CN103727961A - Method for correcting dynamic error of electro-optic theodolite - Google Patents
Method for correcting dynamic error of electro-optic theodolite Download PDFInfo
- Publication number
- CN103727961A CN103727961A CN201410016084.8A CN201410016084A CN103727961A CN 103727961 A CN103727961 A CN 103727961A CN 201410016084 A CN201410016084 A CN 201410016084A CN 103727961 A CN103727961 A CN 103727961A
- Authority
- CN
- China
- Prior art keywords
- angle
- theodolite
- value
- encoder
- dynamic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000005259 measurement Methods 0.000 claims abstract description 57
- 238000012937 correction Methods 0.000 claims abstract description 27
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000033001 locomotion Effects 0.000 claims abstract description 8
- 238000005070 sampling Methods 0.000 claims abstract description 4
- 238000013461 design Methods 0.000 claims abstract description 3
- 229920002334 Spandex Polymers 0.000 claims 1
- 239000004759 spandex Substances 0.000 claims 1
- 230000003111 delayed effect Effects 0.000 abstract 2
- 230000010355 oscillation Effects 0.000 abstract 1
- 230000005622 photoelectricity Effects 0.000 abstract 1
- 230000003068 static effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000010354 integration Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 230000001360 synchronised effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009897 systematic effect Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C1/00—Measuring angles
- G01C1/02—Theodolites
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
Description
技术领域technical field
本发明属于光电测控领域,具体涉及光电经纬仪动态误差修正方法,在光电经纬仪精度检测中,可用于提高光电经纬仪的测角精度。同时,在外场测试试验中,可用于提高目标的外弹道轨迹坐标。The invention belongs to the field of photoelectric measurement and control, and in particular relates to a dynamic error correction method of a photoelectric theodolite, which can be used to improve the angle measurement accuracy of the photoelectric theodolite in the precision detection of the photoelectric theodolite. At the same time, in the field test experiment, it can be used to improve the target's outer ballistic trajectory coordinates.
背景技术Background technique
在导弹、航天器发射试验过程中,火箭的飞行弹道和卫星轨道等反映试验情况的数据,大多数是由无线电和光学外测设备通过测量获得的,这些外测设备的测量精度,标志着我国导弹、卫星等航天器试验的测控水平。而精度是外测设备的生命和归宿,由于测量数据及精度分析对导弹、卫星等航天器的研制、定型和改进密切相关,因此国内各相关单位对外测设备的精度鉴定工作都十分重视。而光电经纬仪是靶场光电测量的主要设备,光电测量设备主要通过角度测量、交会处理完成被测目标空间定位的,进一步计算目标的外弹道参数数据。测角误差的大小直接影响定位精度,因此对测角误差的来源、影响和检测方法的研究是光电经纬仪的重要研究内容之一。During the launch test of missiles and spacecraft, most of the data reflecting the test situation, such as the flight trajectory of the rocket and the orbit of the satellite, are obtained through measurement by radio and optical external measurement equipment. The measurement accuracy of these external measurement equipment marks the The measurement and control level of spacecraft tests such as missiles and satellites. Accuracy is the life and destination of external testing equipment. Since measurement data and accuracy analysis are closely related to the development, finalization and improvement of missiles, satellites and other spacecraft, all relevant domestic units attach great importance to the accuracy appraisal of external testing equipment. The photoelectric theodolite is the main equipment for photoelectric measurement in the shooting range. The photoelectric measurement equipment mainly completes the spatial positioning of the measured target through angle measurement and intersection processing, and further calculates the target's external ballistic parameter data. The size of the angle measurement error directly affects the positioning accuracy, so the research on the source, influence and detection method of the angle measurement error is one of the important research contents of the photoelectric theodolite.
光电经纬仪的精度标定分为静态测角精度与动态测角精度两部分内容,动态测量测角精度是在静态测角精度基础上得出的。本文对影响光电经纬仪动态测量误差的原因进行分析,并提出了基于时间对齐的误差修正方法,经过动态测角修正的方位角与俯仰角测角误差均方根值分别由27.89"与17.67"提高到10.07"与8.56",该方法有效的提高了动态测量精度,并且对其它光电测量设备具有参考价值。The accuracy calibration of photoelectric theodolite is divided into two parts: static angle measurement accuracy and dynamic angle measurement accuracy. The dynamic measurement angle measurement accuracy is obtained on the basis of static angle measurement accuracy. In this paper, the reasons affecting the dynamic measurement error of the photoelectric theodolite are analyzed, and an error correction method based on time alignment is proposed. After dynamic angle measurement correction, the root mean square value of the angle measurement error of the azimuth angle and the elevation angle is improved from 27.89" and 17.67" respectively. To 10.07" and 8.56", this method effectively improves the dynamic measurement accuracy, and has reference value for other photoelectric measurement equipment.
发明内容Contents of the invention
本发明的目的是为解决由于光电经纬仪动态测量过程中,编码器采样中心与红外相机曝光中心不同步,而导致的系统延时误差,提出了一种通过分析实验参数,设置红外相机外触发信号延时时间的方法,解决曝光同步的问题。The purpose of the present invention is to solve the system delay error caused by the asynchrony between the encoder sampling center and the infrared camera exposure center during the dynamic measurement process of the photoelectric theodolite, and proposes a method for setting the external trigger signal of the infrared camera by analyzing experimental parameters The method of delay time solves the problem of exposure synchronization.
本发明光电经纬仪动态误差修正方法,该方法包括以下步骤:The photoelectric theodolite dynamic error correction method of the present invention, this method comprises the following steps:
步骤一、标定检测架;采用高精度莱卡经纬仪,测量三个平行光管的角度值,所述平行光管的角度值为标定三个平行光管的正倒镜数据,并将获得的三个正倒镜数据的平均值作为真值;Step 1. Calibrate the detection frame; use a high-precision Leica theodolite to measure the angle values of the three collimators. The angle values of the collimators are to calibrate the positive and negative mirror data of the three collimators. The average value of the positive and negative mirror data is used as the true value;
步骤二、延时参数设计;设定相机的外触发同步信号延时TD,选择编码器值,根据公式:T/2+Tdelay=1.25ms×i,T为时间,i的取值为0~7,实现曝光时间与脱靶量、编码器的采样时刻三者对齐;
步骤三、动态测角精度计算;根据步骤二设定的红外相机的外触发同步信号延时TD,然后设置红外经纬仪的伺服控制参数和摆幅,使用红外经纬仪对全视场正弦运动时的数据进行采集;获得方位角和俯仰的信息;Step 3. Calculation of dynamic angle measurement accuracy; delay TD according to the external trigger synchronization signal of the infrared camera set in
步骤四、将步骤三获得的方位角和俯仰角信息分别与步骤一获得的真值作差,取平方根的值,即获得测角精度,实现对误差的修正。
本发明的有益效果:本发明提出了使用动态延时设置修正的方法,将曝光时刻、脱靶量、编码器三个元素对齐到同一时刻。给出了不同系统参数下的,延时修正时间计算公式。使用该公式可以计算不同积分时间的对就的相机延时设置,以及编码器数据选择方法。本发明所述的方法在大视场红外光电测控领域,有利于提高大视场红外光电经纬仪的动态测角精度。采用系统内部延时修正的方法,对光电经纬仪的动态测量精度进行修正,经过动态测角修正的方位角与俯仰角测角误差均方根值分别由27.89"与17.67"提高到10.07"与8.56",该方法有效的提高了动态测量精度,并且对其它光电测量设备具有参考价值。Beneficial effects of the present invention: the present invention proposes a method of using dynamic delay setting correction to align the three elements of the exposure time, the amount of miss, and the encoder to the same time. The calculation formula of delay correction time under different system parameters is given. Use this formula to calculate appropriate camera delay settings for different integration times, and encoder data selection methods. In the field of infrared photoelectric measurement and control of a large field of view, the method of the invention is beneficial to improving the dynamic angle measurement accuracy of a large field of view infrared photoelectric theodolite. Using the system internal delay correction method, the dynamic measurement accuracy of the photoelectric theodolite is corrected. After the dynamic angle measurement correction, the root mean square value of the angle measurement error of the azimuth angle and the elevation angle is increased from 27.89" and 17.67" to 10.07" and 8.56 respectively. ", this method effectively improves the dynamic measurement accuracy, and has reference value for other photoelectric measurement equipment.
附图说明Description of drawings
图1为本发明所述的光电经纬仪动态误差修正方法的检测环境组成示意图;Fig. 1 is the detection environment composition schematic diagram of photoelectric theodolite dynamic error correction method of the present invention;
图2为本发明所述的光电经纬仪动态误差修正方法中延时修正后的光电经纬仪时序关系示意图;Fig. 2 is the schematic diagram of the photoelectric theodolite timing relationship after delay correction in the photoelectric theodolite dynamic error correction method of the present invention;
图3为未延时修正的光电经纬仪时序关系示意图;Fig. 3 is the schematic diagram of the timing relationship of the photoelectric theodolite without time-delay correction;
图4为本发明所述的光电经纬仪动态误差修正方法的外场比对实验处理结果;Fig. 4 is the field comparison experiment processing result of photoelectric theodolite dynamic error correction method of the present invention;
具体实施方式Detailed ways
一、标定检测架;检测架标定在室内的装校标校车间完成的,需要将经纬仪放置于检测平台后工作,标定系统包括稳定平台、红外光电经纬仪、大口径平行光管、检测架、0.5"莱卡经纬仪等系统。将检测平台调整稳定后,使用0.5"莱卡经纬仪对方位角0°、俯仰角0°的1#光管、方位角90°、俯仰角0°的5#光管,及方位角90°、俯仰角65°的6#光管进行标定;标定数据包括三次正倒镜数据,然后以三次数据的平均值作为真值。同时,使用0.5"莱卡经纬仪的标定三个光管的正倒镜数据,用于计算系统误差,即零位差、照准差、横轴差。系统误差用于真值修正。1. Calibrate the detection frame; if the calibration of the detection frame is completed in the indoor calibration and calibration workshop, the theodolite needs to be placed on the detection platform to work. The calibration system includes a stable platform, infrared photoelectric theodolite, large-diameter collimator, detection frame, 0.5 "Leica theodolite and other systems. After adjusting and stabilizing the detection platform, use a 0.5" Leica theodolite to check the 1# light pipe with an azimuth angle of 0° and the elevation angle of 0°, the 5# light pipe with an azimuth angle of 90° and an elevation angle of 0°, and The 6# light pipe with an azimuth angle of 90° and an elevation angle of 65° is used for calibration; the calibration data includes three times of forward and reverse mirror data, and then the average value of the three times of data is taken as the true value. At the same time, the positive and negative mirror data of the three light pipes calibrated by the 0.5" Leica theodolite are used to calculate the system error, that is, the zero position difference, the collimation difference, and the horizontal axis difference. The system error is used for true value correction.
二、延时修正参数计算;光电经纬仪的时序原则是必须将曝光时刻、脱靶量、编码器三个元素对齐到同一时刻。分析问题产生的原因,当经纬仪以一定的速度、加速度运动时,当红外相机的曝光时间为1ms时,我们需要将红外相机曝光中心与8组编码器其中的一个中心对齐,因此理论上我们需要将编码器的外触发同步向后延时500μs,但由于系统设计过程中,数据传输、采样时刻、以及伺服控制的限制,编码器的外触发同步信号不能修改,可以修改的是相机的外触发信号,因此需要将相机的外触发同步信号向后延时750μs,选择第1组编码器值。延时设置后工作时序关系如图4所示。时序对齐的公式如下,当红外相机的积分时间为T时(T一般为整毫秒),需要选择的编码器为第i[0:7]组,延时时间设置Tdelay,那么三者需要满足公式(1)。2. Calculation of delay correction parameters; the timing principle of the photoelectric theodolite is to align the three elements of the exposure time, the amount of miss, and the encoder to the same time. To analyze the cause of the problem, when the theodolite moves at a certain speed and acceleration, when the exposure time of the infrared camera is 1ms, we need to align the exposure center of the infrared camera with the center of one of the 8 sets of encoders, so theoretically we need Delay the encoder's external trigger synchronization backward by 500μs, but due to the limitations of data transmission, sampling time, and servo control during the system design process, the encoder's external trigger synchronization signal cannot be modified, and the camera's external trigger can be modified signal, so it is necessary to delay the camera's external trigger synchronization signal by 750μs, and select the first group of encoder values. After the delay is set, the working sequence relationship is shown in Figure 4. The formula for timing alignment is as follows. When the integration time of the infrared camera is T (T is generally whole milliseconds), the encoder to be selected is the i[0:7] group, and the delay time is set to Tdelay, then the three need to satisfy the formula (1).
T/2+Tdelay=1.25ms×i (1)T/2+T delay = 1.25ms×i (1)
三、采集测量数据;经过延时设置后,对经纬仪以速度20°/s与摆幅5°的工作参数以标灯为中心进行正弦运动,然后分别计算经纬仪向上运动及向下运动时的测得的方位角与俯仰角信息。测量结果如表1、表2所示,表1为延时修正后经纬仪向上运动时各帧图像的编码器及脱靶量信息,延时修正后经纬仪向下运动时各帧图像的编码器及脱靶量信息;3. Collect measurement data; after setting the time delay, the theodolite performs a sinusoidal movement with the working parameters of the
表1Table 1
表2Table 2
四、修正后的精度计算结果;动态精度测量时,经纬仪的伺服控制参数为速度设置为20°/s,摆幅分别设置为5°。当红外相机以1ms的积分时间工作时,时统分系统以秒同步信号为基准,分频产生100Hz的同步外触发信号给红外相机做为时间基准。同时产生800Hz的同步触发信号给编码器,做为编码器的系统的工作时间基准。当经纬仪以正弦运动方式拍摄标灯时,会在向下运动和向上运动时,分别对标灯成像,当不对以上各时间进行调整时,向上运动、向下运动时所产生图像中包含的时间、编码器、脱靶量、合成角度信息。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:4. The accuracy calculation results after correction; when measuring the dynamic accuracy, the servo control parameters of the theodolite are set to 20°/s for speed and 5° for swing. When the infrared camera works with an integration time of 1ms, the time division system takes the second synchronization signal as a reference, and generates a 100Hz synchronous external trigger signal for the infrared camera as a time reference by frequency division. At the same time, an 800Hz synchronous trigger signal is generated to the encoder as the working time reference of the encoder system. When the theodolite shoots the beacon light in a sinusoidal motion, it will image the beacon light when it moves downward and upward. When the above times are not adjusted, the time contained in the image generated when moving upward and downward , encoder, off-target amount, and synthetic angle information. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:
δΔA=10.07″
δΔE=8.56″
通过测量数据我们看到,经过延时修正的数据曝光同步的中心时刻与编码器角度对齐后,系统误差可以消除,从而提高光电经纬仪的动态测量精度。Through the measurement data, we can see that the system error can be eliminated after the central moment of the time-delay corrected data exposure synchronization is aligned with the encoder angle, thereby improving the dynamic measurement accuracy of the photoelectric theodolite.
五、未进行延时修正的测量结果;同时给出未经过延时修正的测量数据计算结果,从而可以体现出延时修正效果。未经延时修正时,经纬仪的伺服控制参数为速度设置为20°/s,摆幅分别设置为5°。当红外相机以1ms的积分时间工作时,时统分系统以秒同步信号为基准,分频产生100Hz的同步外触发信号给红外相机做为时间基准。同时产生800Hz的同步触发信号给编码器,做为编码器的系统的工作时间基准。当经纬仪以正弦运动方式拍摄标灯时,会在向下运动和向上运动时,分别对标灯成像,当不对以上各时间进行调整时,向上运动、向下运动时所产生图像中包含的时间、编码器、脱靶量、合成角度信息见表3、表4,表3为经纬仪向上运动时各帧图像对应的编码器及脱靶量信息,表4为经纬仪向下运动时各帧图像对应的编码器及脱靶量信息。5. The measurement results without delay correction; at the same time, the calculation results of the measurement data without delay correction are given, so that the delay correction effect can be reflected. Without delay correction, the servo control parameters of the theodolite are set to 20°/s for speed and 5° for swing. When the infrared camera works with an integration time of 1ms, the time division system takes the second synchronization signal as a reference, and generates a 100Hz synchronous external trigger signal for the infrared camera as a time reference by frequency division. At the same time, an 800Hz synchronous trigger signal is generated to the encoder as the working time reference of the encoder system. When the theodolite shoots the beacon light in a sinusoidal motion, it will image the beacon light when it moves downward and upward. When the above times are not adjusted, the time contained in the image generated when moving upward and downward , encoder, miss amount, and composite angle information are shown in Table 3 and Table 4. Table 3 is the encoder and miss amount information corresponding to each frame image when the theodolite moves upward, and Table 4 is the code corresponding to each frame image when the theodolite moves downward. Device and off-target information.
表3table 3
表4Table 4
当经纬仪正向运动时,编码器值采用如图1中的第0组编码器。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:When the theodolite is moving forward, the encoder value adopts the 0th encoder as shown in Figure 1. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:
δΔA=15.63″
δΔE=15.45″
当经纬仪正向运动时,编码器值同样采用附图3中的第0组编码器。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:When the theodolite is moving forward, the encoder value also adopts the 0th encoder in the accompanying drawing 3. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:
δΔA=9.99″
δΔE=11.94″
如果将以上数据整合为一组数据计算,测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:If the above data are integrated into a set of data calculation, the root mean square value and average value of the static measurement error of the measured azimuth angle and elevation angle are as follows:
δΔA=27.89″
δΔE=17.67″
从整体的方位角和俯仰角静态测量误差的均方根值与正向运动与返向运动的均方根值可以看到,设备存在较大的系统误差,而设备的随机误差很小,根据误差理论知识,我们可以对设备的系统误差进行分析,测试,然后消除。From the root mean square value of the static measurement error of the overall azimuth angle and pitch angle and the root mean square value of the forward motion and reverse motion, it can be seen that the equipment has a large systematic error, while the random error of the equipment is very small. According to With the knowledge of error theory, we can analyze, test and eliminate the systematic error of the equipment.
通过测量数据我们看到,经过延时修正的数据曝光同步的中心时刻与编码器角度对齐后,系统误差可以消除,从而提高光电经纬仪的动态测量精度。Through the measurement data, we can see that the system error can be eliminated after the central moment of the time-delay corrected data exposure synchronization is aligned with the encoder angle, thereby improving the dynamic measurement accuracy of the photoelectric theodolite.
本实施方式中在外场采用与高精度已标定设备进行数据比对实验,实验过程中光电经纬仪红外弹道相机测量系统与高精度设备同时对目标弹道轨迹进行测量,测量分站使用经过修正的动态测量方法,红外相机的积分时间使用1ms、红外相机延时为750μs,选择第一组编码器值。测量分站得到的目标方位角与目标俯仰角经过动态误差修正后,进行交会处理后,将交会计算结果与高精度已标定设备进行数据比对。分别计算两套测量设备大地坐标系下X方向、Y方向、Z方向的测角误差。外场比对结果如图4所示。从图4中可以看出,其中大地坐标系下X方向、Y方向、Z方向测角误差平均值分别为11.32",10.05",2.71"。In this embodiment, data comparison experiments with high-precision calibrated equipment are used in the field. During the experiment, the photoelectric theodolite infrared ballistic camera measurement system and high-precision equipment simultaneously measure the target ballistic trajectory, and the measurement sub-station uses the corrected dynamic measurement Method, the integration time of the infrared camera is 1ms, the delay of the infrared camera is 750μs, and the first set of encoder values is selected. The target azimuth angle and target pitch angle obtained by the measurement substation are corrected by the dynamic error, and then intersected, and the intersection calculation result is compared with the high-precision calibrated equipment. Calculate the angle measurement errors of the two sets of measuring equipment in the geodetic coordinate system in X direction, Y direction and Z direction respectively. The results of the field comparison are shown in Figure 4. It can be seen from Figure 4 that the average angle measurement errors in the X direction, Y direction, and Z direction in the geodetic coordinate system are 11.32", 10.05", and 2.71", respectively.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410016084.8A CN103727961B (en) | 2014-01-14 | 2014-01-14 | Method for correcting dynamic error of electro-optic theodolite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410016084.8A CN103727961B (en) | 2014-01-14 | 2014-01-14 | Method for correcting dynamic error of electro-optic theodolite |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103727961A true CN103727961A (en) | 2014-04-16 |
CN103727961B CN103727961B (en) | 2016-07-06 |
Family
ID=50452141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410016084.8A Expired - Fee Related CN103727961B (en) | 2014-01-14 | 2014-01-14 | Method for correcting dynamic error of electro-optic theodolite |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103727961B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104848874A (en) * | 2015-04-22 | 2015-08-19 | 北京环境特性研究所 | Method for photoelectric theodolite calibration in external field |
CN105300408A (en) * | 2015-10-15 | 2016-02-03 | 中国人民解放军63636部队 | Photoelectric theodolitee time synchronization accuracy detection system and detection method |
CN106248105A (en) * | 2016-09-14 | 2016-12-21 | 中国科学院西安光学精密机械研究所 | Double-collimation tolerance calibration system of auto-collimation theodolite |
CN106595703A (en) * | 2016-10-31 | 2017-04-26 | 中国科学院西安光学精密机械研究所 | Method for adjusting collimation error of horizontal theodolite |
CN108871374A (en) * | 2018-03-26 | 2018-11-23 | 中国科学院西安光学精密机械研究所 | Method for improving miss distance delay measurement precision in photoelectric tracking system |
CN111380563A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system |
CN112066977A (en) * | 2020-09-15 | 2020-12-11 | 中国人民解放军63660部队 | Photoelectric measurement network multi-target matching and cataloguing method |
CN112182062A (en) * | 2020-09-15 | 2021-01-05 | 中国人民解放军63660部队 | Multi-target radar networking measurement data matching and cataloguing method |
CN112306112A (en) * | 2020-10-09 | 2021-02-02 | 武汉华之洋科技有限公司 | Rotary table/swing table with high-frequency angle measuring mechanism and angle measuring method |
CN113375651A (en) * | 2021-06-11 | 2021-09-10 | 中国科学院光电技术研究所 | Real-time synthesizer of photoelectric theodolite formation of image tracking information |
CN113465608A (en) * | 2021-07-22 | 2021-10-01 | 清华大学苏州汽车研究院(吴江) | Calibration method and system for roadside sensor |
CN113625262A (en) * | 2021-08-05 | 2021-11-09 | 长沙祥云瑞风信息技术有限公司 | Target track determination method and related equipment |
CN114003045A (en) * | 2021-12-30 | 2022-02-01 | 成都星宇融科电力电子股份有限公司 | Target tracking method of photoelectric tracker, terminal and readable storage medium |
CN114264320A (en) * | 2021-12-20 | 2022-04-01 | 四川科锐新激光科技有限公司 | A method and device for calibrating a guidance instrument based on satellite positioning |
CN116107765A (en) * | 2023-04-14 | 2023-05-12 | 中国科学院长春光学精密机械与物理研究所 | Range Data Processing System |
CN118464071A (en) * | 2024-07-12 | 2024-08-09 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric theodolite timing correction method, system, terminal equipment and storage medium |
CN119147010A (en) * | 2024-11-19 | 2024-12-17 | 中国科学院长春光学精密机械与物理研究所 | Time sequence correction electric control system and image time sequence correction method of photoelectric theodolite |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2632060A1 (en) * | 1988-05-25 | 1989-12-01 | Aerospatiale | Method for optical adjustment of the bearing of a support structure with respect to a reference structure in an aircraft |
FR2696541A1 (en) * | 1992-10-01 | 1994-04-08 | Framatome Sa | Surveying interior of ductwork entering steam generator of nuclear reactor prior to cutting - using laser beam detector which is movable inside duct and adjacent spigot |
JPH07218256A (en) * | 1994-01-31 | 1995-08-18 | T I Trading Kk | Deviation measurement method and device for propelling work |
CN1818564A (en) * | 2006-03-29 | 2006-08-16 | 中国科学院光电技术研究所 | Method for measuring transverse axis difference of photoelectric theodolite |
CN101655344A (en) * | 2008-08-18 | 2010-02-24 | 北京航天计量测试技术研究所 | Method for calibrating spatial coordinate measuring system of electronic theodolite |
CN101655343A (en) * | 2008-08-18 | 2010-02-24 | 北京航天计量测试技术研究所 | Target, base and reference meter for calibrating spatial coordinate measuring system of electronic theodolite |
CN101949711A (en) * | 2010-08-25 | 2011-01-19 | 中国科学院长春光学精密机械与物理研究所 | Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite |
CN102135422A (en) * | 2010-12-30 | 2011-07-27 | 中国科学院长春光学精密机械与物理研究 | New method for realizing measurement of movable substrate of photoelectric theodolite |
CN102175267A (en) * | 2011-03-04 | 2011-09-07 | 中国人民解放军第二炮兵工程学院 | High-precision compensation method for horizontal angle of electro-optic theodolite |
CN102226701A (en) * | 2011-04-19 | 2011-10-26 | 中国科学院上海光学精密机械研究所 | High-precision optical dynamic target device |
CN102494665A (en) * | 2011-12-09 | 2012-06-13 | 中国科学院长春光学精密机械与物理研究所 | Method for measuring torsion angle of altazimuth equipment on basis of laser communication |
RU2460041C1 (en) * | 2011-04-27 | 2012-08-27 | Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") | Adjustment method of longitudinal axes of mounting frame for inertial navigation system and object |
CN103234555A (en) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric stabilized platform assembly zero calibration method |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
-
2014
- 2014-01-14 CN CN201410016084.8A patent/CN103727961B/en not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2632060A1 (en) * | 1988-05-25 | 1989-12-01 | Aerospatiale | Method for optical adjustment of the bearing of a support structure with respect to a reference structure in an aircraft |
FR2696541A1 (en) * | 1992-10-01 | 1994-04-08 | Framatome Sa | Surveying interior of ductwork entering steam generator of nuclear reactor prior to cutting - using laser beam detector which is movable inside duct and adjacent spigot |
JPH07218256A (en) * | 1994-01-31 | 1995-08-18 | T I Trading Kk | Deviation measurement method and device for propelling work |
CN1818564A (en) * | 2006-03-29 | 2006-08-16 | 中国科学院光电技术研究所 | Method for measuring transverse axis difference of photoelectric theodolite |
CN101655344A (en) * | 2008-08-18 | 2010-02-24 | 北京航天计量测试技术研究所 | Method for calibrating spatial coordinate measuring system of electronic theodolite |
CN101655343A (en) * | 2008-08-18 | 2010-02-24 | 北京航天计量测试技术研究所 | Target, base and reference meter for calibrating spatial coordinate measuring system of electronic theodolite |
CN101949711A (en) * | 2010-08-25 | 2011-01-19 | 中国科学院长春光学精密机械与物理研究所 | Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite |
CN102135422A (en) * | 2010-12-30 | 2011-07-27 | 中国科学院长春光学精密机械与物理研究 | New method for realizing measurement of movable substrate of photoelectric theodolite |
CN102175267A (en) * | 2011-03-04 | 2011-09-07 | 中国人民解放军第二炮兵工程学院 | High-precision compensation method for horizontal angle of electro-optic theodolite |
CN102226701A (en) * | 2011-04-19 | 2011-10-26 | 中国科学院上海光学精密机械研究所 | High-precision optical dynamic target device |
RU2460041C1 (en) * | 2011-04-27 | 2012-08-27 | Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") | Adjustment method of longitudinal axes of mounting frame for inertial navigation system and object |
CN102494665A (en) * | 2011-12-09 | 2012-06-13 | 中国科学院长春光学精密机械与物理研究所 | Method for measuring torsion angle of altazimuth equipment on basis of laser communication |
CN103234555A (en) * | 2013-04-18 | 2013-08-07 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric stabilized platform assembly zero calibration method |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
Non-Patent Citations (3)
Title |
---|
孙昊等: "测量船基于标校经纬仪的雷达光轴动态标定方法研究", 《科学技术与工程》 * |
李增等: "车载经纬仪的静态指向误差补偿", 《光学精密工程》 * |
王涛等: "车载经纬仪的测量误差修正", 《仪器仪表学报》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104848874A (en) * | 2015-04-22 | 2015-08-19 | 北京环境特性研究所 | Method for photoelectric theodolite calibration in external field |
CN105300408A (en) * | 2015-10-15 | 2016-02-03 | 中国人民解放军63636部队 | Photoelectric theodolitee time synchronization accuracy detection system and detection method |
CN106248105A (en) * | 2016-09-14 | 2016-12-21 | 中国科学院西安光学精密机械研究所 | Double-collimation tolerance calibration system of auto-collimation theodolite |
CN106248105B (en) * | 2016-09-14 | 2023-04-11 | 中国科学院西安光学精密机械研究所 | Double-collimation tolerance calibration system of auto-collimation theodolite |
CN106595703A (en) * | 2016-10-31 | 2017-04-26 | 中国科学院西安光学精密机械研究所 | Method for adjusting collimation error of horizontal theodolite |
CN106595703B (en) * | 2016-10-31 | 2019-04-02 | 中国科学院西安光学精密机械研究所 | Method for adjusting collimation error of horizontal theodolite |
CN108871374A (en) * | 2018-03-26 | 2018-11-23 | 中国科学院西安光学精密机械研究所 | Method for improving miss distance delay measurement precision in photoelectric tracking system |
CN108871374B (en) * | 2018-03-26 | 2021-01-15 | 中国科学院西安光学精密机械研究所 | A method for improving the accuracy of missed target time delay measurement in photoelectric tracking system |
CN111380563A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system |
CN112066977A (en) * | 2020-09-15 | 2020-12-11 | 中国人民解放军63660部队 | Photoelectric measurement network multi-target matching and cataloguing method |
CN112182062A (en) * | 2020-09-15 | 2021-01-05 | 中国人民解放军63660部队 | Multi-target radar networking measurement data matching and cataloguing method |
CN112066977B (en) * | 2020-09-15 | 2024-02-27 | 中国人民解放军63660部队 | Multi-target matching and cataloging method for photoelectric measurement network |
CN112182062B (en) * | 2020-09-15 | 2022-09-13 | 中国人民解放军63660部队 | Multi-target radar networking measurement data matching and cataloguing method |
CN112306112A (en) * | 2020-10-09 | 2021-02-02 | 武汉华之洋科技有限公司 | Rotary table/swing table with high-frequency angle measuring mechanism and angle measuring method |
CN112306112B (en) * | 2020-10-09 | 2023-11-24 | 武汉华之洋科技有限公司 | Turntable/swinging table with high-frequency angle measuring mechanism and angle measuring method |
CN113375651A (en) * | 2021-06-11 | 2021-09-10 | 中国科学院光电技术研究所 | Real-time synthesizer of photoelectric theodolite formation of image tracking information |
CN113465608A (en) * | 2021-07-22 | 2021-10-01 | 清华大学苏州汽车研究院(吴江) | Calibration method and system for roadside sensor |
CN113465608B (en) * | 2021-07-22 | 2024-05-03 | 清华大学苏州汽车研究院(吴江) | Road side sensor calibration method and system |
CN113625262A (en) * | 2021-08-05 | 2021-11-09 | 长沙祥云瑞风信息技术有限公司 | Target track determination method and related equipment |
CN114264320A (en) * | 2021-12-20 | 2022-04-01 | 四川科锐新激光科技有限公司 | A method and device for calibrating a guidance instrument based on satellite positioning |
CN114003045A (en) * | 2021-12-30 | 2022-02-01 | 成都星宇融科电力电子股份有限公司 | Target tracking method of photoelectric tracker, terminal and readable storage medium |
CN116107765A (en) * | 2023-04-14 | 2023-05-12 | 中国科学院长春光学精密机械与物理研究所 | Range Data Processing System |
CN118464071A (en) * | 2024-07-12 | 2024-08-09 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric theodolite timing correction method, system, terminal equipment and storage medium |
CN118464071B (en) * | 2024-07-12 | 2024-11-12 | 中国科学院长春光学精密机械与物理研究所 | Photoelectric theodolite timing correction method, system, terminal equipment and storage medium |
CN119147010A (en) * | 2024-11-19 | 2024-12-17 | 中国科学院长春光学精密机械与物理研究所 | Time sequence correction electric control system and image time sequence correction method of photoelectric theodolite |
Also Published As
Publication number | Publication date |
---|---|
CN103727961B (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103727961B (en) | Method for correcting dynamic error of electro-optic theodolite | |
CN109579876B (en) | High-dynamic multi-target azimuth angle calibration method under land dynamic base | |
CN103487013B (en) | High-precision vertical axis inclination angle measuring system and calibration method thereof | |
CN104880200B (en) | Combined guidance system initial attitude field calibration system and method | |
CN108519103B (en) | Stable platform multi-attitude precision synchronous evaluation device and method using autocollimator | |
CN103884334A (en) | Moving target positioning method based on wide beam laser ranging and single camera | |
CN103412391A (en) | Method for realizing through-axis centering of optical system based on laser tracker | |
CN203479294U (en) | High-precision vertical axis inclination angle measuring system | |
CN106323599A (en) | Method for detecting imaging quality of large-field telescope optical system | |
CN103727962B (en) | Big visual field infrared electro theodolite precision calibration method | |
CN104501831A (en) | Assembly and rectification method for collimator | |
CN106705991A (en) | Testing apparatus for installation errors of sighting prism of strapdown inertial measurement unit | |
CN104316082B (en) | A kind of theodolite outfield infinity range correction method | |
CN103674058B (en) | Indoor detection method for swing mirror angle tracking precision | |
CN107621254A (en) | A kind of barrel axis points to method of testing | |
CN105387996B (en) | More optical axis ground star observation systematic optical axis uniformity calibration methods | |
CN111044077B (en) | Calibration method between star sensor measurement coordinate system and star sensor cube mirror coordinate system | |
CN104535974A (en) | Boresight device of airplane radar system and using method of boresight device | |
CN105403144B (en) | A kind of iGPS dynamic measurement error real-time compensation methods for aircraft Automated assembly | |
CN103162712B (en) | The crooked compensation method of Circular gratings angle measurement deviation processing and axle system | |
CN104535078A (en) | Measuring method for flying object through photoelectric equipment based on marking points | |
CN104567919A (en) | Device for calibrating dynamic measurement errors of photogrammetric system and application method thereof | |
CN208921103U (en) | Deformation test system for optical system of photoelectric theodolite | |
CN205719011U (en) | Calibration device for dynamic deformation angle measurement error of dynamic target | |
CN102155911B (en) | Method and application for repeatedly locating workpiece with laser tracking technology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160706 Termination date: 20180114 |