CN103727961A - Method for correcting dynamic error of electro-optic theodolite - Google Patents

Method for correcting dynamic error of electro-optic theodolite Download PDF

Info

Publication number
CN103727961A
CN103727961A CN201410016084.8A CN201410016084A CN103727961A CN 103727961 A CN103727961 A CN 103727961A CN 201410016084 A CN201410016084 A CN 201410016084A CN 103727961 A CN103727961 A CN 103727961A
Authority
CN
China
Prior art keywords
angle
theodolite
value
encoder
dynamic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410016084.8A
Other languages
Chinese (zh)
Other versions
CN103727961B (en
Inventor
刘岩俊
闫海霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201410016084.8A priority Critical patent/CN103727961B/en
Publication of CN103727961A publication Critical patent/CN103727961A/en
Application granted granted Critical
Publication of CN103727961B publication Critical patent/CN103727961B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C1/00Measuring angles
    • G01C1/02Theodolites

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The invention discloses a method for correcting the dynamic error of an electro-optic theodolite, relating to the field of photoelectricity measurement and control and solving the problem in a dynamic measurement process of an existing electro-optic theodolite that the system has time delay error for an encoder sampling center and an infrared camera exposure center are out of sync. The method comprises steps of calibrating a detection rack; taking the average value of three obtained change face data as a truth value; delaying parameter design; setting external triggering synchronizing signal delayed TD of a camera, selecting the value of an encoder so as to align the exposure time center with a miss distance and a sampling time of the encoder; measuring the angle at dynamic state and accurately calculating and setting external triggering synchronizing delayed TD of the camera, then setting the servo control parameter and amplitude of oscillation of an infrared theodolite, and collecting the date of sinusoidal motion of the full field by the infrared theodolite; obtaining information about azimuth angle and angle of pitch; and respectively carrying out subtracting on the azimuth angle and the angle of pitch with the truth value obtained in step one, and taking the square root value so as to obtain the angle measurement accuracy to realize error correction.

Description

光电经纬仪动态误差修正方法Dynamic Error Correction Method of Photoelectric Theodolite

技术领域technical field

本发明属于光电测控领域,具体涉及光电经纬仪动态误差修正方法,在光电经纬仪精度检测中,可用于提高光电经纬仪的测角精度。同时,在外场测试试验中,可用于提高目标的外弹道轨迹坐标。The invention belongs to the field of photoelectric measurement and control, and in particular relates to a dynamic error correction method of a photoelectric theodolite, which can be used to improve the angle measurement accuracy of the photoelectric theodolite in the precision detection of the photoelectric theodolite. At the same time, in the field test experiment, it can be used to improve the target's outer ballistic trajectory coordinates.

背景技术Background technique

在导弹、航天器发射试验过程中,火箭的飞行弹道和卫星轨道等反映试验情况的数据,大多数是由无线电和光学外测设备通过测量获得的,这些外测设备的测量精度,标志着我国导弹、卫星等航天器试验的测控水平。而精度是外测设备的生命和归宿,由于测量数据及精度分析对导弹、卫星等航天器的研制、定型和改进密切相关,因此国内各相关单位对外测设备的精度鉴定工作都十分重视。而光电经纬仪是靶场光电测量的主要设备,光电测量设备主要通过角度测量、交会处理完成被测目标空间定位的,进一步计算目标的外弹道参数数据。测角误差的大小直接影响定位精度,因此对测角误差的来源、影响和检测方法的研究是光电经纬仪的重要研究内容之一。During the launch test of missiles and spacecraft, most of the data reflecting the test situation, such as the flight trajectory of the rocket and the orbit of the satellite, are obtained through measurement by radio and optical external measurement equipment. The measurement accuracy of these external measurement equipment marks the The measurement and control level of spacecraft tests such as missiles and satellites. Accuracy is the life and destination of external testing equipment. Since measurement data and accuracy analysis are closely related to the development, finalization and improvement of missiles, satellites and other spacecraft, all relevant domestic units attach great importance to the accuracy appraisal of external testing equipment. The photoelectric theodolite is the main equipment for photoelectric measurement in the shooting range. The photoelectric measurement equipment mainly completes the spatial positioning of the measured target through angle measurement and intersection processing, and further calculates the target's external ballistic parameter data. The size of the angle measurement error directly affects the positioning accuracy, so the research on the source, influence and detection method of the angle measurement error is one of the important research contents of the photoelectric theodolite.

光电经纬仪的精度标定分为静态测角精度与动态测角精度两部分内容,动态测量测角精度是在静态测角精度基础上得出的。本文对影响光电经纬仪动态测量误差的原因进行分析,并提出了基于时间对齐的误差修正方法,经过动态测角修正的方位角与俯仰角测角误差均方根值分别由27.89"与17.67"提高到10.07"与8.56",该方法有效的提高了动态测量精度,并且对其它光电测量设备具有参考价值。The accuracy calibration of photoelectric theodolite is divided into two parts: static angle measurement accuracy and dynamic angle measurement accuracy. The dynamic measurement angle measurement accuracy is obtained on the basis of static angle measurement accuracy. In this paper, the reasons affecting the dynamic measurement error of the photoelectric theodolite are analyzed, and an error correction method based on time alignment is proposed. After dynamic angle measurement correction, the root mean square value of the angle measurement error of the azimuth angle and the elevation angle is improved from 27.89" and 17.67" respectively. To 10.07" and 8.56", this method effectively improves the dynamic measurement accuracy, and has reference value for other photoelectric measurement equipment.

发明内容Contents of the invention

本发明的目的是为解决由于光电经纬仪动态测量过程中,编码器采样中心与红外相机曝光中心不同步,而导致的系统延时误差,提出了一种通过分析实验参数,设置红外相机外触发信号延时时间的方法,解决曝光同步的问题。The purpose of the present invention is to solve the system delay error caused by the asynchrony between the encoder sampling center and the infrared camera exposure center during the dynamic measurement process of the photoelectric theodolite, and proposes a method for setting the external trigger signal of the infrared camera by analyzing experimental parameters The method of delay time solves the problem of exposure synchronization.

本发明光电经纬仪动态误差修正方法,该方法包括以下步骤:The photoelectric theodolite dynamic error correction method of the present invention, this method comprises the following steps:

步骤一、标定检测架;采用高精度莱卡经纬仪,测量三个平行光管的角度值,所述平行光管的角度值为标定三个平行光管的正倒镜数据,并将获得的三个正倒镜数据的平均值作为真值;Step 1. Calibrate the detection frame; use a high-precision Leica theodolite to measure the angle values of the three collimators. The angle values of the collimators are to calibrate the positive and negative mirror data of the three collimators. The average value of the positive and negative mirror data is used as the true value;

步骤二、延时参数设计;设定相机的外触发同步信号延时TD,选择编码器值,根据公式:T/2+Tdelay=1.25ms×i,T为时间,i的取值为0~7,实现曝光时间与脱靶量、编码器的采样时刻三者对齐;Step 2. Delay parameter design; set the camera’s external trigger synchronization signal delay TD, select the encoder value, according to the formula: T/2+T delay = 1.25ms×i, T is time, and the value of i is 0 ~7, realize the alignment of exposure time, off-target amount, and encoder sampling time;

步骤三、动态测角精度计算;根据步骤二设定的红外相机的外触发同步信号延时TD,然后设置红外经纬仪的伺服控制参数和摆幅,使用红外经纬仪对全视场正弦运动时的数据进行采集;获得方位角和俯仰的信息;Step 3. Calculation of dynamic angle measurement accuracy; delay TD according to the external trigger synchronization signal of the infrared camera set in step 2, then set the servo control parameters and swing amplitude of the infrared theodolite, and use the infrared theodolite to measure the data during the sinusoidal motion of the full field of view Collecting; Obtaining azimuth and elevation information;

步骤四、将步骤三获得的方位角和俯仰角信息分别与步骤一获得的真值作差,取平方根的值,即获得测角精度,实现对误差的修正。Step 4. The azimuth angle and pitch angle information obtained in step 3 are respectively compared with the true value obtained in step 1, and the value of the square root is taken to obtain the angle measurement accuracy and realize the correction of the error.

本发明的有益效果:本发明提出了使用动态延时设置修正的方法,将曝光时刻、脱靶量、编码器三个元素对齐到同一时刻。给出了不同系统参数下的,延时修正时间计算公式。使用该公式可以计算不同积分时间的对就的相机延时设置,以及编码器数据选择方法。本发明所述的方法在大视场红外光电测控领域,有利于提高大视场红外光电经纬仪的动态测角精度。采用系统内部延时修正的方法,对光电经纬仪的动态测量精度进行修正,经过动态测角修正的方位角与俯仰角测角误差均方根值分别由27.89"与17.67"提高到10.07"与8.56",该方法有效的提高了动态测量精度,并且对其它光电测量设备具有参考价值。Beneficial effects of the present invention: the present invention proposes a method of using dynamic delay setting correction to align the three elements of the exposure time, the amount of miss, and the encoder to the same time. The calculation formula of delay correction time under different system parameters is given. Use this formula to calculate appropriate camera delay settings for different integration times, and encoder data selection methods. In the field of infrared photoelectric measurement and control of a large field of view, the method of the invention is beneficial to improving the dynamic angle measurement accuracy of a large field of view infrared photoelectric theodolite. Using the system internal delay correction method, the dynamic measurement accuracy of the photoelectric theodolite is corrected. After the dynamic angle measurement correction, the root mean square value of the angle measurement error of the azimuth angle and the elevation angle is increased from 27.89" and 17.67" to 10.07" and 8.56 respectively. ", this method effectively improves the dynamic measurement accuracy, and has reference value for other photoelectric measurement equipment.

附图说明Description of drawings

图1为本发明所述的光电经纬仪动态误差修正方法的检测环境组成示意图;Fig. 1 is the detection environment composition schematic diagram of photoelectric theodolite dynamic error correction method of the present invention;

图2为本发明所述的光电经纬仪动态误差修正方法中延时修正后的光电经纬仪时序关系示意图;Fig. 2 is the schematic diagram of the photoelectric theodolite timing relationship after delay correction in the photoelectric theodolite dynamic error correction method of the present invention;

图3为未延时修正的光电经纬仪时序关系示意图;Fig. 3 is the schematic diagram of the timing relationship of the photoelectric theodolite without time-delay correction;

图4为本发明所述的光电经纬仪动态误差修正方法的外场比对实验处理结果;Fig. 4 is the field comparison experiment processing result of photoelectric theodolite dynamic error correction method of the present invention;

具体实施方式Detailed ways

一、标定检测架;检测架标定在室内的装校标校车间完成的,需要将经纬仪放置于检测平台后工作,标定系统包括稳定平台、红外光电经纬仪、大口径平行光管、检测架、0.5"莱卡经纬仪等系统。将检测平台调整稳定后,使用0.5"莱卡经纬仪对方位角0°、俯仰角0°的1#光管、方位角90°、俯仰角0°的5#光管,及方位角90°、俯仰角65°的6#光管进行标定;标定数据包括三次正倒镜数据,然后以三次数据的平均值作为真值。同时,使用0.5"莱卡经纬仪的标定三个光管的正倒镜数据,用于计算系统误差,即零位差、照准差、横轴差。系统误差用于真值修正。1. Calibrate the detection frame; if the calibration of the detection frame is completed in the indoor calibration and calibration workshop, the theodolite needs to be placed on the detection platform to work. The calibration system includes a stable platform, infrared photoelectric theodolite, large-diameter collimator, detection frame, 0.5 "Leica theodolite and other systems. After adjusting and stabilizing the detection platform, use a 0.5" Leica theodolite to check the 1# light pipe with an azimuth angle of 0° and the elevation angle of 0°, the 5# light pipe with an azimuth angle of 90° and an elevation angle of 0°, and The 6# light pipe with an azimuth angle of 90° and an elevation angle of 65° is used for calibration; the calibration data includes three times of forward and reverse mirror data, and then the average value of the three times of data is taken as the true value. At the same time, the positive and negative mirror data of the three light pipes calibrated by the 0.5" Leica theodolite are used to calculate the system error, that is, the zero position difference, the collimation difference, and the horizontal axis difference. The system error is used for true value correction.

二、延时修正参数计算;光电经纬仪的时序原则是必须将曝光时刻、脱靶量、编码器三个元素对齐到同一时刻。分析问题产生的原因,当经纬仪以一定的速度、加速度运动时,当红外相机的曝光时间为1ms时,我们需要将红外相机曝光中心与8组编码器其中的一个中心对齐,因此理论上我们需要将编码器的外触发同步向后延时500μs,但由于系统设计过程中,数据传输、采样时刻、以及伺服控制的限制,编码器的外触发同步信号不能修改,可以修改的是相机的外触发信号,因此需要将相机的外触发同步信号向后延时750μs,选择第1组编码器值。延时设置后工作时序关系如图4所示。时序对齐的公式如下,当红外相机的积分时间为T时(T一般为整毫秒),需要选择的编码器为第i[0:7]组,延时时间设置Tdelay,那么三者需要满足公式(1)。2. Calculation of delay correction parameters; the timing principle of the photoelectric theodolite is to align the three elements of the exposure time, the amount of miss, and the encoder to the same time. To analyze the cause of the problem, when the theodolite moves at a certain speed and acceleration, when the exposure time of the infrared camera is 1ms, we need to align the exposure center of the infrared camera with the center of one of the 8 sets of encoders, so theoretically we need Delay the encoder's external trigger synchronization backward by 500μs, but due to the limitations of data transmission, sampling time, and servo control during the system design process, the encoder's external trigger synchronization signal cannot be modified, and the camera's external trigger can be modified signal, so it is necessary to delay the camera's external trigger synchronization signal by 750μs, and select the first group of encoder values. After the delay is set, the working sequence relationship is shown in Figure 4. The formula for timing alignment is as follows. When the integration time of the infrared camera is T (T is generally whole milliseconds), the encoder to be selected is the i[0:7] group, and the delay time is set to Tdelay, then the three need to satisfy the formula (1).

T/2+Tdelay=1.25ms×i    (1)T/2+T delay = 1.25ms×i (1)

三、采集测量数据;经过延时设置后,对经纬仪以速度20°/s与摆幅5°的工作参数以标灯为中心进行正弦运动,然后分别计算经纬仪向上运动及向下运动时的测得的方位角与俯仰角信息。测量结果如表1、表2所示,表1为延时修正后经纬仪向上运动时各帧图像的编码器及脱靶量信息,延时修正后经纬仪向下运动时各帧图像的编码器及脱靶量信息;3. Collect measurement data; after setting the time delay, the theodolite performs a sinusoidal movement with the working parameters of the speed 20°/s and the swing amplitude of 5° centering on the beacon light, and then calculates the measurement of the theodolite when it moves upward and downward. Obtained azimuth and elevation angle information. The measurement results are shown in Table 1 and Table 2. Table 1 shows the encoder and off-target information of each frame image when the theodolite moves upward after delay correction, and the encoder and off-target information of each frame image when the theodolite moves downward after delay correction. quantity information;

表1Table 1

Figure BDA0000456713640000031
Figure BDA0000456713640000031

表2Table 2

Figure BDA0000456713640000041
Figure BDA0000456713640000041

四、修正后的精度计算结果;动态精度测量时,经纬仪的伺服控制参数为速度设置为20°/s,摆幅分别设置为5°。当红外相机以1ms的积分时间工作时,时统分系统以秒同步信号为基准,分频产生100Hz的同步外触发信号给红外相机做为时间基准。同时产生800Hz的同步触发信号给编码器,做为编码器的系统的工作时间基准。当经纬仪以正弦运动方式拍摄标灯时,会在向下运动和向上运动时,分别对标灯成像,当不对以上各时间进行调整时,向上运动、向下运动时所产生图像中包含的时间、编码器、脱靶量、合成角度信息。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:4. The accuracy calculation results after correction; when measuring the dynamic accuracy, the servo control parameters of the theodolite are set to 20°/s for speed and 5° for swing. When the infrared camera works with an integration time of 1ms, the time division system takes the second synchronization signal as a reference, and generates a 100Hz synchronous external trigger signal for the infrared camera as a time reference by frequency division. At the same time, an 800Hz synchronous trigger signal is generated to the encoder as the working time reference of the encoder system. When the theodolite shoots the beacon light in a sinusoidal motion, it will image the beacon light when it moves downward and upward. When the above times are not adjusted, the time contained in the image generated when moving upward and downward , encoder, off-target amount, and synthetic angle information. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:

δΔA=10.07″ ΔA ‾ = 41967.82 ′ ′ δ ΔA = 10.07″ ΔA ‾ = 41967.82 ′ ′

δΔE=8.56″ ΔE ‾ = - 260.21 ′ ′ δ ΔE = 8.56″ ΔE ‾ = - 260.21 ′ ′

通过测量数据我们看到,经过延时修正的数据曝光同步的中心时刻与编码器角度对齐后,系统误差可以消除,从而提高光电经纬仪的动态测量精度。Through the measurement data, we can see that the system error can be eliminated after the central moment of the time-delay corrected data exposure synchronization is aligned with the encoder angle, thereby improving the dynamic measurement accuracy of the photoelectric theodolite.

五、未进行延时修正的测量结果;同时给出未经过延时修正的测量数据计算结果,从而可以体现出延时修正效果。未经延时修正时,经纬仪的伺服控制参数为速度设置为20°/s,摆幅分别设置为5°。当红外相机以1ms的积分时间工作时,时统分系统以秒同步信号为基准,分频产生100Hz的同步外触发信号给红外相机做为时间基准。同时产生800Hz的同步触发信号给编码器,做为编码器的系统的工作时间基准。当经纬仪以正弦运动方式拍摄标灯时,会在向下运动和向上运动时,分别对标灯成像,当不对以上各时间进行调整时,向上运动、向下运动时所产生图像中包含的时间、编码器、脱靶量、合成角度信息见表3、表4,表3为经纬仪向上运动时各帧图像对应的编码器及脱靶量信息,表4为经纬仪向下运动时各帧图像对应的编码器及脱靶量信息。5. The measurement results without delay correction; at the same time, the calculation results of the measurement data without delay correction are given, so that the delay correction effect can be reflected. Without delay correction, the servo control parameters of the theodolite are set to 20°/s for speed and 5° for swing. When the infrared camera works with an integration time of 1ms, the time division system takes the second synchronization signal as a reference, and generates a 100Hz synchronous external trigger signal for the infrared camera as a time reference by frequency division. At the same time, an 800Hz synchronous trigger signal is generated to the encoder as the working time reference of the encoder system. When the theodolite shoots the beacon light in a sinusoidal motion, it will image the beacon light when it moves downward and upward. When the above times are not adjusted, the time contained in the image generated when moving upward and downward , encoder, miss amount, and composite angle information are shown in Table 3 and Table 4. Table 3 is the encoder and miss amount information corresponding to each frame image when the theodolite moves upward, and Table 4 is the code corresponding to each frame image when the theodolite moves downward. Device and off-target information.

表3table 3

Figure BDA0000456713640000051
Figure BDA0000456713640000051

表4Table 4

Figure BDA0000456713640000052
Figure BDA0000456713640000052

当经纬仪正向运动时,编码器值采用如图1中的第0组编码器。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:When the theodolite is moving forward, the encoder value adopts the 0th encoder as shown in Figure 1. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:

δΔA=15.63″ ΔE ‾ = - 41995.73 ′ ′ δ ΔA = 15.63″ ΔE ‾ = - 41995.73 ′ ′

δΔE=15.45″ ΔE ‾ = - 253.61 ′ ′ δ ΔE = 15.45″ ΔE ‾ = - 253.61 ′ ′

当经纬仪正向运动时,编码器值同样采用附图3中的第0组编码器。测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:When the theodolite is moving forward, the encoder value also adopts the 0th encoder in the accompanying drawing 3. The root-mean-square and average values of the measured azimuth and elevation static measurement errors are as follows:

δΔA=9.99″ ΔA ‾ = 41943.73 ′ ′ δ ΔA = 9.99″ ΔA ‾ = 41943.73 ′ ′

δΔE=11.94″ ΔE ‾ = - 271.88 ′ ′ δ ΔE = 11.94″ ΔE ‾ = - 271.88 ′ ′

如果将以上数据整合为一组数据计算,测得的方位角和俯仰角静态测量误差的均方根值与平均值分别如下:If the above data are integrated into a set of data calculation, the root mean square value and average value of the static measurement error of the measured azimuth angle and elevation angle are as follows:

δΔA=27.89″ ΔA ‾ = 41971.09 ′ ′ δ ΔA = 27.89″ ΔA ‾ = 41971.09 ′ ′

δΔE=17.67″ ΔE ‾ = - 264.63 ′ ′ δ ΔE = 17.67″ ΔE ‾ = - 264.63 ′ ′

从整体的方位角和俯仰角静态测量误差的均方根值与正向运动与返向运动的均方根值可以看到,设备存在较大的系统误差,而设备的随机误差很小,根据误差理论知识,我们可以对设备的系统误差进行分析,测试,然后消除。From the root mean square value of the static measurement error of the overall azimuth angle and pitch angle and the root mean square value of the forward motion and reverse motion, it can be seen that the equipment has a large systematic error, while the random error of the equipment is very small. According to With the knowledge of error theory, we can analyze, test and eliminate the systematic error of the equipment.

通过测量数据我们看到,经过延时修正的数据曝光同步的中心时刻与编码器角度对齐后,系统误差可以消除,从而提高光电经纬仪的动态测量精度。Through the measurement data, we can see that the system error can be eliminated after the central moment of the time-delay corrected data exposure synchronization is aligned with the encoder angle, thereby improving the dynamic measurement accuracy of the photoelectric theodolite.

本实施方式中在外场采用与高精度已标定设备进行数据比对实验,实验过程中光电经纬仪红外弹道相机测量系统与高精度设备同时对目标弹道轨迹进行测量,测量分站使用经过修正的动态测量方法,红外相机的积分时间使用1ms、红外相机延时为750μs,选择第一组编码器值。测量分站得到的目标方位角与目标俯仰角经过动态误差修正后,进行交会处理后,将交会计算结果与高精度已标定设备进行数据比对。分别计算两套测量设备大地坐标系下X方向、Y方向、Z方向的测角误差。外场比对结果如图4所示。从图4中可以看出,其中大地坐标系下X方向、Y方向、Z方向测角误差平均值分别为11.32",10.05",2.71"。In this embodiment, data comparison experiments with high-precision calibrated equipment are used in the field. During the experiment, the photoelectric theodolite infrared ballistic camera measurement system and high-precision equipment simultaneously measure the target ballistic trajectory, and the measurement sub-station uses the corrected dynamic measurement Method, the integration time of the infrared camera is 1ms, the delay of the infrared camera is 750μs, and the first set of encoder values is selected. The target azimuth angle and target pitch angle obtained by the measurement substation are corrected by the dynamic error, and then intersected, and the intersection calculation result is compared with the high-precision calibrated equipment. Calculate the angle measurement errors of the two sets of measuring equipment in the geodetic coordinate system in X direction, Y direction and Z direction respectively. The results of the field comparison are shown in Figure 4. It can be seen from Figure 4 that the average angle measurement errors in the X direction, Y direction, and Z direction in the geodetic coordinate system are 11.32", 10.05", and 2.71", respectively.

Claims (2)

1.光电经纬仪动态误差修正方法,其特征是,该方法包括以下步骤:1. The photoelectric theodolite dynamic error correction method is characterized in that the method may further comprise the steps: 步骤一、标定检测架;采用高精度莱卡经纬仪,测量三个平行光管的角度值,所述平行光管的角度值为标定三个平行光管的正倒镜数据,并将获得的三个正倒镜数据的平均值作为真值;Step 1. Calibrate the detection frame; use a high-precision Leica theodolite to measure the angle values of the three collimators. The angle values of the collimators are to calibrate the positive and negative mirror data of the three collimators. The average value of the positive and negative mirror data is used as the true value; 步骤二、延时参数设计;设定相机的外触发同步信号延时TD,选择编码器值,根据公式:T/2+Tdelay=1.25ms×i,T为时间,i的取值为0~7,实现曝光时间与脱靶量、编码器的采样时刻三者对齐;Step 2. Delay parameter design; set the camera’s external trigger synchronization signal delay TD, select the encoder value, according to the formula: T/2+T delay = 1.25ms×i, T is time, and the value of i is 0 ~7, realize the alignment of exposure time, off-target amount, and encoder sampling time; 步骤三、动态测角精度计算;根据步骤二设定的红外相机的外触发同步信号延时TD,然后设置红外经纬仪的伺服控制参数和摆幅,使用红外经纬仪对全视场正弦运动时的数据进行采集;获得方位角和俯仰的信息;Step 3. Calculation of dynamic angle measurement accuracy; delay TD according to the external trigger synchronization signal of the infrared camera set in step 2, then set the servo control parameters and swing amplitude of the infrared theodolite, and use the infrared theodolite to measure the data during the sinusoidal motion of the full field of view Collecting; Obtaining azimuth and elevation information; 步骤四、将步骤三获得的方位角和俯仰角信息分别与步骤一获得的真值作差,取平方根的值,即获得测角精度,实现对误差的修正。Step 4. The azimuth angle and pitch angle information obtained in step 3 are respectively compared with the true value obtained in step 1, and the value of the square root is taken to obtain the angle measurement accuracy and realize the correction of the error. 2.根据权利要求1所述的光电经纬仪动态误差修正方法,其特征在于,步骤一所述的采用莱卡经纬仪对方位角为0°和俯仰角0°的平行光管,方位角为90°和俯仰角0°的平行光管以及方位角90°、俯仰角65°的平行光管进行标定。2. photoelectric theodolite dynamic error correction method according to claim 1, is characterized in that, adopting Lycra theodolite described in step one is the collimator of 0 ° and pitch angle 0 ° to azimuth angle, azimuth angle is 90 ° and A collimator with an elevation angle of 0° and a collimator with an azimuth angle of 90° and an elevation angle of 65° are used for calibration.
CN201410016084.8A 2014-01-14 2014-01-14 Method for correcting dynamic error of electro-optic theodolite Expired - Fee Related CN103727961B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410016084.8A CN103727961B (en) 2014-01-14 2014-01-14 Method for correcting dynamic error of electro-optic theodolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410016084.8A CN103727961B (en) 2014-01-14 2014-01-14 Method for correcting dynamic error of electro-optic theodolite

Publications (2)

Publication Number Publication Date
CN103727961A true CN103727961A (en) 2014-04-16
CN103727961B CN103727961B (en) 2016-07-06

Family

ID=50452141

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410016084.8A Expired - Fee Related CN103727961B (en) 2014-01-14 2014-01-14 Method for correcting dynamic error of electro-optic theodolite

Country Status (1)

Country Link
CN (1) CN103727961B (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848874A (en) * 2015-04-22 2015-08-19 北京环境特性研究所 Method for photoelectric theodolite calibration in external field
CN105300408A (en) * 2015-10-15 2016-02-03 中国人民解放军63636部队 Photoelectric theodolitee time synchronization accuracy detection system and detection method
CN106248105A (en) * 2016-09-14 2016-12-21 中国科学院西安光学精密机械研究所 Double-collimation tolerance calibration system of auto-collimation theodolite
CN106595703A (en) * 2016-10-31 2017-04-26 中国科学院西安光学精密机械研究所 Method for adjusting collimation error of horizontal theodolite
CN108871374A (en) * 2018-03-26 2018-11-23 中国科学院西安光学精密机械研究所 Method for improving miss distance delay measurement precision in photoelectric tracking system
CN111380563A (en) * 2018-12-29 2020-07-07 中国科学院长春光学精密机械与物理研究所 Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system
CN112066977A (en) * 2020-09-15 2020-12-11 中国人民解放军63660部队 Photoelectric measurement network multi-target matching and cataloguing method
CN112182062A (en) * 2020-09-15 2021-01-05 中国人民解放军63660部队 Multi-target radar networking measurement data matching and cataloguing method
CN112306112A (en) * 2020-10-09 2021-02-02 武汉华之洋科技有限公司 Rotary table/swing table with high-frequency angle measuring mechanism and angle measuring method
CN113375651A (en) * 2021-06-11 2021-09-10 中国科学院光电技术研究所 Real-time synthesizer of photoelectric theodolite formation of image tracking information
CN113465608A (en) * 2021-07-22 2021-10-01 清华大学苏州汽车研究院(吴江) Calibration method and system for roadside sensor
CN113625262A (en) * 2021-08-05 2021-11-09 长沙祥云瑞风信息技术有限公司 Target track determination method and related equipment
CN114003045A (en) * 2021-12-30 2022-02-01 成都星宇融科电力电子股份有限公司 Target tracking method of photoelectric tracker, terminal and readable storage medium
CN114264320A (en) * 2021-12-20 2022-04-01 四川科锐新激光科技有限公司 A method and device for calibrating a guidance instrument based on satellite positioning
CN116107765A (en) * 2023-04-14 2023-05-12 中国科学院长春光学精密机械与物理研究所 Range Data Processing System
CN118464071A (en) * 2024-07-12 2024-08-09 中国科学院长春光学精密机械与物理研究所 Photoelectric theodolite timing correction method, system, terminal equipment and storage medium
CN119147010A (en) * 2024-11-19 2024-12-17 中国科学院长春光学精密机械与物理研究所 Time sequence correction electric control system and image time sequence correction method of photoelectric theodolite

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632060A1 (en) * 1988-05-25 1989-12-01 Aerospatiale Method for optical adjustment of the bearing of a support structure with respect to a reference structure in an aircraft
FR2696541A1 (en) * 1992-10-01 1994-04-08 Framatome Sa Surveying interior of ductwork entering steam generator of nuclear reactor prior to cutting - using laser beam detector which is movable inside duct and adjacent spigot
JPH07218256A (en) * 1994-01-31 1995-08-18 T I Trading Kk Deviation measurement method and device for propelling work
CN1818564A (en) * 2006-03-29 2006-08-16 中国科学院光电技术研究所 Method for measuring transverse axis difference of photoelectric theodolite
CN101655344A (en) * 2008-08-18 2010-02-24 北京航天计量测试技术研究所 Method for calibrating spatial coordinate measuring system of electronic theodolite
CN101655343A (en) * 2008-08-18 2010-02-24 北京航天计量测试技术研究所 Target, base and reference meter for calibrating spatial coordinate measuring system of electronic theodolite
CN101949711A (en) * 2010-08-25 2011-01-19 中国科学院长春光学精密机械与物理研究所 Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite
CN102135422A (en) * 2010-12-30 2011-07-27 中国科学院长春光学精密机械与物理研究 New method for realizing measurement of movable substrate of photoelectric theodolite
CN102175267A (en) * 2011-03-04 2011-09-07 中国人民解放军第二炮兵工程学院 High-precision compensation method for horizontal angle of electro-optic theodolite
CN102226701A (en) * 2011-04-19 2011-10-26 中国科学院上海光学精密机械研究所 High-precision optical dynamic target device
CN102494665A (en) * 2011-12-09 2012-06-13 中国科学院长春光学精密机械与物理研究所 Method for measuring torsion angle of altazimuth equipment on basis of laser communication
RU2460041C1 (en) * 2011-04-27 2012-08-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Adjustment method of longitudinal axes of mounting frame for inertial navigation system and object
CN103234555A (en) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 Photoelectric stabilized platform assembly zero calibration method
CN103344258A (en) * 2013-07-04 2013-10-09 中国科学院长春光学精密机械与物理研究所 Device and method for testing performance of servo system of electro-optic theodolite

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2632060A1 (en) * 1988-05-25 1989-12-01 Aerospatiale Method for optical adjustment of the bearing of a support structure with respect to a reference structure in an aircraft
FR2696541A1 (en) * 1992-10-01 1994-04-08 Framatome Sa Surveying interior of ductwork entering steam generator of nuclear reactor prior to cutting - using laser beam detector which is movable inside duct and adjacent spigot
JPH07218256A (en) * 1994-01-31 1995-08-18 T I Trading Kk Deviation measurement method and device for propelling work
CN1818564A (en) * 2006-03-29 2006-08-16 中国科学院光电技术研究所 Method for measuring transverse axis difference of photoelectric theodolite
CN101655344A (en) * 2008-08-18 2010-02-24 北京航天计量测试技术研究所 Method for calibrating spatial coordinate measuring system of electronic theodolite
CN101655343A (en) * 2008-08-18 2010-02-24 北京航天计量测试技术研究所 Target, base and reference meter for calibrating spatial coordinate measuring system of electronic theodolite
CN101949711A (en) * 2010-08-25 2011-01-19 中国科学院长春光学精密机械与物理研究所 Device and method for detecting dynamic angle measurement precision of large-sized photoelectric theodolite
CN102135422A (en) * 2010-12-30 2011-07-27 中国科学院长春光学精密机械与物理研究 New method for realizing measurement of movable substrate of photoelectric theodolite
CN102175267A (en) * 2011-03-04 2011-09-07 中国人民解放军第二炮兵工程学院 High-precision compensation method for horizontal angle of electro-optic theodolite
CN102226701A (en) * 2011-04-19 2011-10-26 中国科学院上海光学精密机械研究所 High-precision optical dynamic target device
RU2460041C1 (en) * 2011-04-27 2012-08-27 Закрытое акционерное общество "Инерциальные технологии "Технокомплекса" (ЗАО "ИТТ") Adjustment method of longitudinal axes of mounting frame for inertial navigation system and object
CN102494665A (en) * 2011-12-09 2012-06-13 中国科学院长春光学精密机械与物理研究所 Method for measuring torsion angle of altazimuth equipment on basis of laser communication
CN103234555A (en) * 2013-04-18 2013-08-07 中国科学院长春光学精密机械与物理研究所 Photoelectric stabilized platform assembly zero calibration method
CN103344258A (en) * 2013-07-04 2013-10-09 中国科学院长春光学精密机械与物理研究所 Device and method for testing performance of servo system of electro-optic theodolite

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
孙昊等: "测量船基于标校经纬仪的雷达光轴动态标定方法研究", 《科学技术与工程》 *
李增等: "车载经纬仪的静态指向误差补偿", 《光学精密工程》 *
王涛等: "车载经纬仪的测量误差修正", 《仪器仪表学报》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104848874A (en) * 2015-04-22 2015-08-19 北京环境特性研究所 Method for photoelectric theodolite calibration in external field
CN105300408A (en) * 2015-10-15 2016-02-03 中国人民解放军63636部队 Photoelectric theodolitee time synchronization accuracy detection system and detection method
CN106248105A (en) * 2016-09-14 2016-12-21 中国科学院西安光学精密机械研究所 Double-collimation tolerance calibration system of auto-collimation theodolite
CN106248105B (en) * 2016-09-14 2023-04-11 中国科学院西安光学精密机械研究所 Double-collimation tolerance calibration system of auto-collimation theodolite
CN106595703A (en) * 2016-10-31 2017-04-26 中国科学院西安光学精密机械研究所 Method for adjusting collimation error of horizontal theodolite
CN106595703B (en) * 2016-10-31 2019-04-02 中国科学院西安光学精密机械研究所 Method for adjusting collimation error of horizontal theodolite
CN108871374A (en) * 2018-03-26 2018-11-23 中国科学院西安光学精密机械研究所 Method for improving miss distance delay measurement precision in photoelectric tracking system
CN108871374B (en) * 2018-03-26 2021-01-15 中国科学院西安光学精密机械研究所 A method for improving the accuracy of missed target time delay measurement in photoelectric tracking system
CN111380563A (en) * 2018-12-29 2020-07-07 中国科学院长春光学精密机械与物理研究所 Detection device, photoelectric theodolite detection system and aviation airborne optical platform detection system
CN112066977A (en) * 2020-09-15 2020-12-11 中国人民解放军63660部队 Photoelectric measurement network multi-target matching and cataloguing method
CN112182062A (en) * 2020-09-15 2021-01-05 中国人民解放军63660部队 Multi-target radar networking measurement data matching and cataloguing method
CN112066977B (en) * 2020-09-15 2024-02-27 中国人民解放军63660部队 Multi-target matching and cataloging method for photoelectric measurement network
CN112182062B (en) * 2020-09-15 2022-09-13 中国人民解放军63660部队 Multi-target radar networking measurement data matching and cataloguing method
CN112306112A (en) * 2020-10-09 2021-02-02 武汉华之洋科技有限公司 Rotary table/swing table with high-frequency angle measuring mechanism and angle measuring method
CN112306112B (en) * 2020-10-09 2023-11-24 武汉华之洋科技有限公司 Turntable/swinging table with high-frequency angle measuring mechanism and angle measuring method
CN113375651A (en) * 2021-06-11 2021-09-10 中国科学院光电技术研究所 Real-time synthesizer of photoelectric theodolite formation of image tracking information
CN113465608A (en) * 2021-07-22 2021-10-01 清华大学苏州汽车研究院(吴江) Calibration method and system for roadside sensor
CN113465608B (en) * 2021-07-22 2024-05-03 清华大学苏州汽车研究院(吴江) Road side sensor calibration method and system
CN113625262A (en) * 2021-08-05 2021-11-09 长沙祥云瑞风信息技术有限公司 Target track determination method and related equipment
CN114264320A (en) * 2021-12-20 2022-04-01 四川科锐新激光科技有限公司 A method and device for calibrating a guidance instrument based on satellite positioning
CN114003045A (en) * 2021-12-30 2022-02-01 成都星宇融科电力电子股份有限公司 Target tracking method of photoelectric tracker, terminal and readable storage medium
CN116107765A (en) * 2023-04-14 2023-05-12 中国科学院长春光学精密机械与物理研究所 Range Data Processing System
CN118464071A (en) * 2024-07-12 2024-08-09 中国科学院长春光学精密机械与物理研究所 Photoelectric theodolite timing correction method, system, terminal equipment and storage medium
CN118464071B (en) * 2024-07-12 2024-11-12 中国科学院长春光学精密机械与物理研究所 Photoelectric theodolite timing correction method, system, terminal equipment and storage medium
CN119147010A (en) * 2024-11-19 2024-12-17 中国科学院长春光学精密机械与物理研究所 Time sequence correction electric control system and image time sequence correction method of photoelectric theodolite

Also Published As

Publication number Publication date
CN103727961B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
CN103727961B (en) Method for correcting dynamic error of electro-optic theodolite
CN109579876B (en) High-dynamic multi-target azimuth angle calibration method under land dynamic base
CN103487013B (en) High-precision vertical axis inclination angle measuring system and calibration method thereof
CN104880200B (en) Combined guidance system initial attitude field calibration system and method
CN108519103B (en) Stable platform multi-attitude precision synchronous evaluation device and method using autocollimator
CN103884334A (en) Moving target positioning method based on wide beam laser ranging and single camera
CN103412391A (en) Method for realizing through-axis centering of optical system based on laser tracker
CN203479294U (en) High-precision vertical axis inclination angle measuring system
CN106323599A (en) Method for detecting imaging quality of large-field telescope optical system
CN103727962B (en) Big visual field infrared electro theodolite precision calibration method
CN104501831A (en) Assembly and rectification method for collimator
CN106705991A (en) Testing apparatus for installation errors of sighting prism of strapdown inertial measurement unit
CN104316082B (en) A kind of theodolite outfield infinity range correction method
CN103674058B (en) Indoor detection method for swing mirror angle tracking precision
CN107621254A (en) A kind of barrel axis points to method of testing
CN105387996B (en) More optical axis ground star observation systematic optical axis uniformity calibration methods
CN111044077B (en) Calibration method between star sensor measurement coordinate system and star sensor cube mirror coordinate system
CN104535974A (en) Boresight device of airplane radar system and using method of boresight device
CN105403144B (en) A kind of iGPS dynamic measurement error real-time compensation methods for aircraft Automated assembly
CN103162712B (en) The crooked compensation method of Circular gratings angle measurement deviation processing and axle system
CN104535078A (en) Measuring method for flying object through photoelectric equipment based on marking points
CN104567919A (en) Device for calibrating dynamic measurement errors of photogrammetric system and application method thereof
CN208921103U (en) Deformation test system for optical system of photoelectric theodolite
CN205719011U (en) Calibration device for dynamic deformation angle measurement error of dynamic target
CN102155911B (en) Method and application for repeatedly locating workpiece with laser tracking technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160706

Termination date: 20180114