CN103732718A - 滑溜水压裂的方法 - Google Patents

滑溜水压裂的方法 Download PDF

Info

Publication number
CN103732718A
CN103732718A CN201280038046.1A CN201280038046A CN103732718A CN 103732718 A CN103732718 A CN 103732718A CN 201280038046 A CN201280038046 A CN 201280038046A CN 103732718 A CN103732718 A CN 103732718A
Authority
CN
China
Prior art keywords
fracturing fluid
polyethylene oxide
ionic polymers
propping agent
aqueous fracturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280038046.1A
Other languages
English (en)
Other versions
CN103732718B (zh
Inventor
孙宏
渠祁
R·史蒂文斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Publication of CN103732718A publication Critical patent/CN103732718A/zh
Application granted granted Critical
Publication of CN103732718B publication Critical patent/CN103732718B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/90Compositions based on water or polar solvents containing organic compounds macromolecular compounds of natural origin, e.g. polysaccharides, cellulose
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/08Pipe-line systems for liquids or viscous products
    • F17D1/16Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity
    • F17D1/17Facilitating the conveyance of liquids or effecting the conveyance of viscous products by modification of their viscosity by mixing with another liquid, i.e. diluting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/28Friction or drag reducing additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Revetment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明涉及一种地下岩层的滑溜水水力压裂方法,其包括向井筒中引入包含非离子聚合物和聚环氧乙烷的含水压裂流体。

Description

滑溜水压裂的方法
技术领域
本发明涉及一种用于由井筒穿透的地下岩层的水力压裂的新方法。
背景技术
水力压裂技术被广泛用于增产来自低渗透性储层的产油和产气。在水力压裂过程中,将流体在导致裂缝的高压下注入井筒中来扩大井筒周围和进入地下岩层。通常支撑剂例如砂子被包括在所述压裂流体中,从而在处理完成时保持裂缝打开。理想的,水力压裂产生了与大面积岩层的高导通(high conductivity communication),这能够提高产油和产气的速率。
滑溜水压裂(slickwater fracturing)是一种类型的水力压裂,其使用了低粘度含水流体来引起地下裂缝。滑溜水流体基本上是新鲜水或者盐水,其具有足够的减摩剂来使得管式摩擦压力最小。这样的流体通常具有仅仅略高于未掺杂的新鲜水或盐水的粘度。典型的,滑溜水中存在的减摩剂不会将所述压裂流体的粘度增加超过1-2厘泊(cP)。
滑溜水流体经常包含支撑剂。由于所述滑溜水流体的低粘度,它携带支撑剂的能力低于用于非滑溜水压裂的交联的聚合物凝胶。较低浓度的支撑剂需要更高体积的压裂流体来将足量的支撑剂放入所产生的裂缝中。还关注了支撑剂从井筒水平段、歧管管线和泵内的低粘度压裂流体的沉降。在放置期望的体积之前,水平井筒内过多的支撑剂沉降会导致必须停止压裂处理。所述支撑剂还会在它完全到达井口之前沉降在歧管管线中。所述支撑剂甚至会沉降在泵中,导致活塞损坏。当支撑剂由高压缩强度的物质例如陶瓷构成时,这个问题尤其突出。典型的,当淤浆流动速度和/或粘度不足以使支撑剂悬浮时,会出现沉降。为了缓解沉降问题,使用高的泵送速率来有效悬浮所述支撑剂,用于输送。但是,高泵送速率会导致高于期望的泵送压力和过大的裂缝高度增长。此外,因为歧管具有不同的尺寸,因此仅仅改变一个区域中的流体泵送速率不会解决另一区域的问题。因为需要大量的压裂流体,因此高速的流体流动和地下岩层的不规则形、摩擦导致的能量损失经常会阻止岩层的有效压裂。
流体流过管道引起了摩擦能量损失。所述管道中所述液体压力在流体流动方向上降低。对于具有固定直径的管道来说,这种压力降低随着流动速率的增加而增加。所述压力降低意味着能量损失。滑溜水压裂依赖于典型的高于100bpm的高泵送速率;因此,大量的能量损失可归因于管道和压裂流体之间的摩擦。
在流变学中,雷诺数是在流动条件下流体的惯性力与粘性力的无量纲比率。雷诺数可以用于表征作为层流或湍流的流体流动。当粘性力超过惯性力时发生了层流,产生了低的雷诺数。当惯性力超过粘性力时发生湍流,产生了高的雷诺数。当流体在平行片或者同轴层中流动时发生了层流,在层之间几乎没有混合。湍流与层流相反,并且在存在垂直于流体流动的错流时发生,这产生了横向的混合和漩涡。
通常,高分子量线性聚合物被用于改变流体的流变性,以使得湍流最小化,由此防止随之发生的流体在泵送穿过管道时流体中的能量损失。良好的减摩剂将在小浓度时引起摩擦力大的降低,这将是不昂贵的,将是环境友好的和将具有高剪切、温度和压力的稳定性。
最常见的减摩剂是聚丙烯酰胺(PAM)聚合物。还开发了各种共聚物来进一步提高聚丙烯酰胺减摩剂的性能。丙烯酰氨基-2-甲基丙烷磺酸钠(AMPS钠)和丙烯酸是这些共聚物中除了丙烯酰胺之外的常见单体,用于改进减摩剂的水合。
通常,处理这样的高分子量聚合物是困难的,这归因于在制成淤浆时它们低的水合速率和高的粘度。为了避免这些问题,基于聚丙烯酰胺的聚合物经常被配制到乳液中或者被制成乳液,在其中将所述聚合物分散到烃类溶剂例如矿物油中,并且用表面活性剂稳定。但是,这也具有缺点,其归因于在如果溢出的情况中烃类和表面活性剂的环境毒性和与烃类溶剂有关的潜在的火灾危险。
许多聚合物减摩剂在低分子量添加剂如酸、碱和盐存在下表现出降低的性能。离子带电的聚合物特别易于受影响。例如,含有丙烯酸酯单体的聚合物,无论是作为共聚物加入还是来自聚丙烯酰胺水解,都具有与高钙盐水降低的相容性。所述添加剂掩蔽了聚合物主链上的电荷,这降低了聚合物的流体力学半径。随着有效聚合物长度的降低,减少摩擦作用也降低。
水力压裂已经给油气工业带来了益处。许多油气井已经由于所述程序而产生了更大的生产率。但是,水力压裂工业现在面临着日益增加的详细审查和政府管制。所述工业被要求研究更加环境友好的化学品来放置到它们的水力压裂流体中。
另外,水力压裂操作需要大体积的水。新鲜的水在某些区域会是一个限制因素。滑溜水压裂组合物(其可以使用多种水源,例如在充分处理后由岩层或者回流水所产生的水)能够显著增强油田适用性。
持续需要开发下述滑溜水压裂流体:其具有有效的减摩性来使得能量损失最小化,但是仍然具有对于携带支撑剂能力来说足够的粘度,同时是安全的和环境友好的。
发明内容
发明概述
本发明涉及一种滑溜水压裂的方法,其包括向井筒中引入包含非离子聚合物和聚环氧乙烷的含水压裂流体。聚环氧乙烷(PEO)为压裂流体提供了减摩性,以使得它能够更有效的泵送入地下岩层中。但是,聚环氧乙烷倾向于剪切降解,这通常是在源自于高压泵送的湍流条件下发生的。将非离子聚合物包括在所述压裂组合物中来吸收剪切力和保护聚环氧乙烷免于降解。所述非离子聚合物还增加了所述压裂流体的粘度,来提供有效的携带支撑剂的能力。
所述非离子聚合物可以是下述的任何聚合物:其抑制了聚环氧乙烷的剪切降解和赋予了足够的粘度来有效地携带支撑剂进入所形成的裂缝中。在最优选的实施方案中,瓜尔胶是用于所述压裂流体的非离子聚合物。在另一优选的实施方案中,瓜尔胶衍生物是所述非离子聚合物。
支撑剂可以加入所述压裂流体中。
所述压裂流体组合物可以包括表面活性剂。可以使用非离子表面活性剂(不同于所述非离子聚合物或PEO)。可以使用阳离子或阴离子或者两性离子表面活性剂。
本发明的这些和其它特征、方面和优点将参考下面的说明书和权利要求而变得更好理解。
附图说明
本发明的特征、方面和优点将参考下面的说明书、附加的权利要求和附图而变得更好理解:
图1显示了聚环氧乙烷和聚丙烯酰胺之间的摩擦降低百分比和水合时间的流动回路测试(a flow loop test)的比较;
图2显示了在聚环氧乙烷和瓜尔胶的四种混合物上进行的流动回路测试的结果;
图3显示了聚环氧乙烷/瓜尔胶混合物与聚丙烯酰胺减摩剂的流动回路测试的比较,它们全部由回流水制成。
具体实施方式
下面描述本发明的示例性实施方案,因为它们可以用于操作中和用于油田应用的处理中。为了清楚起见,在本说明书中没有描述实际实施的全部特征。当然应当理解在任何这样的实际实施方案的开发中,必须进行诸多的实施特定决定,来实现开发者的特定目标,其将因实施的不同而不同。此外,应当理解这样的开发努力可能是复杂的和耗时的,但是对于受益于本发明的本领域技术人员来说仍然是例行的举措。本发明各种实施方案的进一步的方面和优点将通过考虑下面的说明书而变得显而易见。
本发明涉及一种滑溜水压裂方法,其包括向井筒中引入含水压裂流体,所述压裂流体包含聚环氧乙烷和非聚环氧乙烷的非离子聚合物。所述压裂流体典型的不包含交联剂,并且所述压裂流体中存在的组分是未交联的。
所述压裂流体的粘度典型的在300rpm小于15cP,更典型的在300rpm小于3cP。
典型的,所述压裂流体中所述聚环氧乙烷和所述非离子聚合物的重量比是大约20:1-大约1:20,更典型的大约5:1-大约1:5。
所述含水压裂流体能够将滑溜水压裂操作中的摩擦力降低高达60%。
聚环氧乙烷(PEO)是一种直链的高分子量聚合物,其充当了用于所述压裂流体的减摩剂,以使得它能够更有效的泵送到地下岩层。迄今为止,PEO作为减摩剂的用途“并未用于石油工业中,因为当注射或者处于湍流下时,它易于剪切降解”。MALCOM A.KELLAND,PRODUCTION CHEMICALSFOR THE OIL AND GAS INDUSTRY 392(CRC出版社,2009)。将非离子聚合物包括在压裂组合物中来吸收剪切力和保护PEO免于降解。将含有100%的PEO的压裂流体与含有本文定义的重量比的PEO和非离子聚合物的压裂流体相比,来自压裂流体湍流的剪切降解降低了至少15%和更典型的高达40%。所述非离子聚合物还赋予压裂流体以它所具有的减摩能力和增加了粘度,来提供有效的携带支撑剂的能力。
聚环氧乙烷是一种中性聚合物;因此,它具有低的对于用于制造压裂流体的水源的盐度的敏感性。PEO还包含氧作为沿着它的聚合物主链的重复单元。这赋予所述聚合物极性和对于水的强亲和性,其转化成快速的水合时间,甚至在非常低的温度也是如此。此外,PEO被环境保护机构认为是一种惰性成分,并因此是环境友好的。
在一个优选的实施方案中,所述压裂流体所用的所述聚环氧乙烷的重均分子量是大约1M-大约20M,更优选大约2M-大约10M。典型地,所述压裂流体中PEO的量是大约10ppm-大约400ppm,更典型的大约20ppm-大约100ppm。
在一个方面,干燥的固相PEO可以用于在井位置制造压裂流体。但是,干燥聚合物难以加入到流体中,需要专门的设备以及显著的能量和耗水量来确保所述干燥聚合物充分制成活性稀释形式。在远程钻井位置设备中,能量和水经常是供应不足的,并且需要大量的资金投入来保证。具有它的高分子量的固体PEO会难以直接溶解在水中,表现出聚集的倾向。根据本发明的原则,固体PEO可以分散在多元醇溶剂例如甘油或丙二醇中,来形成淤浆,其然后可以容易的输送和计量。
将非离子聚合物包括在所述压裂组合物中来吸收源自于高速泵送的剪切力,来保护聚环氧乙烷免于降解和增加所述压裂流体的粘度来提供有效的携带支撑剂的能力。所述非离子聚合物优选是环境友好的聚合物,来补充PEO的环境友好性质。
在本发明的最优选的实施方案中,所述非离子聚合物是瓜尔胶。在本发明的另一优选的实施方案中,所述非离子聚合物是瓜尔胶衍生物。
根据本发明的原理,所述瓜尔胶源可以包括任何等级的瓜尔胶。在一个方面,所述瓜尔胶源可以是瓜尔豆荚,其收获自豆科种子的胚乳。典型的,所述瓜尔胶源可以是胚乳,也称作瓜尔豆片(guar split),其构成了种子的大约30-40%。所述瓜尔胶源可以进一步来源于种子的剩余物(reminder),也称作壳(大约15%)和内胚芽(inner germ)(大约45%)。例如所述瓜尔胶源可以是精制的瓜尔豆片,其是从外壳上除去的磨光的纤维层。所述瓜尔胶源可以另外是由精制的瓜尔豆片,通过软化、压片、粉碎和筛分来生产的瓜尔胶。
在一个方面,瓜尔胶是粉末形式。典型的,粉末的尺寸是大约60目-大约400目,更典型的大约100-大约325目。
合适的瓜尔胶衍生物包括羧烷基瓜尔胶和羟烷基瓜尔胶。优选的是羧甲基瓜尔胶,羟丙基瓜尔胶,羟乙基瓜尔胶,羟丁基瓜尔胶和羧甲基羟丙基瓜尔胶。优选地,羟基烷基化瓜尔胶的分子量是大约1百万-大约3百万。在一个方面,羧基化的瓜尔胶的取代度典型地是大约0.08-大约0.18。在一个方面,羟基烷基化的瓜尔胶的羟丙基含量典型的是大约0.2-大约0.6。此外,所述瓜尔胶聚合物可以是美国专利No.7012044;6844296和6387853以及美国专利公开No.20050272612;20110015100;和20110015100所公开的那些的任一种,其每篇在此引入作为参考。
羧烷基瓜尔胶可以通过多种方式来获得,包括a)使用优质级别瓜尔胶作为起始材料,将阴离子基团化学加成到其上;和/或b)选择加工参数,所述加工参数在将阴离子取代基置于瓜尔胶聚合物主链上时提供了更好的均匀性;和/或c)另外的加工步骤,包括超级清洗(ultrawashing)来除去杂质和精制所述聚合物。优选的聚合物包括具有无规分布的羧甲基基团的那些瓜尔胶。
用于本发明的优选的非离子聚合物是作为“GW45”(CMG)、“GW32”(HPG)和“GW38”(CMHPG)获自Baker Hughes Incorporated的那些聚合物。也可以使用这些聚合物的制浆对应物,并且作为“XLFC2”(HPG)、“XLFC2B”(HPG)、“XLFC3”(CMPHG)、“XLFC3B”(CMHPG)、“VSP1”(CMG)和“VSP2”(CMG)获自Baker Hughes Incorporated。在另一个优选的实施方案中,可以使用作为“GUAR X0694-17-1”获自Aqualon(Hercules,Inc.)的瓜尔胶粉末。
在根据本发明原理的另一个实施方案中,所述非离子聚合物可以是纤维素、纤维素衍生物、淀粉、淀粉衍生物、黄原胶、黄原胶衍生物及其混合物。具体的例子包括但不限于羟乙基纤维素(HEC)、羧甲基羟乙基纤维素(CMHEC)、羧甲基纤维素(CMC)、二烷基羧甲基纤维素、刺槐豆胶、韦兰胶(welan gum)、刺梧桐树胶、黄原胶、硬葡聚糖和迪优坦(diutan)。
在本发明的一个实施方案中,所述非离子聚合物的用量是大约0.1-大约5磅/流体中1000加仑的水,优选大约0.5-大约2磅/流体中1000加仑的水。
所述含水流体可以是盐水、新鲜水、海水(salt water)或者其混合物。在一个方面,盐水可以是来自前面的井处理的回流水。在一个方面,所述水可以是从地下岩层产生的水。在一个方面,所述水可以是来自于市政来源的新鲜水或者河水。所产生的水或者回流水会随着时间变化而盐度逐渐增加。例如在Marcellus页岩区域中,滑溜水压裂处理在所述回流较后部分中的总溶解溶质(TDS)是大约80,000-325,000。在一个方面,当TDS浓度较低时可以利用早期回流水的重新使用。所述回流水可以与新鲜水混合。
在本发明的一个实施方案中,所述压裂流体可以包含一种或多种类型的支撑剂。合适的支撑剂包括本领域通常已知的那些,包括石英、砂粒、玻璃珠、铝丸、陶瓷、树脂包覆的陶瓷、塑料珠、尼龙珠或丸、树脂包覆的砂子、烧结的矾土和树脂包覆的烧结的矾土。
在一个优选的实施方案中,所述支撑剂是相对轻重量的颗粒物。这样的支撑剂可以碎裂、研磨、压碎或者另外加工。用“相对轻重量”表示所述支撑剂的表观比重(ASG)明显小于水力压裂操作中常规使用的支撑剂(例如砂子)的表观比重或者它们的ASG类似于这些材料。特别优选的是ASG小于或等于3.25的那些支撑剂。甚至更优选的是超轻重量支撑剂,它们的ASG小于或等于2.25,更优选小于或等于2.0,甚至更优选小于或等于1.75,最优选小于或等于1.25和经常小于或等于1.05。
合适的相对轻重量支撑剂是公开在美国专利No.6364018、6330916和6059034中的那些颗粒物,它们全部在此引入作为参考。这些可以示例为研磨的或者压碎的坚果壳(美洲山核桃、椰子、杏仁、象牙棕榈的果实、巴西坚果、澳洲坚果等);水果的种子的研磨的或者压碎的种子壳(包括果核),例如李子、橄榄、桃子、樱桃、杏等;研磨的或者压碎的其它植物的种子壳,例如玉米(例如玉米棒子或者玉米仁)等;加工的木材例如来源于木头的那些,例如橡树、山胡桃木、胡桃木、白杨木、桃花心木等,包括已经通过研磨、碎裂或者其它形式的粒化方法加工的这样的木头。优选的是研磨的或者压碎的胡桃壳材料,其用树脂包覆来将所述壳基本上保护和防水。
此外,用于本发明的相对轻重量的颗粒物可以是选择性配置的多孔颗粒物,如美国专利No.7426961所述、所示和所定义,其在此引入作为参考。合适的支撑剂进一步包括美国专利No.7931087和美国专利No.7494711中所述的那些,其在此引入作为参考。所述支撑剂可以进一步是塑料或者塑料复合材料例如热塑性塑料或热塑性复合材料或者树脂或者含有粘结剂的聚集体。ULW支撑剂可以进一步是美国专利No.7322411中所述的那些可变形的颗粒物的任何一种,其在此引入作为参考。
另外可以使用支撑剂的混合物。
令人期望的是由所述支撑剂所形成的支撑剂包(pack)能够在裂缝中产生支撑剂的部分单层,来在邻接的颗粒物之间提供增加的互连的间隙空间。因为所制备的流体典型地在宽间隔的支撑剂颗粒物周围流动而非流过填充床的间隙空间,由此产生了提高的裂缝传导结果。
在一个方面,支撑剂在压裂流体中的量可以是大约0.5-大约12.0磅支撑剂/加仑压裂流体。优选它可以是大约0.25-大约4.0磅/加仑压裂流体。
虽然地下岩层粘土通常是惰性的,但是当岩层粘土被外来物质例如含水压裂流体扰乱时,岩层粘土颗粒的溶胀和迁移通常会增加。岩层粘土的溶胀和迁移通过阻碍岩层毛细管而降低了岩层的渗透性,和因此导致岩层渗透性损失和明显降低了烃类的流动速率。这样的阻碍例如是岩层粘土迁移到岩层的毛细流动通道中的结果。这又导致了所产生的烃类的流动速率的明显降低。为了减小岩层粘土的溶胀和迁移所引起的损坏效应,可以将页岩抑制剂和/或粘土稳定剂结合入滑溜水组合物中。
在一个方面,所述粘土稳定剂或者页岩抑制剂可以是无机盐例如氯化钾或者氯化铵。在一个方面,所述粘土稳定剂或者页岩抑制剂可以是有机盐例如氯化胆碱。在一个方面,所述氯化胆碱可以是含有Ν,Ν,Ν-三甲基乙醇铵阳离子的季铵盐。在一个优选的实施方案中,所述粘土稳定剂可以是Claytreat-3C粘土稳定剂(CT-3C)或者Claymaster-5C,二者都来自Baker Hughes Inc。
在一个方面,这样的粘土稳定剂或者页岩抑制剂的浓度是大约0.1%,基于含水流体重量。
根据本发明的原理,表面活性剂可以包括在压裂流体组合物中。表面活性剂能够降低摩擦,并且也能够保护聚环氧乙烷免于剪切降解。
所述表面活性剂可以是阳离子、阴离子、两性离子或者非离子。作为阳离子表面活性剂而包括的是下述那些:其含有季铵结构部分(例如线性季胺、苄基季胺或者季铵卤化物)、季锍结构部分或者季结构部分或者其混合物。合适的含有季化类基团的表面活性剂包括季铵卤化物或季胺,例如季铵氯化物或者季铵溴化物。合适的阴离子表面活性剂是磺酸盐(例如二甲苯磺酸钠和萘磺酸钠),膦酸盐,乙氧基硫酸盐及其混合物。作为两性离子表面活性剂而包括的是甘氨酸盐,两性乙酸盐,丙酸盐,甜菜碱及其混合物。所述阳离子或两性离子表面活性剂可以具有疏水尾部(其可以是饱和的或者不饱和的),例如C12-C18碳链。此外,所述疏水尾部可以获自来自植物的天然油,例如一种或多种的椰油、菜籽油和棕榈油。
优选的表面活性剂包括N,N,N-三甲基-1-十八烷氯化铵、N,N,N-三甲基-1-十六烷氯化铵、N,N,N-三甲基-1-大豆氯化铵及其混合物。
所述压裂流体还可以包含在钻井服务工业中常规的其它常规添加剂,例如腐蚀抑制剂、脱乳化剂、结垢抑制剂、石蜡抑制剂、气体水合物抑制剂、沥青质抑制剂、分散剂、氧清除剂、生物杀灭剂等。
实施例。下面的实施例描述了本发明优选的实施方案。在权利要求范围内的其它实施方案将是本领域技术人员从这里公开的本发明的说明书或者实践的考虑中显而易见的。它的目的是说明书与实施例一起被认为仅仅是示例性的,并且本发明的范围和主旨是用权利要求来表示的。
实施例1。在聚环氧乙烷淤浆上进行流动回路测试,来测量它的降低摩擦的能力和它的水合速率。将这些结果与获自Baker HughesIncorporated的市售聚丙烯酰胺减摩剂FRW-20进行比较。
聚环氧乙烷淤浆是如下来制造的:将200g的甘油置于以1000rpm搅拌的塔顶混合器中,然后在2分钟的时间内加入40g的PEO(MW>8M)粉末。然后将所述淤浆混合至少30分钟来确保足够的分散。
然后将24mL的PEO淤浆注入到24L的密度是10.5ppg的CaCl2溶液中。将所述溶液在90℉的摩擦回路上运行。
图1显示了PEO淤浆在10.5ppg的CaCl2盐水中比FRW-20更快的水合。PEO在90℉在大约15s内水合。同样,图1显示了聚环氧乙烷实现了45%的摩擦降低,这是与聚丙烯酰胺相同的摩擦降低百分比。
实施例2。在聚环氧乙烷和瓜尔胶的混合物上进行流动回路测试,来测量它们的降低摩擦的能力。PEO淤浆是如实施例1所述来制造的。然后将这种淤浆与瓜尔胶混合来制造四个淤浆样品。所述样品是在水试验中以10加仑/分钟(gpm)在流动回路上测试,具有0.319英寸管。图2显示了四种PEO-瓜尔胶混合物的每一种都实现了大于50%的摩擦降低。
实施例3。在聚环氧乙烷和瓜尔胶的混合物用回流水注入的淤浆上进行了流动回路测试。还在相同的回流水中测试了两种市售的聚丙烯酰胺减摩剂,来比较它们的水合速率和摩擦降低百分比。
PEO淤浆是如实施例1所述来制造的。将具有超过26.5%的总溶解的盐和超过4%的二价离子的回流水,GW-3(一种未衍生化的瓜尔胶,市售自Baker Hughes Inc.)加入到PEO淤浆中,来以1gpt的浓度注入到回流水中。将聚丙烯酰胺减摩剂FRW-14和FRW-20(二者市售自BakerHughes Inc.)以0.75gpt的浓度注入到稀释的回流水中。将三种样品在室温的流动回路中试验。
图3显示了三种样品的摩擦降低能力和水合速率的比较。可以看到FRW-14和FRW-20在60s后都实现了大约仅仅25%的摩擦降低,然而PEO和瓜尔胶的溶液在60s中实现了50%的摩擦降低。
虽然根据本发明的组合物和方法已经在优选的实施方案中进行了描述,但是对本领域技术人员来很显然可以对这里所述的组合物和/或方法和步骤或者步骤的次序进行改变,而不脱离本发明的概念、主旨和范围。此外,很显然某些化学相关的试剂可以替换这里所述的试剂,同时将实现相同或者类似的结果。全部这样的对本领域技术人员来说很显然的类似的取代和改变被认为处于本发明的范围和概念内。它的目的是说明书被认为仅仅是示例性的,并且本发明的范围和主旨是通过下面的权利要求来表示的。

Claims (21)

1.一种滑溜水压裂方法,其包括在足以产生或者扩大地下岩层中的裂缝的压力下,向穿透到地下岩层中的井筒中引入含水压裂流体,所述含水压裂流体包含:
a)非聚环氧乙烷的非离子聚合物;和
b)聚环氧乙烷。
2.权利要求1的方法,其中所述非离子聚合物是非衍生化的瓜尔胶或者衍生化的瓜尔胶。
3.权利要求1的方法,其中所述非离子聚合物是多糖。
4.权利要求1的方法,其中所述含水压裂流体进一步包含:
c)阳离子、阴离子、两性离子或非离子表面活性剂,其不同于聚环氧乙烷或所述非离子聚合物。
5.权利要求1的方法,其中所述压裂流体不包含表面活性剂。
6.权利要求1的方法,其中所述压裂流体不包含交联剂或者交联的组分。
7.权利要求1的方法,其中所述压裂流体进一步包含支撑剂。
8.权利要求2的方法,其中所述压裂流体进一步包含:
c)非离子表面活性剂,其不同于聚环氧乙烷和所述非离子聚合物。
9.权利要求1的方法,其中所述含水压裂流体的粘度在300rpm小于15cP。
10.权利要求7的方法,其进一步包括在所产生或者扩大的裂缝中用所述支撑剂产生部分单层。
11.权利要求7的方法,其中所述支撑剂的表观比重是小于或等于2.25。
12.权利要求11的方法,其中所述支撑剂的表观比重是小于或等于1.75。
13.权利要求1的方法,其中聚环氧乙烷在所述含水压裂流体中的量是大约0.05-大约0.2重量%。
14.权利要求1的方法,其中非离子聚合物:聚环氧乙烷的重量比是大约1:5-大约5:1。
15.一种压裂地下岩层的方法,其包括在足以产生或者扩大地下岩层中的裂缝的压力下,在湍流下向穿透到所述地下岩层的井筒中引入含水压裂流体,所述含水压裂流体包含:
a)非聚环氧乙烷的非离子聚合物;和
b)聚环氧乙烷,
其中来自所述含水压裂流体的所述湍流的剪切降解量小于当将不含所述非离子聚合物的基本上类似的含水压裂流体引入到所述井筒中时产生的剪切降解量。
16.权利要求15的方法,其中与没有加入所述非离子聚合物的基本上类似的含水压裂流体所产生的剪切降解量相比,来自含有所述非离子聚合物和聚环氧乙烷的所述含水压裂流体湍流的聚环氧乙烷剪切降解量少至少40%。
17.权利要求16的方法,其中所述压裂流体进一步包含支撑剂。
18.权利要求17的方法,其进一步包括在所产生或者扩大的裂缝中用所述支撑剂产生部分单层。
19.权利要求18的方法,其中所述支撑剂的表观比重是小于或等于2.25。
20.一种滑溜水压裂的方法,其包括在足以产生或者扩大地下岩层中的裂缝的压力下,向穿透到地下岩层中的井筒中引入在300rpm粘度小于15cP的含水压裂流体,其中所述含水压裂流体包含非衍生化的瓜尔胶或者衍生化的瓜尔胶或者其组合、聚环氧乙烷和支撑剂。
21.权利要求19的方法,其进一步包括在所产生或者扩大的裂缝中用所述支撑剂产生部分单层。
CN201280038046.1A 2011-07-29 2012-06-06 滑溜水压裂的方法 Expired - Fee Related CN103732718B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/194,739 2011-07-29
US13/194,739 US20130025867A1 (en) 2011-07-29 2011-07-29 Method of slickwater fracturing
PCT/US2012/040991 WO2013019308A1 (en) 2011-07-29 2012-06-06 A method of slickwater fracturing

Publications (2)

Publication Number Publication Date
CN103732718A true CN103732718A (zh) 2014-04-16
CN103732718B CN103732718B (zh) 2017-06-13

Family

ID=46246292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280038046.1A Expired - Fee Related CN103732718B (zh) 2011-07-29 2012-06-06 滑溜水压裂的方法

Country Status (12)

Country Link
US (1) US20130025867A1 (zh)
EP (1) EP2737001B1 (zh)
CN (1) CN103732718B (zh)
AU (1) AU2012290709B2 (zh)
BR (1) BR112014002036A2 (zh)
CA (1) CA2841418C (zh)
CO (1) CO6862135A2 (zh)
IN (1) IN2014DN00219A (zh)
MX (1) MX2014001175A (zh)
RU (1) RU2614825C2 (zh)
WO (1) WO2013019308A1 (zh)
ZA (1) ZA201400289B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629710A (zh) * 2015-01-16 2015-05-20 奥菲(北京)石油技术有限公司 一种页岩气新型环保滑溜水
CN106567702A (zh) * 2015-10-10 2017-04-19 中国石油化工股份有限公司 一种提高深层页岩气裂缝复杂性指数的方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8833456B1 (en) * 2013-05-10 2014-09-16 Seawater Technologies, LLC Seawater transportation for utilization in hydrocarbon-related processes including pipeline transportation
BR112016000967A2 (pt) * 2013-07-17 2017-08-29 Bp Exploration Operating Co Ltd Método de recuperação de óleo
US10081762B2 (en) 2013-09-17 2018-09-25 Baker Hughes, A Ge Company, Llc Well treatment methods and fluids containing synthetic polymer
US9909057B2 (en) 2013-09-20 2018-03-06 Halliburton Energy Services, Inc. Methods for etching fractures and microfractures in shale formations
CA2924465A1 (en) 2013-11-11 2015-05-14 Halliburton Energy Services, Inc. Methods for enhancing propped fracture conductivity
US10308868B2 (en) 2014-01-02 2019-06-04 Halliburton Energy Services, Inc. Generating and enhancing microfracture conductivity
BR112016021872A2 (pt) 2014-03-28 2017-10-03 Arr Maz Products Lp Composto de propante resistente ao atrito e suas questões composicionais
US10508231B2 (en) 2014-03-28 2019-12-17 Arr-Maz Products, L.P. Attrition resistant proppant composite and its composition matters
US20170088769A1 (en) * 2014-05-12 2017-03-30 Rhodia Operations Aqueous guar compositions for use in oil field and slickwater applications
WO2016036343A1 (en) 2014-09-02 2016-03-10 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
WO2016053345A1 (en) 2014-10-03 2016-04-07 Halliburton Energy Services, Inc. Fly ash microspheres for use in subterranean formation operations
CN104989393A (zh) * 2015-07-14 2015-10-21 北京博达瑞恒科技有限公司 一种微压裂测试方法
US10988677B2 (en) 2016-06-22 2021-04-27 Halliburton Energy Services, Inc. Micro-aggregates and microparticulates for use in subterranean formation operations
WO2018085082A2 (en) * 2016-11-03 2018-05-11 Arr-Maz Products, L.P. Attrition resistant proppant composite and its composition matters
US20190112521A1 (en) * 2017-10-18 2019-04-18 Pfp Technology, Llc Friction Reduction and Suspension in High TDS Brines
CN109763805B (zh) * 2017-11-09 2021-07-20 中国石油化工股份有限公司 一种深层页岩气螺旋式变参数压裂方法
US10988675B2 (en) 2017-11-20 2021-04-27 Multi-Chem Group, Llc Method to hydraulically fracture a well
US11078407B2 (en) * 2017-11-20 2021-08-03 Multi-Chem Group, Llc Method to hydraulically fracture a well
US11365346B2 (en) 2018-02-09 2022-06-21 Halliburton Energy Services, Inc. Methods of ensuring and enhancing conductivity in micro-fractures
CA3109079A1 (en) * 2018-07-30 2020-02-06 Downhole Chemical Solutions, Llc Composition and method for breaking friction reducing polymer for well fluids
CN110776901A (zh) * 2019-03-07 2020-02-11 北京盛昌百年石油科技有限公司 一种压裂用的环保减阻剂及其制备方法
WO2021236096A1 (en) * 2020-05-22 2021-11-25 Halliburton Energy Services, Inc. Enhanced friction reducers for water-based fracturing fluids
US11448059B2 (en) 2020-08-06 2022-09-20 Saudi Arabian Oil Company Production logging tool
US11326092B2 (en) 2020-08-24 2022-05-10 Saudi Arabian Oil Company High temperature cross-linked fracturing fluids with reduced friction
CN112358027A (zh) * 2020-11-03 2021-02-12 西南石油大学 一种石油压裂酸化用压裂液处理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050387A2 (en) * 2001-12-12 2003-06-19 Clearwater International, Llc Friction reducing composition and method
US20060185848A1 (en) * 2005-02-22 2006-08-24 Halliburton Energy Services, Inc. Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
US7237610B1 (en) * 2006-03-30 2007-07-03 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
US20080182761A1 (en) * 2007-01-26 2008-07-31 Bj Services Company Fracture Acidizing Method Utilitzing Reactive Fluids and Deformable Particulates
US20080217012A1 (en) * 2007-03-08 2008-09-11 Bj Services Company Gelled emulsions and methods of using the same
CN101528889A (zh) * 2006-08-17 2009-09-09 普拉德研究及开发股份有限公司 降阻流体
CN102022105A (zh) * 2010-10-21 2011-04-20 中国石油化工股份有限公司 缝洞型碳酸盐岩储层大型复合酸压方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730275A (en) * 1971-02-16 1973-05-01 Continental Oil Co Method using low friction loss liquid composition having resistance to shear degradation
US4573488A (en) * 1984-04-12 1986-03-04 The Dow Chemical Company Additives for nonaqueous liquids
US4881566A (en) * 1988-10-11 1989-11-21 Conoco Inc. Method for reducing pressure drop in the transportation of drag reducer
US5236046A (en) * 1988-10-17 1993-08-17 Texaco Inc. Heteropolysaccharide preparation and use thereof as a mobility control agent in enhanced oil recovery
US5067508A (en) * 1990-11-16 1991-11-26 Conoco Inc. Activation of water-in-oil emulsions of friction reducing polymers for use in saline fluids
US20050028979A1 (en) * 1996-11-27 2005-02-10 Brannon Harold Dean Methods and compositions of a storable relatively lightweight proppant slurry for hydraulic fracturing and gravel packing applications
US7426961B2 (en) 2002-09-03 2008-09-23 Bj Services Company Method of treating subterranean formations with porous particulate materials
US6364018B1 (en) 1996-11-27 2002-04-02 Bj Services Company Lightweight methods and compositions for well treating
US6059034A (en) 1996-11-27 2000-05-09 Bj Services Company Formation treatment method using deformable particles
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
US6649572B2 (en) 1997-05-27 2003-11-18 B J Services Company Polymer expansion for oil and gas recovery
US6387853B1 (en) 1998-03-27 2002-05-14 Bj Services Company Derivatization of polymers and well treatments using the same
AU2001281100A1 (en) * 2000-08-03 2002-02-18 Hercules Incorporated Reduced molecular weight galactomannans oxidized by galactose oxidase
US6844296B2 (en) 2001-06-22 2005-01-18 Bj Services Company Fracturing fluids and methods of making and using same
US7199084B2 (en) * 2002-03-21 2007-04-03 Schlumberger Technology Corporation Concentrated suspensions
US7096947B2 (en) * 2004-01-27 2006-08-29 Halliburton Energy Services, Inc. Fluid loss control additives for use in fracturing subterranean formations
US8895480B2 (en) 2004-06-04 2014-11-25 Baker Hughes Incorporated Method of fracturing using guar-based well treating fluid
US7322411B2 (en) 2005-01-12 2008-01-29 Bj Services Company Method of stimulating oil and gas wells using deformable proppants
US7287593B2 (en) * 2005-10-21 2007-10-30 Schlumberger Technology Corporation Methods of fracturing formations using quaternary amine salts as viscosifiers
US7494711B2 (en) 2006-03-08 2009-02-24 Bj Services Company Coated plastic beads and methods of using same to treat a wellbore or subterranean formation
US7931087B2 (en) 2006-03-08 2011-04-26 Baker Hughes Incorporated Method of fracturing using lightweight polyamide particulates
US7776796B2 (en) * 2006-03-20 2010-08-17 Schlumberger Technology Corporation Methods of treating wellbores with recyclable fluids
US7504366B2 (en) * 2006-08-16 2009-03-17 Halliburton Energy Services, Inc. Subterranean treatment fluids, friction reducing copolymers, and associated methods
US9034802B2 (en) * 2006-08-17 2015-05-19 Schlumberger Technology Corporation Friction reduction fluids
US7699106B2 (en) * 2007-02-13 2010-04-20 Bj Services Company Method for reducing fluid loss during hydraulic fracturing or sand control treatment
US20100200239A1 (en) * 2009-02-09 2010-08-12 Kemira Chemicals, Inc. Friction reducing compositions for well treatment fluids and methods of use
US8030250B2 (en) 2009-07-17 2011-10-04 Baker Hughes Incorporated Method of treating subterranean formations with carboxylated guar derivatives

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003050387A2 (en) * 2001-12-12 2003-06-19 Clearwater International, Llc Friction reducing composition and method
US20060185848A1 (en) * 2005-02-22 2006-08-24 Halliburton Energy Services, Inc. Fracturing fluids comprising degradable diverting agents and methods of use in subterranean formations
US7237610B1 (en) * 2006-03-30 2007-07-03 Halliburton Energy Services, Inc. Degradable particulates as friction reducers for the flow of solid particulates and associated methods of use
CN101528889A (zh) * 2006-08-17 2009-09-09 普拉德研究及开发股份有限公司 降阻流体
US20080182761A1 (en) * 2007-01-26 2008-07-31 Bj Services Company Fracture Acidizing Method Utilitzing Reactive Fluids and Deformable Particulates
US20080217012A1 (en) * 2007-03-08 2008-09-11 Bj Services Company Gelled emulsions and methods of using the same
CN102022105A (zh) * 2010-10-21 2011-04-20 中国石油化工股份有限公司 缝洞型碳酸盐岩储层大型复合酸压方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104629710A (zh) * 2015-01-16 2015-05-20 奥菲(北京)石油技术有限公司 一种页岩气新型环保滑溜水
CN106567702A (zh) * 2015-10-10 2017-04-19 中国石油化工股份有限公司 一种提高深层页岩气裂缝复杂性指数的方法
CN106567702B (zh) * 2015-10-10 2021-08-06 中国石油化工股份有限公司 一种提高深层页岩气裂缝复杂性指数的方法

Also Published As

Publication number Publication date
CA2841418C (en) 2017-05-16
CO6862135A2 (es) 2014-02-10
IN2014DN00219A (zh) 2015-06-05
AU2012290709B2 (en) 2015-08-20
BR112014002036A2 (pt) 2017-02-21
EP2737001A1 (en) 2014-06-04
CA2841418A1 (en) 2013-02-07
MX2014001175A (es) 2014-05-13
AU2012290709A1 (en) 2014-01-23
RU2014107753A (ru) 2015-09-10
WO2013019308A1 (en) 2013-02-07
CN103732718B (zh) 2017-06-13
RU2614825C2 (ru) 2017-03-29
EP2737001B1 (en) 2018-05-30
US20130025867A1 (en) 2013-01-31
ZA201400289B (en) 2014-10-29

Similar Documents

Publication Publication Date Title
CN103732718A (zh) 滑溜水压裂的方法
US8043999B2 (en) Stabilizing biphasic concentrates through the addition of small amounts of high molecular weight polyelectrolytes
US9574128B2 (en) Polymer delivery in well treatment applications
CN102741374B (zh) 用于减少水堵和凝析油的表面活性剂和摩阻减低聚合物以及相关方法
WO2017084379A1 (zh) 一种多功能复合压裂液体系
US8669213B2 (en) Method of servicing a wellbore with an aqueous gel containing a friction reducer
US9475974B2 (en) Controlling the stability of water in water emulsions
AU2007276817B2 (en) Friction loss reduction in viscoelastic surfactant fracturing fluids using low molecular weight water-soluble polymers
WO2016201445A1 (en) Enhandced proppant transport for hydraulic fracturing
US20100179076A1 (en) Filled Systems From Biphasic Fluids
CN104559998A (zh) 一种页岩气压裂用滑溜水及其制备方法
BR112017007484B1 (pt) Composições de polímero
CN105658760B (zh) 包含锆交联剂的井处理流体及其使用方法
WO2009010932A2 (en) Preparing a hydratable polymer concentrate for well treatment applications
CN111440606B (zh) 无油相液体减阻剂及包含该减阻剂的全程滑溜水压裂液
AU2017210060A1 (en) Spacer fluid having sized particulates and methods of using the same
Dong et al. Fabrication of fracturing fluid with cationic surfactants and carboxymethyl hydroxyethyl cellulose
WO2018071683A1 (en) Water soluble polymers for fiber dispersion
RO131125A2 (ro) Inhibarea desalifierii diutanului sau a scleroglucanului la tratamentul unui puţ
Ma et al. Research and development of viscosity reducer for oil well production fluid in cold transportation
AU2012278380B2 (en) Friction loss reduction in viscoelastic surfactant fracturing fluids using low molecular weight water-soluble polymers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170613

Termination date: 20200606

CF01 Termination of patent right due to non-payment of annual fee