CN103344258A - Device and method for testing performance of servo system of electro-optic theodolite - Google Patents
Device and method for testing performance of servo system of electro-optic theodolite Download PDFInfo
- Publication number
- CN103344258A CN103344258A CN2013102803819A CN201310280381A CN103344258A CN 103344258 A CN103344258 A CN 103344258A CN 2013102803819 A CN2013102803819 A CN 2013102803819A CN 201310280381 A CN201310280381 A CN 201310280381A CN 103344258 A CN103344258 A CN 103344258A
- Authority
- CN
- China
- Prior art keywords
- target
- servo system
- photoelectric theodolite
- theodolite
- photoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Control Of Position Or Direction (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
本发明涉及一种光电经纬仪伺服系统性能测试装置,包括:模拟目标生成器和伺服系统控制表现器;所述模拟目标生成器用于产生目标运动序列图片及确定每张图片对应的目标位置;所述伺服系统控制表现器用于:使光电经纬仪的伺服系统根据模拟目标脱靶量控制光电经纬仪转动;记录光电经纬仪旋转角度位置;显示每幅目标图像在光电经纬仪转动情况下的模拟运动目标图像。本发明的光电经纬仪伺服系统性能测试装置及测试方法,可以精确评估伺服系统控制光电经纬仪的跟踪性能,测试系统通过图像中目标的运动状态直观的展示了伺服系统的目标跟踪稳定性,可以模拟出伺服系统真实的目标跟踪效果图像。
The invention relates to a photoelectric theodolite servo system performance testing device, comprising: a simulated target generator and a servo system control display device; the simulated target generator is used to generate target motion sequence pictures and determine the corresponding target position of each picture; the The servo system control display is used to: make the servo system of the photoelectric theodolite control the rotation of the photoelectric theodolite according to the amount of simulated target miss; record the rotation angle position of the photoelectric theodolite; display the simulated moving target image of each target image under the rotation of the photoelectric theodolite. The photoelectric theodolite servo system performance testing device and testing method of the present invention can accurately evaluate the tracking performance of the servo system controlling the photoelectric theodolite, and the test system intuitively shows the target tracking stability of the servo system through the motion state of the target in the image, and can simulate An image of the actual target tracking effect of the servo system.
Description
技术领域technical field
本发明涉及一种伺服系统转动性能检测领域,特别涉及一种光电经纬仪伺服系统性能测试装置及测试方法。The invention relates to the field of detection of rotation performance of a servo system, in particular to a performance test device and a test method of a photoelectric theodolite servo system.
背景技术Background technique
光电经纬仪是一种高精度的空间位置测量设备,被广泛应用于海、陆、空武器测试靶场及天文观测。它利用激光、红外、电视、雷达等探测器获得运动目标在其视场内与视场中心的偏差,再将它传输给伺服跟踪系统进行校正跟踪,使经纬仪瞄准该目标并引导其他跟踪设备。The photoelectric theodolite is a high-precision spatial position measurement device, which is widely used in sea, land and air weapon test ranges and astronomical observations. It uses laser, infrared, TV, radar and other detectors to obtain the deviation between the moving target in its field of view and the center of the field of view, and then transmits it to the servo tracking system for correction and tracking, so that the theodolite can aim at the target and guide other tracking equipment.
经纬仪为了实现稳定的目标跟踪引导,必须具有良好的伺服系统,采用复杂的控制算法来实现精度要求。伺服系统需要根据不同的经纬仪特性及精度要求进行开发、匹配和调试。In order to achieve stable target tracking and guidance, the theodolite must have a good servo system and use complex control algorithms to achieve precision requirements. The servo system needs to be developed, matched and debugged according to different theodolite characteristics and accuracy requirements.
为了验证光电经纬仪伺服系统的控制算法是否有效,是否适合该经纬仪的精度需求,传统的仿真实验方法是利用电视系统显示靶标位置,然后再根据显示偏移量,调整回视场中心,利用电视系统跟踪旋转的光电靶标来测量伺服系统的运动曲线结果是否与正弦曲线拟合。这种方法依赖于电视系统,对伺服系统的性能测试并不直观,电视系统测量目标的结果好坏严重影响伺服系统性能评估的准确性。In order to verify whether the control algorithm of the photoelectric theodolite servo system is effective and suitable for the accuracy requirements of the theodolite, the traditional simulation experiment method is to use the TV system to display the target position, and then adjust it back to the center of the field of view according to the display offset. Track the rotating photoelectric target to measure whether the motion curve of the servo system fits the sinusoidal curve. This method depends on the TV system, and the performance test of the servo system is not intuitive. The quality of the measurement target of the TV system seriously affects the accuracy of the performance evaluation of the servo system.
发明内容Contents of the invention
本发明要解决现有技术中的技术问题,提供一种摆脱电视系统影响的,能够精确测量伺服系统性能且表现直观的,光电经纬仪伺服系统性能测试装置及测试方法。The present invention aims to solve the technical problems in the prior art, and provides a photoelectric theodolite servo system performance testing device and testing method, which are free from the influence of the TV system, can accurately measure the performance of the servo system and have intuitive performance.
为了解决上述技术问题,本发明的技术方案具体如下:In order to solve the problems of the technologies described above, the technical solution of the present invention is specifically as follows:
一种光电经纬仪伺服系统性能测试装置,包括:模拟目标生成器和伺服系统控制表现器;A photoelectric theodolite servo system performance test device, comprising: an analog target generator and a servo system control display;
所述模拟目标生成器用于产生目标运动序列图片及确定每张图片对应的目标位置;The simulated target generator is used to generate target motion sequence pictures and determine the corresponding target position of each picture;
所述伺服系统控制表现器用于:The servo system control display is used for:
使光电经纬仪的伺服系统根据模拟目标脱靶量控制光电经纬仪转动;记录光电经纬仪旋转角度位置;显示每幅目标图像在光电经纬仪转动情况下的模拟运动目标图像。Make the servo system of the photoelectric theodolite control the rotation of the photoelectric theodolite according to the amount of simulated target miss; record the rotation angle position of the photoelectric theodolite; display the simulated moving target image of each target image under the rotation of the photoelectric theodolite.
上述技术方案中的光电经纬仪伺服系统性能测试装置的测试方法,该测试方法包括以下步骤:The test method of the photoelectric theodolite servo system performance test device in the above-mentioned technical scheme, this test method comprises the following steps:
由所述模拟目标生成器产生目标运动序列图片及确定每张图片对应的目标位置;Generate target motion sequence pictures and determine the target position corresponding to each picture by the simulated target generator;
将每张图片对应的目标位置通过通讯接口发送给光电经纬仪的伺服系统;Send the target position corresponding to each picture to the servo system of the photoelectric theodolite through the communication interface;
伺服系统根据目标脱靶量在其视场内与视场中心的偏差进行校正跟踪,同时通过通讯接口发送光电经纬仪角度位置信息给伺服系统控制表现器;The servo system performs correction and tracking according to the deviation between the target miss amount in its field of view and the center of the field of view, and at the same time sends the angle position information of the photoelectric theodolite to the servo system control display through the communication interface;
伺服系统控制表现器记录角度位置信息并根据光电经纬仪角度位置变化情况拟合出图像中目标的位置变化。The servo system controls the display to record the angle position information and fits the position change of the target in the image according to the angle position change of the photoelectric theodolite.
本发明具有以下的有益效果:The present invention has following beneficial effect:
本发明的光电经纬仪伺服系统性能测试装置及测试方法,可以精确评估伺服系统控制光电经纬仪的跟踪性能,测试系统通过图像中目标的运动状态直观的展示了伺服系统的目标跟踪稳定性,可以模拟出伺服系统真实的目标跟踪效果图像。The photoelectric theodolite servo system performance testing device and testing method of the present invention can accurately evaluate the tracking performance of the servo system controlling the photoelectric theodolite, and the test system intuitively shows the target tracking stability of the servo system through the motion state of the target in the image, and can simulate Image of the actual target tracking effect of the servo system.
本发明的光电经纬仪伺服系统性能测试装置及测试方法,借助于计算机开发的软件系统,通过通讯接口与光电经纬仪伺服系统通讯而实现性能测定的。具有测量结果客观、表现方式直观准确、可以任意目标运动方式测量伺服系统性能等特点。本发明的光电经纬仪伺服系统性能测试装置及测试方法可完全取代传统的光电跟踪靶标测试方式,即节省设备制作成本,又可去除其它系统带来的误差,同时还灵活方便。The photoelectric theodolite servo system performance testing device and testing method of the present invention realize the performance measurement by means of a software system developed by a computer and communicating with the photoelectric theodolite servo system through a communication interface. It has the characteristics of objective measurement results, intuitive and accurate performance, and can measure the performance of the servo system in any target movement mode. The photoelectric theodolite servo system performance testing device and testing method of the present invention can completely replace the traditional photoelectric tracking target testing method, which not only saves equipment manufacturing costs, but also eliminates errors caused by other systems, and is also flexible and convenient.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
图1为本发明的光电经纬仪伺服系统性能测试装置的结构示意图。Fig. 1 is the structural representation of the photoelectric theodolite servo system performance testing device of the present invention.
图2为图1所示的光电经纬仪伺服系统性能测试装置的信号传递示意图。Fig. 2 is a schematic diagram of signal transmission of the photoelectric theodolite servo system performance testing device shown in Fig. 1 .
图3为本发明的光电经纬仪伺服系统性能测试方法的模拟目标图像生成流程示意图。Fig. 3 is a schematic diagram of the process of generating a simulated target image in the photoelectric theodolite servo system performance testing method of the present invention.
图4为本发明的光电经纬仪伺服系统性能测试方法的伺服系统控制过程评估表现流程示意图。Fig. 4 is a schematic flow chart of the evaluation performance flow of the servo system control process of the photoelectric theodolite servo system performance testing method of the present invention.
具体实施方式Detailed ways
本发明的发明思想为:Invention idea of the present invention is:
光电经纬仪伺服系统性能测试系统输入包含一个目标的序列图片,该目标在每幅图片中的位置具有一定运动规律。每幅图片中的目标位置均是已知的。将已知的运动目标位置通过通讯接口发送给光电经纬仪伺服系统。伺服系统根据目标脱靶量在其视场内与视场中心的偏差进行校正跟踪,同时通过通讯接口发送光电经纬仪角度位置信息给性能测试系统。性能测试系统记录角度位置信息并根据光电经纬仪角度位置变化情况拟合出图像中目标的位置变化,通过图像方式展示给测试人员。直观的展现出运动的空间目标在光电经纬仪伺服系统的测量跟踪状态下的影像效果。The photoelectric theodolite servo system performance test system input contains a sequence of pictures of a target, and the position of the target in each picture has a certain movement law. The location of the object in each image is known. Send the known moving target position to the photoelectric theodolite servo system through the communication interface. The servo system performs correction and tracking according to the deviation between the target miss amount in the field of view and the center of the field of view, and at the same time sends the angle position information of the photoelectric theodolite to the performance testing system through the communication interface. The performance test system records the angle position information and fits the position change of the target in the image according to the angle position change of the photoelectric theodolite, and displays it to the test personnel through the image. It intuitively shows the image effect of the moving space target in the measurement and tracking state of the photoelectric theodolite servo system.
下面结合附图对本发明做以详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
本发明所使用的设备基本结构,如图1和图2所示:整个系统包括模拟目标生成器和伺服系统控制表现器两部分,各部分的作用如下。The basic structure of the equipment used in the present invention is shown in Fig. 1 and Fig. 2: the whole system includes two parts, the simulation target generator and the servo system control displayer, and the functions of each part are as follows.
模拟目标生成器:Mock target generator:
模拟目标生成器用于产生目标运动序列图片及每张图片对应的目标位置。目标在每幅模拟图上的运动轨迹由指定公式生成,目标位置精度可以指定为经纬仪要求的任意级别精度。The simulated target generator is used to generate target motion sequence pictures and the target position corresponding to each picture. The trajectory of the target on each simulation map is generated by a specified formula, and the accuracy of the target position can be specified as any level of accuracy required by the theodolite.
伺服系统控制表现器:Servo system control display:
该模块用于使伺服系统根据模拟目标脱靶量控制光电经纬仪转动。记录光电经纬仪旋转角度位置,以此评估伺服系统的控制技术性能。显示每幅目标图像在光电经纬仪转动情况下的模拟运动目标图像。This module is used to make the servo system control the rotation of the photoelectric theodolite according to the amount of simulated target miss. Record the rotation angle position of the photoelectric theodolite to evaluate the control technology performance of the servo system. Display the simulated moving target image of each target image when the photoelectric theodolite rotates.
如图3所示,模拟目标生成器采用软件处理方式可以生成根据经纬仪需要任意类型的模拟目标图像序列。模拟图像的分辨率按照经纬仪实际采用的图像传感器设定。目标的运动轨迹根据伺服系统的应用测试需要设定,目标在每一幅虚拟图像中的像素位置根据光电经纬仪的光学视场角度,图像传感器的帧频、分辨率,指定的目标X、Y方向的运动速度、加速度计算得出。为了测试伺服系统在各种条件下的运动效果可以指定目标的运动轨迹为圆形、椭圆形、直线,速度可以是匀速、加速、静止。目标在各模拟图像中的位置可以通过文本方式记录,记录格式中包括生成的图像文件名及对应的目标X、Y方向位置或者将目标位置直接记录到图像中,通过伺服系统控制表现器在调用时自动解析。As shown in Figure 3, the simulated target generator can generate any type of simulated target image sequence according to the needs of the theodolite by using software processing. The resolution of the simulated image is set according to the image sensor actually used by the theodolite. The trajectory of the target is set according to the application test needs of the servo system. The pixel position of the target in each virtual image is based on the optical field angle of the photoelectric theodolite, the frame rate and resolution of the image sensor, and the specified target X and Y directions. The speed and acceleration of the motion are calculated. In order to test the motion effect of the servo system under various conditions, the trajectory of the target can be specified as a circle, an ellipse, or a straight line, and the speed can be uniform, accelerated, or static. The position of the target in each simulated image can be recorded in the form of text, and the record format includes the generated image file name and the corresponding target X, Y direction position, or the target position can be directly recorded in the image, and the displayer is called through the servo system control automatically parsed.
如图4所示,伺服系统控制表现器打开生成的模拟目标图像序列,按照预定的帧频显示播放。同时将图像中的目标位置通过通讯接口按指定协议发送给伺服系统。伺服系统将接受到的目标脱靶量作为电视系统发送的目标脱靶量,控制光电经纬仪转动来校正目标在视场内与视场中心的偏差,实现目标模拟跟踪。伺服系统将光电经纬仪的编码器角度按照图像帧频发送给伺服系统控制表现器。伺服系统控制表现器将编码器角度用文本或表格的形式记录下来或在系统界面上绘制出来,同时用接收到的光电经纬仪的编码器角度计算每帧图像间角度变化情况。采用变化角度、光学系统视场角度、图像分辨率计算每帧图像中目标的偏移象素个数。将目标的偏移量与图像中的目标位置拟合,计算出在经纬仪转动情况下目标的模拟真实显示位置。将偏移后的目标以图像的方式显示在界面上,在播放多帧图像后如果伺服系统可将目标按照上述方式始终显示在生成图像的中心位置表示伺服系统性能满足性能要求。同时用记录下来的编码器角度绘制成曲线,用此评估伺服系统性能是否满足指标要求。As shown in Figure 4, the servo system controls the presenter to open the generated simulated target image sequence, and display and play according to a predetermined frame rate. At the same time, the target position in the image is sent to the servo system through the communication interface according to the specified protocol. The servo system takes the received target miss amount as the target miss amount sent by the TV system, controls the rotation of the photoelectric theodolite to correct the deviation between the target in the field of view and the center of the field of view, and realizes the target simulation tracking. The servo system sends the encoder angle of the photoelectric theodolite to the servo system control display according to the image frame rate. The servo system control displayer records the encoder angle in the form of text or table or draws it on the system interface, and at the same time uses the received encoder angle of the photoelectric theodolite to calculate the angle change between each frame of image. The number of offset pixels of the target in each frame of image is calculated by using the change angle, the field of view angle of the optical system, and the image resolution. Fit the offset of the target with the target position in the image to calculate the simulated real display position of the target when the theodolite rotates. Display the offset target on the interface as an image. After playing multiple frames of images, if the servo system can always display the target in the center of the generated image according to the above method, it means that the performance of the servo system meets the performance requirements. At the same time, use the recorded encoder angle to draw a curve to evaluate whether the performance of the servo system meets the index requirements.
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310280381.9A CN103344258B (en) | 2013-07-04 | 2013-07-04 | Servo system of electro-optic theodolite performance testing device and method of testing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310280381.9A CN103344258B (en) | 2013-07-04 | 2013-07-04 | Servo system of electro-optic theodolite performance testing device and method of testing |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103344258A true CN103344258A (en) | 2013-10-09 |
CN103344258B CN103344258B (en) | 2016-06-15 |
Family
ID=49279074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310280381.9A Expired - Fee Related CN103344258B (en) | 2013-07-04 | 2013-07-04 | Servo system of electro-optic theodolite performance testing device and method of testing |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103344258B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103591967A (en) * | 2013-10-28 | 2014-02-19 | 中国科学院长春光学精密机械与物理研究所 | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test |
CN103727961A (en) * | 2014-01-14 | 2014-04-16 | 中国科学院长春光学精密机械与物理研究所 | Method for correcting dynamic error of electro-optic theodolite |
CN104199313A (en) * | 2014-09-15 | 2014-12-10 | 中国农业科学院农业信息研究所 | System of intelligent simulation testing for robots |
CN106403991A (en) * | 2015-07-31 | 2017-02-15 | 北京航天计量测试技术研究所 | Method for compensation and control of multi-optical path installation errors based on miss distance offset |
CN109186537A (en) * | 2018-09-20 | 2019-01-11 | 中国科学院西安光学精密机械研究所 | Deformation testing method and system for optical system of photoelectric theodolite |
CN109544493A (en) * | 2018-11-09 | 2019-03-29 | 中国科学院长春光学精密机械与物理研究所 | A kind of real-time injection device of high speed optoelectronic theodolite target |
CN110940354A (en) * | 2019-12-02 | 2020-03-31 | 湖北航天技术研究院总体设计所 | Calibration method for strapdown inertial navigation installation attitude of photoelectric tracking system |
CN111380399A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Projectile body capturing method, optical measurement equipment, terminal and storage medium |
CN113608186A (en) * | 2021-09-13 | 2021-11-05 | 中国工程物理研究院应用电子学研究所 | Calibration method for radar system and photoelectric imaging system |
CN114323563A (en) * | 2021-12-08 | 2022-04-12 | 中国电子科技集团公司第十一研究所 | Tracking performance testing device and method for photoelectric tracking system |
CN115683159A (en) * | 2022-10-14 | 2023-02-03 | 天津津航技术物理研究所 | Embedded software-based simulation test method for photoelectric platform to track misses |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3427490A1 (en) * | 1984-07-26 | 1986-01-30 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Method for testing a gyroscopically controlled arrangement |
CN101169323A (en) * | 2006-12-14 | 2008-04-30 | 中国科学院长春光学精密机械与物理研究所 | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor |
-
2013
- 2013-07-04 CN CN201310280381.9A patent/CN103344258B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3427490A1 (en) * | 1984-07-26 | 1986-01-30 | Philips Patentverwaltung Gmbh, 2000 Hamburg | Method for testing a gyroscopically controlled arrangement |
CN101169323A (en) * | 2006-12-14 | 2008-04-30 | 中国科学院长春光学精密机械与物理研究所 | Method of Measuring Dynamic Angle Measuring Accuracy of TV Theodolite Using Rotating Target Indoor |
Non-Patent Citations (2)
Title |
---|
王建立: "光电经纬仪电视跟踪捕获快速运动目标技术的研究", 《中国优秀博士学位论文全文数据库信息科技辑》 * |
贾峰等: "基于靶标实现光电经纬仪伺服系统的室内检测", 《飞行器测控学报》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103591967A (en) * | 2013-10-28 | 2014-02-19 | 中国科学院长春光学精密机械与物理研究所 | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test |
CN103727961A (en) * | 2014-01-14 | 2014-04-16 | 中国科学院长春光学精密机械与物理研究所 | Method for correcting dynamic error of electro-optic theodolite |
CN103727961B (en) * | 2014-01-14 | 2016-07-06 | 中国科学院长春光学精密机械与物理研究所 | Method for correcting dynamic error of electro-optic theodolite |
CN104199313A (en) * | 2014-09-15 | 2014-12-10 | 中国农业科学院农业信息研究所 | System of intelligent simulation testing for robots |
CN104199313B (en) * | 2014-09-15 | 2017-06-20 | 中国农业科学院农业信息研究所 | A kind of intelligent robot emulation test system |
CN106403991A (en) * | 2015-07-31 | 2017-02-15 | 北京航天计量测试技术研究所 | Method for compensation and control of multi-optical path installation errors based on miss distance offset |
CN109186537A (en) * | 2018-09-20 | 2019-01-11 | 中国科学院西安光学精密机械研究所 | Deformation testing method and system for optical system of photoelectric theodolite |
CN109544493A (en) * | 2018-11-09 | 2019-03-29 | 中国科学院长春光学精密机械与物理研究所 | A kind of real-time injection device of high speed optoelectronic theodolite target |
CN111380399A (en) * | 2018-12-29 | 2020-07-07 | 中国科学院长春光学精密机械与物理研究所 | Projectile body capturing method, optical measurement equipment, terminal and storage medium |
CN111380399B (en) * | 2018-12-29 | 2021-08-20 | 中国科学院长春光学精密机械与物理研究所 | Projectile capture method, photometric equipment, terminal and storage medium |
CN110940354A (en) * | 2019-12-02 | 2020-03-31 | 湖北航天技术研究院总体设计所 | Calibration method for strapdown inertial navigation installation attitude of photoelectric tracking system |
CN113608186A (en) * | 2021-09-13 | 2021-11-05 | 中国工程物理研究院应用电子学研究所 | Calibration method for radar system and photoelectric imaging system |
CN113608186B (en) * | 2021-09-13 | 2023-10-20 | 中国工程物理研究院应用电子学研究所 | Calibration method of radar system and photoelectric imaging system |
CN114323563A (en) * | 2021-12-08 | 2022-04-12 | 中国电子科技集团公司第十一研究所 | Tracking performance testing device and method for photoelectric tracking system |
CN115683159A (en) * | 2022-10-14 | 2023-02-03 | 天津津航技术物理研究所 | Embedded software-based simulation test method for photoelectric platform to track misses |
Also Published As
Publication number | Publication date |
---|---|
CN103344258B (en) | 2016-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103344258B (en) | Servo system of electro-optic theodolite performance testing device and method of testing | |
Wasenmüller et al. | Comparison of kinect v1 and v2 depth images in terms of accuracy and precision | |
CN103278177B (en) | Calibration method of inertial measurement unit based on camera network measurement | |
CN115427832A (en) | Lidar and image calibration for autonomous vehicles | |
CN109813526B (en) | Astronomical positioning-based optical telescope external field tracking precision detection method | |
CN104535079B (en) | Airborne optoelectronic inertial stabilization platform isolation testing system and method | |
CN111459046B (en) | Real-time dynamic generation system and method for target and scene for image seeker | |
CN105067011A (en) | Overall measurement system calibration method based on vision calibration and coordinate transformation | |
CN103353304B (en) | A kind ofly three-dimensional inertial motion is sensed to the method and device that compensate | |
CN102508578A (en) | Projection positioning device and method as well as interaction system and method | |
CN102564458A (en) | Low-frequency error measuring method for star sensor | |
CN103837085A (en) | Target displacement vector measuring device and method based on laser tracker point-by-point calibration | |
CN108519103A (en) | Device and method for synchronous evaluation of multi-attitude accuracy of stable platform using autocollimator | |
CN106017871A (en) | High-precision large-aperture optical lens distortion calibration device and calibration method | |
CN114216362B (en) | A method for automatically measuring the mechanical axis deviation of the target calibration mirror based on image processing | |
CN103235545A (en) | Simulation test method and device for photoelectric tracking system | |
CN108195373B (en) | A wind tunnel model attitude angle measurement system and measurement method | |
CN112083246A (en) | Touch display device system delay measuring device and method | |
CN105373011B (en) | Detect the real-time emulation system and computer of electro-optical tracking device | |
CN104932535A (en) | Method for carrying out closed-loop test on airborne forward-looking infrared search equipment by using simulation system | |
CN109781068A (en) | Ground simulation evaluation system and method of vision measurement system for space application | |
CN108398123A (en) | A kind of total powerstation and its scale scaling method | |
CN103674058B (en) | Indoor detection method for swing mirror angle tracking precision | |
CN108038871A (en) | The pivot of rotating platform determines method, apparatus, server and storage medium | |
CN108458856A (en) | The detection device and its method of segmentation detection dome seeing based on laser light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160615 Termination date: 20180704 |
|
CF01 | Termination of patent right due to non-payment of annual fee |