CN103715282B - 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统 - Google Patents

一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统 Download PDF

Info

Publication number
CN103715282B
CN103715282B CN201310670546.3A CN201310670546A CN103715282B CN 103715282 B CN103715282 B CN 103715282B CN 201310670546 A CN201310670546 A CN 201310670546A CN 103715282 B CN103715282 B CN 103715282B
Authority
CN
China
Prior art keywords
znsns
film
light
thin
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310670546.3A
Other languages
English (en)
Other versions
CN103715282A (zh
Inventor
陈海霞
丁继军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201310670546.3A priority Critical patent/CN103715282B/zh
Publication of CN103715282A publication Critical patent/CN103715282A/zh
Application granted granted Critical
Publication of CN103715282B publication Critical patent/CN103715282B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明一种Cu2ZnSnS4薄膜太阳能电池,包括依次从上到下设置的抗反射层、缓冲层、吸收层和基底层;抗反射层上设置有导电电极;吸收层由七排平行并列设置的Cu2ZnSnS4薄膜组成,七排Cu2ZnSnS4薄膜的光学带隙值依次减小,且分别为对应紫光、蓝光、青光、绿光、黄光、橙光、红光波段的Cu2ZnSnS4薄膜光学带隙。对应的光电转换系统包括用于将太阳辐射光谱分裂成七级单色光谱的第一光学系统,用于将单色光谱分别进行聚焦的第二光学系统,用于将聚焦的单色光分别耦合到对应Cu2ZnSnS4薄膜的第三光学系统,以及用于收集吸收层内光子诱导电流的电极回路。还提供了一种所述太阳能电池的对应制备方法。

Description

一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统
技术领域
本发明涉及一种太阳能电池及其制备和相应的配套系统,具体为一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统。
背景技术
太阳能电池主要包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅薄膜太阳能电池、Cu2ZnSnS4薄膜太阳能电池等。太阳能电池市场中发展最快的方向是基于薄膜的光电技术。直接带隙半导体薄膜材料克服了晶体硅(基准的光电材料)的缺陷,因为薄膜材料有着非常高的光吸收系数,并且厚度越小的薄膜收集相同数量的光子后,材料的强度越小。长期以来,利用三步共蒸发技术制备的多晶黄铜矿薄膜太阳能电池(CuInSe2,Cu(In,Ga)Se2和Cu(In,Ga)(S,Se)2)有着较高的光电转换效率而引起了研究者的广泛关注。然而,由于地壳中In和Se的含量非常少(≤0.05ppm),再加上Se引起的环境问题而使得CuInSe2基薄膜太阳能电池的商业化受到限制。因此,研究者努力寻求一种地壳中含量较丰富的元素所形成的化合物薄膜来替代Cu(In,Ga)Se2薄膜。Cu2ZnSnS4薄膜的光电技术由于以下的优点而备受关注:(1)p-型传导率;(2)高的吸收系数(α>104cm-1,这相当于几率光被吸入100nm的表面时90%的吸收率)和合适的本征光学带隙值(约为1.5eV,是理论计算所得太阳能光电转换的最佳带隙值);(3)Cu2ZnSnS4薄膜中的所有元素在地壳中含量丰富(Cu:50ppm,Zn:75ppm,Sn:2.2ppm,S:260ppm)。Cu2ZnSnS4是一种I2–II–IV–VI4四元化合物半导体,可用一个Zn原子和一个Sn原子替代三元化合物CuInS2中的两个In原子来得到Cu2ZnSnS4,这种等电子替代所得到材料的许多特性与母体化合物相同,主要是Cu2ZnSnS4薄膜不再包含稀有元素或者价格昂贵的元素。因此,Cu2ZnSnS4薄膜作为太阳能电池吸收层的研究相对于CuInSe2薄膜具有更重要的实际意义。
对于Cu2ZnSnS4薄膜太阳能电池的制备方法主要有:电子束蒸发、热蒸发、硫化处理直流磁控溅射Zn/Sn/Cu的先驱物和化学气相沉积等方法。现有技术中,一方面通过其他元素的掺杂、用钼包覆衬底、用去离子水进行后处理、以及元素的不同配比等一系列制备参数对于Cu2ZnSnS4薄膜太阳能电池的微结构、相组分和光电特性的影响,从而来提升Cu2ZnSnS4薄膜太阳能电池的光电转换效率。另一方面通过设计多结的太阳能电池提高其光电转换效率,但多结的太阳能电池系统通常包含着光学和包装的损失。
虽然现有的Cu2ZnSnS4太阳能电池的光电性能得到了很大程度的提升,且电池的光电特性与系统的结构框架、制备方法、薄膜的相成分、晶界处的缺陷态和物理特性都密切相关。然而,太阳能电池的整体光电转换效率仍然比较低,核心问题是仍需要进一步提升电池的光电转换效率。已报道太阳能电池中的薄膜都是单一的光学带隙值,即使不断的去提高薄膜的光电转换效率,由于其只是对太阳光谱中的某一个波段有着较好的光电转换效率,从而限制了电池的整体光电转换效率。
发明内容
本发明解决的问题在于提供一种Cu2ZnSnS4薄膜太阳能电池,结构独特,光电转换效率高,以及与其对应制备方法和光电转换系统。
本发明是通过以下技术方案来实现:
本发明一种Cu2ZnSnS4薄膜太阳能电池的制备方法,包括如下步骤,
1)采用复合靶射频磁控共溅射方法在n-Si基底层生长Cu2ZnSnS4先驱物;
2)然后将所得Cu2ZnSnS4先驱物在不同体积比的H2S和N2混合气氛下进行硫化处理形成Cu2ZnSnS4吸收层;
a.通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比来改变Cu2ZnSnS4薄膜的光学带隙值,在n-Si衬底上通过溅射沉积制备光学带隙 值为2.80-3.10eV范围内的Cu2ZnSnS4薄膜,用于对应440-400nm的紫光波段;用挡板沿宽度方向遮盖基底层上对应紫光的Cu2ZnSnS4薄膜的面积的1/8-1/6,将其余部分通过刻蚀移除,露出基底层;
b.在基底层的裸露部分通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比,通过溅射沉积制备光学带隙值为2.70-2.80eV范围内的Cu2ZnSnS4薄膜,用于对应460-440nm的蓝光波段;用挡板遮盖基底层上对应黄光的Cu2ZnSnS4薄膜面积的1/8-1/6,其余的部分通过刻蚀移除,露出基底层;
c.重复步骤b,依次制备光学带隙值为2.50-2.70eV、2.15-2.50eV、2.10-2.15eV、2.00-2.10eV和1.60-2.00eV的Cu2ZnSnS4薄膜,分别用于对应500-460nm的青光波段、580-500nm的绿光波段、590-580nm的黄光波段、620-590nm的橙光波段和760-620nm的红光波段,形成由七排平行并接的Cu2ZnSnS4薄膜组成的吸收层;
3)采用磁控溅射方法在吸收层上依次制备缓冲层和抗反射层,得到Cu2ZnSnS4薄膜太阳能电池。
优选的,步骤1)中Cu,ZnS和SnS的靶材直径均为60mm,复合靶射频磁控共溅射方法的本底真空压力大于10-4Pa,靶材与基底间距的5cm,溅射气体的流量为10-20sccm,工作气压1-2Pa。
本发明一种Cu2ZnSnS4薄膜太阳能电池,由本发明所述的制备方法得到,其包括依次从上到下设置的抗反射层、缓冲层、吸收层和基底层;所述的抗反射层上设置有导电电极;所述的吸收层由七排平行并列设置的Cu2ZnSnS4薄膜组成,七排Cu2ZnSnS4薄膜的光学带隙值依次减小,且分别为对应紫光、蓝光、青光、绿光、黄光、橙光、红光波段的Cu2ZnSnS4薄膜光学带隙;七排Cu2ZnSnS4薄膜的光学带隙值依次分别为2.80-3.10eV、2.70-2.80eV、2.50-2.70eV、2.15-2.50eV、2.10-2.15eV、2.00-2.10eV和1.60-2.00eV。
进一步,每排Cu2ZnSnS4薄膜的宽度分别为整个吸收层宽度的1/8-1/6。
再进一步,七排Cu2ZnSnS4薄膜呈等宽度设置。
再进一步,基底层采用n-Si制成,缓冲层采用CdS制成,抗反射层上设置有采用ZnO薄膜材料制成的透明导电电极。
本发明一种基于以上所述的Cu2ZnSnS4薄膜太阳能电池的光电转换系统,包括用于将太阳辐射光谱分裂成紫光、蓝光、青光、绿光、黄光、橙光、红光的七级单色光谱的第一光学系统,用于将单色光谱分别进行聚焦的第二光学系统,用于将聚焦的单色光分别耦合到对应Cu2ZnSnS4薄膜的第三光学系统,以及用于收集吸收层内光子诱导电流的电极回路。
优选的,第一光学系统为光栅系统或棱镜系统;第二光学系统为透镜系统;第三光学系统为光纤系统。
进一步,光纤系统内的光纤两端分别耦合在对应的单色光焦点处和Cu2ZnSnS4薄膜上。
与现有技术相比,本发明具有以下有益的技术效果:
本发明所述的一种Cu2ZnSnS4薄膜太阳能电池,通过平行并接的Cu2ZnSnS4薄膜组成的吸收层,以及呈多层状结构设置的太阳能电池结构,完成了太阳能电池回路模型的设置;将不同光学带隙值的薄膜通过平行并接作为太阳能电池的吸收层,宽范围的太阳光谱通过被分裂成各种窄的光谱,让不同带隙的薄膜对太阳光谱可见区的每一个波段都有较好的转换效率,从而将电池的整体光电转换效率提升。实现对太阳光辐射光谱中可见光能量的全波段吸收而不受限制,从而在很大程度上提升了光电转换效率,提升效率达到15-20倍;结构独特且设置紧凑,体积小巧,能够有效利用被照射空间。
进一步的,通过对Cu2ZnSnS4薄膜光学带隙值的限定,能够确定对薄膜的形成和加工实现良好的控制标准。通过对薄膜的宽度设置以及各层状结构的限定,提高了太阳能的转换效率,达到最优匹配效果。
本发明所述的光电转换系统,针对Cu2ZnSnS4薄膜太阳能电池的结构特点,利用一系列的光学系统将宽范围的太阳光谱通过被分裂成各种窄的光谱,然后通过聚焦和传递到对应的薄膜区域中,让不同带隙的薄膜对太阳光谱可见区的每一个波段都有较好的转换效率。
进一步的,通过具体光学系统的选择,降低了制造成本和操作难度,同时利用光纤完成对聚集后单色光的无损传递,避免了单色光的能量损失。
本发明所述的制备方法,通过采用磁控共溅射沉积和刻蚀移除的交替循环进行,利用同一方法,依次在基底层上处理形成各光学带隙值范围的Cu2ZnSnS4薄膜,从而保证了薄膜结构的平行并接,同时分别与七种单色光的波段对应,实现了吸收层的独特结构,保证了良好的整体光电转换效率,完成了太阳能电池的制备。
进一步的,通过对具体工艺参数的控制,保证了制成的由七排平行并接的Cu2ZnSnS4薄膜组成的吸收层的质量,提高了其吸收太阳光中各单色光的效率,更有效的提高了太阳能电池的整体光电转换效率和品质寿命。
附图说明
图1为本发明所述Cu2ZnSnS4薄膜太阳能电池的结构示意图。
图中:1为基底层,2为吸收层,3为缓冲层,4为抗反射层。 
图2为本发明所述制备方法的工艺流程示意图。
图3为本发明所述光电转换系统的使用状态示意图。
具体实施方式
下面结合具体的实施例对本发明做进一步的详细说明,所述是对本发明的解释而不是限定。
本发明一种Cu2ZnSnS4薄膜太阳能电池,如图1所示,包括依次从上到下设置的抗反射层4、缓冲层3、吸收层2和基底层1;抗反射层4上设置有导电电极;吸收层2由七排平行并列设置的Cu2ZnSnS4薄膜组成,七排 Cu2ZnSnS4薄膜的光学带隙值依次减小,且分别为对应紫光、蓝光、青光、绿光、黄光、橙光、红光波段的Cu2ZnSnS4薄膜光学带隙。
其中,七排Cu2ZnSnS4薄膜的光学带隙值的取值范围依次分别为2.80-3.10eV、2.70-2.80eV、2.50-2.70eV、2.15-2.50eV、2.10-2.15eV、2.00-2.10eV和1.60-2.00eV;每排Cu2ZnSnS4薄膜的宽度分别为整个吸收层宽度的1/8-1/6;本优选实施例中以等宽度设置为例,且七排Cu2ZnSnS4薄膜的光学带隙值分别为对应七色光中心波长的3.03eV、2.83eV、2.70eV、2.26eV、2.14eV、2.04eV和1.88eV为例进行说明。并优选的采用n-Si制成基底层,采用CdS制成缓冲层,抗反射层上设置有采用ZnO薄膜材料制成的透明导电电极。
本发明一种Cu2ZnSnS4薄膜太阳能电池的制备方法,制备以上优选实例中所述的Cu2ZnSnS4薄膜太阳能电池时,如图2所示,首先采用复合靶射频磁控共溅射方法在n-Si衬底上生长Cu2ZnSnS4先驱物。具体制备方法是:采用Cu,ZnS和SnS(靶材直径都为60mm)复合靶磁控共溅射技术,其本底真空压力大于10-4Pa,靶材与基底间距5cm,氩气(溅射气体)的流量为10-20sccm,工作气压1-2Pa,本优选实例采用氩气做为溅射气体,流量为20sccm,工作压力为1Pa为例;然后将所得Cu2ZnSnS4先驱物在不同体积比的H2S和N2混合气氛下进行硫化处理形成Cu2ZnSnS4吸收层。通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比来改变Cu2ZnSnS4薄膜的光学带隙值。
因此,首先在n-Si衬底上制备光学带隙值为3.03eV(对应410nm的紫光中心波长)的Cu2ZnSnS4薄膜,沿宽度方向用挡板遮盖基底1/7的面积,其余的部分通过刻蚀移除;然后在挡板未遮盖的部分通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比来继续制备光学带隙值为2.83eV(对应440nm的蓝光中心波长)的Cu2ZnSnS4薄膜,继续用挡板遮盖和之前大约相等的面积,其余的部分通过刻蚀移除;以此类推,依次制备光学带隙值分别为 2.70eV(对应460nm的青光中心波长)、2.26eV(对应550nm的绿光中心波长)、2.14eV(对应580nm的黄光中心波长)、2.04eV(对应610nm的橙光中心波长)和1.88eV(对应660nm的红光中心波长)的Cu2ZnSnS4薄膜。最后采用磁控溅射方法在平行并接Cu2ZnSnS4薄膜上制备CdS缓冲层和ZnO薄膜透明导电电极,从而完成吸收层呈平行并接阵列的Cu2ZnSnS4薄膜太阳能电池及其电流回路的制备。
本发明一种基于以上优选实例中所述Cu2ZnSnS4薄膜太阳能电池的光电转换系统,如图3所示,包括用于将太阳辐射光谱分裂成紫光、蓝光、青光、绿光、黄光、橙光、红光的七级单色光谱的第一光学系统,用于将单色光谱分别进行聚焦的第二光学系统,用于将聚焦的单色光分别耦合到对应Cu2ZnSnS4薄膜的第三光学系统,以及用于收集吸收层内光子诱导电流的电极回路。
其中,第一光学系统为光栅系统或棱镜系统;第二光学系统为透镜系统;第三光学系统为光纤系统;光纤系统内的光纤两端分别耦合在对应的单色光焦点处和Cu2ZnSnS4薄膜上。
利用本发明所述的光电转换系统,对由本发明所述制备方法制备出的Cu2ZnSnS4薄膜太阳能电池进行预测对比试验时。
先通过衍射光栅将宽范围的集中太阳辐射光谱分裂成各种窄的光谱;将一个SS150模拟太阳光光源(AM1.5G,100mWcm-2)照射在一块1000条/mm刻痕的光栅上,通过旋转光栅来改变入射光与光栅法线之间的夹角,本试验初步使得此夹角从47°到58°之间变化,中央零级仍为白光,在中央零级条纹的两侧对称地分布由紫光到红光的光谱。
利用透镜对分裂后的各单色光谱进行校准和聚焦,在透镜的焦距处放置一个观察屏,就能够观察到清晰的依次按照由紫光、蓝光、青光、绿光、黄光、橙光到红光的衍射光谱。
在透镜的焦距处采用光纤分别与聚焦后的各单色光进行耦合,由于光在光纤中的传导损耗比电在电线中传导的损耗低得多,用光纤进行耦合可大大降低光学损失。
最后将光纤耦合后的分裂光谱分别对应在平行并接的太阳能电池阵列上;各单色光与光纤进行耦合后,分别对应照射到平行并接的太阳能电池阵列上,即紫光、蓝光、青光、绿光、黄光、橙光和红光分别照射到光学带隙为3.03eV(对应410nm的紫光中心波长)、2.83eV(对应440nm的蓝光中心波长)、2.70eV(对应460nm的青光中心波长)、2.26eV(对应550nm的绿光中心波长)、2.14eV(对应580nm的黄光中心波长)、2.04eV(对应610nm的橙光中心波长)和1.88eV(对应660nm的红光中心波长)的各部分Cu2ZnSnS4薄膜上。
如图3所示,θ为入射光与衍射光栅法线之间的夹角,通过旋转光栅即可改变,为衍射光线与光栅法线之间的夹角。对于同一个θ角度,角都可在0°到90°之间变化,不同的角对应不同波段的衍射光线,经过透镜的聚焦后,中央零级仍为白光,在中央零级条纹的两侧对称地分布较窄的由紫光到红光的波段,将同波段的光进行校准和聚集后,通过光纤耦合将不同波段的单色光谱分别对应照射到相应吸收带隙的Cu2ZnSnS4薄膜上。最后用连接的电极回路收集光子诱导的电流。
试验时,我们利用衍射光栅将分裂后的光谱与光纤耦合,最后从光纤末端出来的光分别与功率仪和市场上的太阳能电池连接,用功率仪探测太阳能辐射的光谱范围,并与市场上购买太阳能电池的吸收光谱范围进行比较。如图3所示,当光栅以1°为增量旋转时测量输出电压。如表1是用功率仪测得光纤末端的输出电压,表2是将光纤末端出来的光与市场上的太阳能电池连接,得到的现有太阳能电池的输出电压;其中波长是根据nλ=dsinθ计算,d为光栅常量。
表1
夹角θ(°) Δθ(°) 功率仪U(mV) 对应波长λ(nm)
47° 0 37.8 693.2
48° 1 35.6 689.6
49° 2 33 670.06
50° 3 30.3 650
51° 4 27.1 629.8
52° 5 22.5 609.2
53° 6 17.3 505.4
54° 7 12.2 484.7
55° 8 7.8 464
56° 9 4.5 443.7
57° 10 2.2 423.3
58° 11 0.74 415.4
表2
夹角θ(°) Δθ(°) 太阳能电池U(mV) 对应波长λ(nm)
47° 0 930 609.2
48° 1 22.5 619
49° 2 9.33 928.7
50° 3 5.15 638.1
51° 4 3.53 647.4
52° 5 2.84 656.4
53° 6 2.41 665.3
54° 7 2.16 673.9
55° 8 2.01 690.9
56° 9 1.95 706.4
57° 10 1.82 714
从表1和表2可以看出,在相同的测试条件下,用功率仪采集到光纤末端的输出电压对应的波长范围是从415.4nm的紫光波段到693.2nm的红光波段,而用市场上的太阳能电池只能采集到从609.2nm的橙光波段到714nm的红光波段。相比较而言,功率仪探测到的光谱范围覆盖了太阳光的几乎所有可见区光谱,由于本发明所述Cu2ZnSnS4薄膜太阳能电池的结构特征,是针对太阳光中七色可见光对应设置的薄膜阵列,因此能够全面的覆盖功率仪所探测到的太阳能辐射的全部范围;但是现有的太阳能电池只能对太阳光可见区的一个较小的波段有着较好的光电转换效率,从而使得太阳能电池整体的转换效率较低,即使再提高光电转换效率,也必然会遇到单光吸收的瓶颈,使整体的太阳能的光电转换效率过低。使用本发明所述的吸收层为平行并接阵列的Cu2ZnSnS4薄膜太阳能电池能够使得其对太阳光可见区每一个波段的光谱都有着较好的光电转换效率,从而使得太阳能电池整体的转换效率大大提升,理论上能够使光电转换效率提升15-20倍。

Claims (9)

1.一种Cu2ZnSnS4薄膜太阳能电池的制备方法,其特征在于,包括如下步骤,
1)采用复合靶射频磁控共溅射方法在n-Si基底层生长Cu2ZnSnS4先驱物;
2)然后将所得Cu2ZnSnS4先驱物在不同体积比的H2S和N2混合气氛下进行硫化处理形成Cu2ZnSnS4吸收层;
a.通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比来改变Cu2ZnSnS4薄膜的光学带隙值,在n-Si衬底上通过溅射沉积制备光学带隙值为2.80-3.10eV范围内的Cu2ZnSnS4薄膜,用于对应440-400nm的紫光波段;用挡板沿宽度方向遮盖基底层上对应紫光的Cu2ZnSnS4薄膜的面积的1/8-1/6,将其余部分通过刻蚀移除,露出基底层;
b.在基底层的裸露部分通过改变Cu,ZnS和SnS靶的溅射功率以及H2S和N2的体积比,通过溅射沉积制备光学带隙值为2.70-2.80eV范围内的Cu2ZnSnS4薄膜,用于对应460-440nm的蓝光波段;用挡板遮盖基底层上对应蓝光的Cu2ZnSnS4薄膜面积的1/8-1/6,其余的部分通过刻蚀移除,露出基底层;
c.重复步骤b,依次制备光学带隙值为2.50-2.70eV、2.15-2.50eV、2.10-2.15eV、2.00-2.10eV和1.60-2.00eV的Cu2ZnSnS4薄膜,分别用于对应500-460nm的青光波段、580-500nm的绿光波段、590-580nm的黄光波段、620-590nm的橙光波段和760-620nm的红光波段,形成由七排平行并接的Cu2ZnSnS4薄膜组成的吸收层;
3)采用磁控溅射方法在吸收层上依次制备缓冲层和抗反射层,得到Cu2ZnSnS4薄膜太阳能电池。
2.根据权利要求1所述的一种Cu2ZnSnS4薄膜太阳能电池的制备方法,其特征在于,步骤1)中Cu,ZnS和SnS的靶材直径均为60mm,复合靶射频磁控共溅射方法的本底真空压力大于10-4Pa,靶材与基底间距的5cm,溅射气体的流量为10-20sccm,工作气压1-2Pa。
3.一种由权利要求1所述制备方法得到的Cu2ZnSnS4薄膜太阳能电池,其特征在于,包括依次从上到下设置的抗反射层、缓冲层、吸收层和基底层;所述的抗反射层上设置有导电电极;所述的吸收层由七排平行并列设置的Cu2ZnSnS4薄膜组成,七排Cu2ZnSnS4薄膜的光学带隙值依次减小,且分别为对应紫光、蓝光、青光、绿光、黄光、橙光、红光波段的Cu2ZnSnS4薄膜光学带隙;所述七排Cu2ZnSnS4薄膜的光学带隙值的取值范围依次分别为2.80-3.10eV、2.70-2.80eV、2.50-2.70eV、2.15-2.50eV、2.10-2.15eV、2.00-2.10eV和1.60-2.00eV。
4.根据权利要求3所述的一种Cu2ZnSnS4薄膜太阳能电池,其特征在于,所述每排Cu2ZnSnS4薄膜的宽度分别为整个吸收层宽度的1/8-1/6。
5.根据权利要求4所述的一种Cu2ZnSnS4薄膜太阳能电池,其特征在于,所述七排Cu2ZnSnS4薄膜呈等宽度设置。
6.根据权利要求4所述的一种Cu2ZnSnS4薄膜太阳能电池,其特征在于,所述的基底层采用n-Si制成,缓冲层采用CdS制成,抗反射层上设置有采用ZnO薄膜材料制成的透明导电电极。
7.一种基于如权利要求3-6中任意一项所述的Cu2ZnSnS4薄膜太阳能电池的光电转换系统,其特征在于,包括用于将太阳辐射光谱分裂成紫光、蓝光、青光、绿光、黄光、橙光、红光的七级单色光谱的第一光学系统,用于将单色光谱分别进行聚焦的第二光学系统,用于将聚焦的单色光分别耦合到对应Cu2ZnSnS4薄膜的第三光学系统,以及用于收集吸收层内光子诱导电流的电极回路。
8.根据权利要求7所述的一种Cu2ZnSnS4薄膜太阳能电池的光电转换系统,其特征在于,所述第一光学系统为光栅系统或棱镜系统;第二光学系统为透镜系统;第三光学系统为光纤系统。
9.根据权利要求8所述的一种Cu2ZnSnS4薄膜太阳能电池的光电转换系统,其特征在于,所述光纤系统内的光纤两端分别耦合在对应的单色光焦点处和Cu2ZnSnS4薄膜上。
CN201310670546.3A 2013-12-10 2013-12-10 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统 Expired - Fee Related CN103715282B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310670546.3A CN103715282B (zh) 2013-12-10 2013-12-10 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310670546.3A CN103715282B (zh) 2013-12-10 2013-12-10 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统

Publications (2)

Publication Number Publication Date
CN103715282A CN103715282A (zh) 2014-04-09
CN103715282B true CN103715282B (zh) 2015-06-17

Family

ID=50408088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310670546.3A Expired - Fee Related CN103715282B (zh) 2013-12-10 2013-12-10 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统

Country Status (1)

Country Link
CN (1) CN103715282B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104269460B (zh) * 2014-09-23 2016-07-13 中国科学技术大学 一种水浴叠层制备太阳能电池吸收层材料CZTS/CZTSSe的方法
CN107359214A (zh) * 2017-07-31 2017-11-17 广东工业大学 一种铜锌锡硫太阳能电池吸收层薄膜的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805890A (zh) * 2009-12-14 2010-08-18 中南大学 一种原位生长Cu2ZnSnS4光伏薄膜方法
JP2012253240A (ja) * 2011-06-03 2012-12-20 Showa Shell Sekiyu Kk Czts系薄膜太陽電池の製造方法
CN102856420A (zh) * 2012-09-20 2013-01-02 电子科技大学 一种多吸收层横向分布的非晶硅太阳能电池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805890A (zh) * 2009-12-14 2010-08-18 中南大学 一种原位生长Cu2ZnSnS4光伏薄膜方法
JP2012253240A (ja) * 2011-06-03 2012-12-20 Showa Shell Sekiyu Kk Czts系薄膜太陽電池の製造方法
CN102856420A (zh) * 2012-09-20 2013-01-02 电子科技大学 一种多吸收层横向分布的非晶硅太阳能电池

Also Published As

Publication number Publication date
CN103715282A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
Jošt et al. Textured interfaces in monolithic perovskite/silicon tandem solar cells: advanced light management for improved efficiency and energy yield
Hossain et al. Perovskite/silicon tandem solar cells: from detailed balance limit calculations to photon management
Stuckelberger et al. Progress in solar cells from hydrogenated amorphous silicon
Lehr et al. Energy yield modelling of perovskite/silicon two-terminal tandem PV modules with flat and textured interfaces
Contreras et al. Progress toward 20% efficiency in Cu (In, Ga) Se2 polycrystalline thin‐film solar cells
Jäger et al. Hydrogenated indium oxide window layers for high-efficiency Cu (In, Ga) Se2 solar cells
Ahangharnejhad et al. Irradiance and temperature considerations in the design and deployment of high annual energy yield perovskite/CIGS tandems
Yan et al. Amorphous and nanocrystalline silicon thin film photovoltaic technology on flexible substrates
Fan et al. Broadband antireflection and light-trapping enhancement of plasmonic solar cells
JP4410654B2 (ja) 薄膜シリコン積層型太陽電池及びその製造方法
US20140261660A1 (en) TCOs for Heterojunction Solar Cells
Enrichi et al. Solar Cells and Light Management: Materials, Strategies and Sustainability
Biron et al. New progress in the fabrication of n–i–p micromorph solar cells for opaque substrates
Yang et al. See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics
Zhang et al. Boosting photoelectric performance of thin film GaAs solar cell based on multi-objective optimization for solar energy utilization
Vismara et al. Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells
CN110808296B (zh) 一种双层半导体结构的光电导型深紫外单色光电探测器
CN103025913A (zh) 用于多结太阳能电池的减反射涂层
CN103715282B (zh) 一种Cu2ZnSnS4薄膜太阳能电池及其制备方法和其光电转换系统
WO2012118577A1 (en) Tandem solar cell with improved absorption material
Weng et al. Band-gap-engineered transparent perovskite solar modules to combine photovoltaics with photosynthesis
Trahms et al. All-thin-film tandem cells based on liquid phase crystallized silicon and perovskites
CN101252152A (zh) 可见-红外波段吸收的非晶薄膜太阳能电池
Tong et al. Influences of Mg concentration in ZnMgO film on energy band alignment at CIGSSe/Zn1-xMgxO interface and performances of CIGSSe solar cells
CN107681020A (zh) 一种提高平面硅异质结太阳电池长波长光响应的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150617

Termination date: 20201210

CF01 Termination of patent right due to non-payment of annual fee