℃,磁力搅拌12~60h;待反应溶液冷却至室温后,利用0.2-0.3μm的微孔滤膜进行真空抽滤,并用四氢呋喃(THF)反复冲洗产物;将产物放于真空干燥箱干燥24h以上,得到酰氯化碳纳米管;
(2)取0.05重量份~0.7重量份酰氯化碳纳米管放于反应容器中,依次加入0.05~0.7 体积份吡啶,0.05~0.7 体积份噻吩类单体以及10~100体积份三氯甲烷,水浴加热至50~100℃,磁力搅拌12~60 h;反应完毕后,利用0.2-0.3μm的微孔滤膜进行真空抽滤,并用三氯甲烷反复冲洗产物后,将产物放于真空干燥箱干燥24小时以上,得到噻吩类单体接枝碳纳米管;
(3)称取0.0001~0.0008 重量份噻吩类单体接枝碳纳米管,放于反应容器中,加入5~30体积份乙腈,磁力搅拌5~30 min,得到噻吩类单体接枝碳纳米管分散液;
(4)取3- 己基噻吩(3HT)单体0.1~0.4 体积份,加至噻吩类单体接枝碳纳米管分散液中,磁力搅拌5~30min,得到噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液;
(5)取无水三氯化铁(FeCl3)置于反应容器中,加入2~15体积份乙腈,超声分散5~30min,得到三氯化铁分散液,将无水三氯化铁分散液加至噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液中,加入10~60体积份三氯甲烷,反应3~12h;反应后的溶液分别以甲醇、甲苯、三氯甲烷为溶剂进行多次离心洗涤,直至上清液为无色透明,进行索式提取6-8d,得到聚3-己基噻吩接枝碳纳米管复合材料。
本发明的一个优选实施方式中,所述的碳纳米管为酸化碳纳米管。
本发明的一个优选实施方式中,在步骤(2)中,所述的噻吩类单体是噻吩-3-乙醇(3TE)。
本发明的一个优选实施方式中,3-己基噻吩与无水三氯化铁的摩尔量之比为1:1~8。
本发明的一个优选实施方式中,在步骤(5)中,无水三氯化铁分散液的加入方式为逐滴加入。
本发明的一个优选实施方式中,在步骤(5)中,所述的溶剂体系是乙腈与三氯甲烷的混合溶剂,比例为1:1~10。
本发明的一个优选实施方式中,在步骤(5)中,在冰浴条件下将无水三氯化铁分散液加至噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液中。
在本发明的另一方面,还涉及一种硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法,所述的方法包括上述聚3-己基噻吩接枝碳纳米管复合材料的制备方法,还包括以下步骤:
(1)取0.001~0.01重量份聚3-己基噻吩接枝碳纳米管复合材料置于反应容器中,加入8-12体积份四氢呋喃(THF),搅拌5~30min,得到聚3-己基噻吩接枝碳纳米管复合材料分散液;
(2)称量硫源和镉源置于反应容器,加入10~50体积份四氢呋喃,超声5~30min,得到硫源和镉源分散液;将硫源和镉源分散液加至聚3-己基噻吩接枝碳纳米管复合材料分散液中,磁力搅拌5~30 min,得到硫源、镉源及聚3-己基噻吩接枝碳纳米管复合材料的分散液;
(3)称取还原剂置于另外的容器中,加入5~20 体积份四氢呋喃,超声5~30 min得到还原剂的分散液;将还原剂的分散液加至硫源、镉源及聚3-己基噻吩接枝碳纳米管复合材料的分散液中,反应3~10 h;反应后的溶液以去离子水多次离心洗涤,得到硫化镉/聚3-己基噻吩/碳纳米管复合材料。
本发明的一个优选实施方式中,所述的硫源为沉降硫,镉源为硝酸镉。
本发明的一个优选实施方式中,所述的还原剂为硼氢化钾(KBH4)和/或硼氢化钠(NaBH4)。
本发明的一个优选实施方式中,硫源、镉源及还原剂的摩尔比为1:1:1~1:4:2。
本发明的一个优选实施方式中,在步骤(3)中,在冰浴条件下将还原剂的分散液加至硫源、镉源及聚3-己基噻吩接枝碳纳米管复合材料的分散液中。
本发明的一个优选实施方式中,在步骤(3)中,还原剂的加入方式为逐滴加入。
在本发明的另一个优选实施方式中,所述复合材料中硫化镉的平均粒径在15~20nm左右;优选的,所述硫化镉为立方闪锌矿结构。
本发明采用混合溶剂的体系,主要通过改变体系中三氯化铁与单体的比例及混合溶剂中乙腈与三氯甲烷的比例,制备出了具有不同接枝层厚度的聚3-己基噻吩接枝碳纳米管复合材料。所制备的材料给体与受体间接触面积增大,增大了材料的载流子迁移率。
本发明采用还原法,主要通过改变体系中硫源、镉源及还原剂配比,实现了了不同粒径及分布密度硫化镉的负载,本发明的制备方法简单、易行、可控,制备所得的复合材料中,给体与受体间接触面积增大,提高了载流子的迁移率,适用于光伏器件中的活性层材料,制备出了形貌良好的到硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料,在光伏器件领域具有很好的应用前景。
附图说明
图1是实施例1所得聚3-己基噻吩接枝碳纳米管复合材料的透射电子显微镜图片;
图2是实施例2所得聚3-己基噻吩接枝碳纳米管复合材料的透射电子显微镜图片;
图3是实施例1所得硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料的扫描电子显微镜图片;
图4是实施例2所得硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料的扫描电子显微镜图片;
图5是实施例1,2所得硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料的X射线衍射图;
图6是实施例1,2所得聚3-己基噻吩接枝碳纳米管复合材料的载流子迁移率,由霍尔效应测试得到。
具体实施方式
实施例1
乙腈与三氯甲烷体积比1:5,硼氢化钾、沉降硫及硝酸镉的摩尔比为1:2:1制备的复合材料:
(1)将酸化碳纳米管0.5g放于烧瓶,加入二甲基甲酰胺(DMF)2.5ml、吡啶2.5ml及氯化亚砜(SOCl2)50ml,水浴加热至70-100℃,磁力搅拌24-48h。待反应溶液冷却后,利用0.2 μm的微孔滤膜进行真空抽滤,并用大量四氢呋喃(THF)反复冲洗产物;后将产物放于真空干燥箱干燥24 h,得到酰氯化碳纳米管。
(2)取0.1g酰氯化碳纳米管放于烧瓶,依次加入0.15-0.30ml吡啶,0.15-0.30 ml噻吩3-乙醇单体以及50-80三氯甲烷,水浴加热至50℃,磁力搅拌36 h;反应完毕后,利用0.2 μm的微孔滤膜进行真空抽滤,并用大量三氯甲烷反复冲洗产物后,将产物放于真空干燥箱干燥24 h,得到噻吩3-乙醇接枝碳纳米管。
(3)称取0.4mg噻吩3-乙醇接枝碳纳米管,放于单口烧瓶,加入乙腈3ml,磁力搅拌30 min,得到噻吩3-乙醇接枝碳纳米管分散液。
(4)取3- 己基噻吩(3HT)单体0.4ml,加至噻吩3-乙醇接枝碳纳米管分散液中,磁力搅拌30min,得到噻吩3-乙醇接枝碳纳米管及3-己基噻吩单体分散液。
(5)称取无水三氯化铁(FeCl3)置于小烧杯,使噻吩单体与无水三氯化铁的摩尔比为1:2,加入乙腈3ml,超声分散30 min,得到三氯化铁分散液。在冰浴的条件下,将无水三氯化铁分散液加至噻吩3-乙醇接枝碳纳米管及3-己基噻吩单体分散液中,加入三氯甲烷30ml,使整个体系中乙腈与三氯甲烷的体积比为1:5,反应12 h;反应后的溶液分别以甲醇、甲苯、三氯甲烷为溶剂进行多次离心洗涤,直至上清液为无色透明,进行索式提取约7天,得到聚3-己基噻吩接枝碳纳米管复合材料。
(6)取4 mg聚3-己基噻吩接枝碳纳米管复合材料置于烧瓶,加入10 ml四氢呋喃(THF),磁力搅拌30 min,得到聚3-己基噻吩接枝碳纳米管复合材料分散液。
(7)将沉降硫0.001g和硝酸镉0.005g置于烧杯,加入10 ml四氢呋喃,超声30 min,得到沉降硫和硝酸镉分散液。将沉降硫和硝酸镉分散液加至聚3-己基噻吩接枝碳纳米管复合材料分散液中,磁力搅拌30 min,得到沉降硫、硝酸镉及聚3-己基噻吩接枝碳纳米管复合材料的分散液。
(8)称取硼氢化钾0.008g置于烧杯,加入5-10ml四氢呋喃,使硼氢化钾、沉降硫及硝酸镉的摩尔比为1:2:1,超声30 min得到还原剂的分散液。在冰浴条件下,将硼氢化钾的分散液加至沉降硫、硝酸镉及聚3-己基噻吩接枝碳纳米管复合材料的分散液中,反应5h。反应后的溶液以去离子水多次离心洗涤,得到硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料。
通过透射电子显微镜图片(图1)可证实制备出的聚3-己基噻吩接枝碳纳米管复合材料中聚3-己基噻吩层均匀包覆于碳纳米管表面。通过扫描电子显微镜图片(图3)可证实硫化镉纳米粒子均匀的负载在碳纳米管表面,而且粒径在15~20nm左右,X射线衍射图(图5)可证实负载的硫化镉纳米粒子为立方闪锌矿结构。
实施例2
乙腈与三氯甲烷体积比1:10,硼氢化钾、沉降硫及硝酸镉的摩尔比为1:1.5:1制备的复合材料:
(1)将酸化碳纳米管0.5g放于烧瓶,加入二甲基甲酰胺(DMF)2.5ml、吡啶2.5ml及氯化亚砜(SOCl2)50ml,水浴加热至70-100℃,磁力搅拌24-48h。待反应溶液冷却后,利用0.2 μm的微孔滤膜进行真空抽滤,并用大量四氢呋喃(THF)反复冲洗产物;后将产物放于真空干燥箱干燥24 h,得到酰氯化碳纳米管。
(2)取0.1 g酰氯化碳纳米管放于烧瓶,依次加入0.15-0.30 ml吡啶,0.15-030 ml噻吩3-乙醇单体以及50-80 ml三氯甲烷,水浴加热至50℃,磁力搅拌36h;反应完毕后,利用0.2 μm的微孔滤膜进行真空抽滤,并用大量三氯甲烷反复冲洗产物后,将产物放于真空干燥箱干燥24 h,得到噻吩3-乙醇接枝碳纳米管。
(3)称取0.4 mg噻吩3-乙醇接枝碳纳米管,放于单口烧瓶,加入乙腈1ml,磁力搅拌30 min,得到噻吩3-乙醇接枝碳纳米管分散液。
(4)取3- 己基噻吩(3HT)单体0.4 ml,加至噻吩3-乙醇接枝碳纳米管分散液中,磁力搅拌30 min,得到噻吩3-乙醇接枝碳纳米管及3-己基噻吩单体分散液。
(5)称取无水三氯化铁(FeCl3)置于小烧杯,使噻吩单体与无水三氯化铁的摩尔比为1:2,加乙腈2ml,超声分散30 min,得到三氯化铁分散液。在冰浴条件下,将无水三氯化铁分散液加至噻吩3-乙醇接枝碳纳米管及3-己基噻吩单体分散液中,加入三氯甲烷30ml,使整个体系中乙腈与三氯甲烷的体积比为1:10,反应12 h;反应后的溶液分别以甲醇、甲苯、三氯甲烷为溶剂进行多次离心洗涤,直至上清液为无色透明,进行索式提取约7d,得到聚3-己基噻吩接枝碳纳米管复合材料。
(6)取4mg聚3-己基噻吩接枝碳纳米管复合材料置于烧瓶,加入10 ml四氢呋喃(THF),磁力搅拌30 min,得到聚3-己基噻吩接枝碳纳米管复合材料分散液。
(7)称量沉降硫0.0008g和硝酸镉0.005g置于烧杯,加入10ml四氢呋喃,超声30 min,得到沉降硫和硝酸镉分散液。将沉降硫和硝酸镉分散液加至聚3-己基噻吩接枝碳纳米管复合材料分散液中,磁力搅拌30 min,得到沉降硫、硝酸镉及聚3-己基噻吩接枝碳纳米管复合材料的分散液。
(8)称取硼氢化钾置于烧杯,加入5-10ml四氢呋喃,使硼氢化钾、沉降硫及硝酸镉的摩尔比为1:1.5:1,超声30 min得到还原剂的分散液。在冰浴条件下,将硼氢化钾的分散液加至沉降硫、硝酸镉及聚3-己基噻吩接枝碳纳米管复合材料的分散液中,反应5h。反应后的溶液以去离子水多次离心洗涤,得到硫化镉/聚3-己基噻吩/碳纳米管三元异质结构材料。
通过透射电子显微镜图片(图2)可证实制备出的聚3-己基噻吩接枝碳纳米管复合材料中聚3-己基噻吩层均匀包覆于碳纳米管表面。通过扫描电子显微镜图片(图4)可证实硫化镉纳米粒子均匀的负载在炭黑表面,而且粒径在10 nm左右。X射线衍射图(图5)可证实负载的硫化镉纳米粒子为立方闪锌矿结构。
以上实施例显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,而不是以任何方式限制本发明的范围,在不脱离本发明范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的范围内。

Claims (10)

1.一种聚3-己基噻吩接枝碳纳米管复合材料的制备方法,所述复合材料中,聚3-己基噻吩均匀包覆于碳纳米管表面,厚度为3~50nm,复合材料中聚3-己基噻吩所占比例为25%~80%,其特征在于所述的制备方法包括如下步骤:
(1)将碳纳米管放于反应容器中,加入二甲基甲酰胺(DMF)、吡啶及氯化亚砜(SOCl2),三者体积比例为1-2:1-2:10-20,其中1重量份的碳纳米管对应加入0.1体积份的氯化亚砜;水浴加热至50~100℃,磁力搅拌12~60h;待反应溶液冷却至室温后,利用0.2-0.3μm的微孔滤膜进行真空抽滤,并用四氢呋喃(THF)反复冲洗产物;将产物放于真空干燥箱干燥24h以上,得到酰氯化碳纳米管;
(2)取0.05 ~0.7重量份酰氯化碳纳米管放于反应容器中,依次加入0.05~0.7 体积份吡啶,0.05~0.7 体积份噻吩类单体以及10~100体积份三氯甲烷,水浴加热至50~100℃,磁力搅拌12~60 h;反应完毕后,利用0.2-0.3μm的微孔滤膜进行真空抽滤,并用三氯甲烷反复冲洗产物后,将产物放于真空干燥箱干燥24小时以上,得到噻吩类单体接枝碳纳米管;
(3)称取0.0001~0.0008 重量份噻吩类单体接枝碳纳米管,放于反应容器中,加入5~30体积份乙腈,磁力搅拌5~30 min,得到噻吩类单体接枝碳纳米管分散液;
(4)取3- 己基噻吩(3HT)单体0.1~0.4 体积份,加至噻吩类单体接枝碳纳米管分散液中,磁力搅拌5~30min,得到噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液;
(5)取无水三氯化铁(FeCl3)置于反应容器中,加入2~15体积份乙腈,超声分散5~30min,得到三氯化铁分散液,将无水三氯化铁分散液加至噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液中,加入10~60体积份三氯甲烷,反应3~12h;反应后的溶液分别以甲醇、甲苯、三氯甲烷为溶剂进行多次离心洗涤,直至上清液为无色透明,进行索式提取6-8d,得到聚3-己基噻吩接枝碳纳米管复合材料。
2.根据权利要求1所述的制备方法,所述的碳纳米管为酸化碳纳米管。
3.根据权利要求1所述的制备方法,在步骤(2)中,所述的噻吩类单体是噻吩-3-乙醇(3TE)。
4.根据权利要求1所述的制备方法,3-己基噻吩与无水三氯化铁的摩尔量之比为1:1~8。
5.根据权利要求1所述的制备方法,在步骤(5)中,无水三氯化铁分散液的加入方式为逐滴加入。
6.根据权利要求1所述的制备方法,在步骤(5)中,所述的溶剂体系是乙腈与三氯甲烷的混合溶剂,比例为1:1~10。
7.根据权利要求1所述的制备方法,在步骤(5)中,在冰浴条件下将无水三氯化铁分散液加至噻吩类单体接枝碳纳米管及3-己基噻吩单体分散液中。
8.一种硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法,所述的方法包括上述聚3-己基噻吩接枝碳纳米管复合材料的制备方法,还包括以下步骤:
(1)取0.001~0.01重量份聚3-己基噻吩接枝碳纳米管复合材料置于反应容器中,加入8-12体积份四氢呋喃(THF),搅拌5~30min,得到聚3-己基噻吩接枝碳纳米管复合材料分散液;
(2)称量硫源和镉源置于反应容器,加入10~50体积份四氢呋喃,超声5~30min,得到硫源和镉源分散液;将硫源和镉源分散液加至聚3-己基噻吩接枝碳纳米管复合材料分散液中,磁力搅拌5~30 min,得到硫源、镉源及聚3-己基噻吩接枝碳纳米管复合材料的分散液;
(3)称取还原剂置于另外的容器中,加入5~20 体积份四氢呋喃,超声5~30 min得到还原剂的分散液;将还原剂的分散液加至硫源、镉源及聚3-己基噻吩接枝碳纳米管复合材料的分散液中,反应3~10 h;反应后的溶液以去离子水多次离心洗涤,得到硫化镉/聚3-己基噻吩/碳纳米管复合材料。
9.根据权利要求8所述的制备方法,所述的硫源为沉降硫,镉源为硝酸镉。
10.根据权利要求8所述的制备方法,硫源、镉源及还原剂的摩尔比为1:1:1~1:4:2。
CN201310743487.8A 2013-12-30 2013-12-30 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法 Expired - Fee Related CN103755927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310743487.8A CN103755927B (zh) 2013-12-30 2013-12-30 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310743487.8A CN103755927B (zh) 2013-12-30 2013-12-30 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN103755927A true CN103755927A (zh) 2014-04-30
CN103755927B CN103755927B (zh) 2016-05-04

Family

ID=50523269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310743487.8A Expired - Fee Related CN103755927B (zh) 2013-12-30 2013-12-30 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN103755927B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774432A (zh) * 2015-04-15 2015-07-15 华中科技大学 一种聚3-己基噻吩/碳纳米管复合材料及制备方法
CN112852065A (zh) * 2021-01-14 2021-05-28 安徽大学 一种CNTs复合材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045838A1 (en) * 2004-08-24 2006-03-02 General Electric Company Nanotubes and methods of dispersing and separating nanotubes
CN1923888A (zh) * 2006-09-27 2007-03-07 北京交通大学 一种制备聚噻吩或其衍生物-多壁碳纳米管复合材料的方法
CN101298510A (zh) * 2008-06-19 2008-11-05 同济大学 一种聚噻吩-碳纳米管复合光敏性薄膜材料及其制备方法
CN101345290A (zh) * 2008-09-05 2009-01-14 中国科学院化学研究所 一种硫化镉/有机半导体异质结纳米线及其制备方法
US20090205713A1 (en) * 2008-02-19 2009-08-20 New Jersey Institute Of Technology Carbon Nanotubes As Charge Carriers In Organic and Hybrid Solar Cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060045838A1 (en) * 2004-08-24 2006-03-02 General Electric Company Nanotubes and methods of dispersing and separating nanotubes
CN1923888A (zh) * 2006-09-27 2007-03-07 北京交通大学 一种制备聚噻吩或其衍生物-多壁碳纳米管复合材料的方法
US20090205713A1 (en) * 2008-02-19 2009-08-20 New Jersey Institute Of Technology Carbon Nanotubes As Charge Carriers In Organic and Hybrid Solar Cells
CN101298510A (zh) * 2008-06-19 2008-11-05 同济大学 一种聚噻吩-碳纳米管复合光敏性薄膜材料及其制备方法
CN101345290A (zh) * 2008-09-05 2009-01-14 中国科学院化学研究所 一种硫化镉/有机半导体异质结纳米线及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANH PHUONG LE ET AL.: "Synthesis and Optoelectronic Behavior of Conjugated Polymer Poly(3-hexylthiophene) Grafted on Mutiwalled Carbon Nanotubes", 《JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS》 *
ANH PHUONG LE ET AL.: "Synthesis and Optoelectronic Behavior of Conjugated Polymer Poly(3-hexylthiophene) Grafted on Mutiwalled Carbon Nanotubes", 《JOURNAL OF POLYMER SCIENCE PART B: POLYMER PHYSICS》, vol. 49, no. 8, 8 February 2011 (2011-02-08) *
周田 等: "CdS/石墨烯纳米复合材料的超声化学法制备及光催化性能", 《无机化学学报》 *
李现化: "rr-P3HT/CdS/CNT三元异质结构制备及光电性能研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774432A (zh) * 2015-04-15 2015-07-15 华中科技大学 一种聚3-己基噻吩/碳纳米管复合材料及制备方法
CN112852065A (zh) * 2021-01-14 2021-05-28 安徽大学 一种CNTs复合材料及其制备方法和应用
CN112852065B (zh) * 2021-01-14 2024-04-02 安徽大学 一种CNTs复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN103755927B (zh) 2016-05-04

Similar Documents

Publication Publication Date Title
Lin et al. Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency
Xiang et al. A review on electronically conducting polymers for lithium-sulfur battery and lithium-selenium battery: Progress and prospects
Landi et al. Single‐wall carbon nanotube–polymer solar cells
CN101661994B (zh) 一种无需真空过程制备有机聚合物太阳能电池的方法
CN104788649B (zh) 一种电子传输层材料及钙钛矿太阳电池
CN102447064A (zh) 一种聚合物太阳能电池及其制备方法
CN102774871B (zh) 一种p型CuxSy半导体纳米晶、制备方法及其应用
CN102646745A (zh) 一种光伏器件及太阳能电池
Oseni et al. Bimetallic nanocomposites and the performance of inverted organic solar cell
TW201042792A (en) Photovoltaic cell having nanodots and method for forming the same
Tang et al. Broad-band plasmonic Cu-Au bimetallic nanoparticles for organic bulk heterojunction solar cells
CN102338941B (zh) 碲化镉量子点接枝石墨烯-碳纳米管复合薄膜光开关材料及制备
Nguyen et al. Hybrid materials based on polymer nanocomposites for environmental applications
Wei et al. Modification of carbon nanotubes with 4-mercaptobenzoic acid-doped polyaniline for quantum dot sensitized solar cells
WO2012019472A1 (en) Method for producing fully aqueous phase-synthesized nanocrystals/conducting polymer hybrid solar cell
Manikandan et al. Ternary composite based on NiCo2O4/rGO/PANI as an efficient Pt free tri-iodide reducing agent for dye-sensitized solar cell application
CN103159925A (zh) 异靛基共聚物太阳能电池材料及其制备方法和应用
CN103755927B (zh) 硫化镉/聚3-己基噻吩/碳纳米管复合材料的制备方法
CN102391533B (zh) 一种基于聚噻吩-富勒烯-聚乳酸三嵌段共聚物的纳米有序多孔有机薄膜的制备方法
Yan et al. Step-by-step build-up of ordered p–n heterojunctions at nanoscale for efficient light harvesting
CN103413892B (zh) 一种合金量子点PbSxSe1-x及其制备方法和在太阳能电池中的应用
CN105602567B (zh) 碲汞镉量子点与碳纳米管纳米复合材料在提高光转换效率中的应用
CN109935662A (zh) 电子传输材料及其制备方法、发光二极管
Pandey et al. Single Step Blending of PEDOT: PSS/SPGO Nanocomposite via low temperature solid phase addition of graphene oxide for effective hole transport layer in organic solar cells
Ike et al. Silver doped ZnS core-shell nanocomposites to promote photon harvesting in polymer cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160504

Termination date: 20181230