CN103714704B - 一种车联网环境下的交叉口交通流微观控制方法 - Google Patents

一种车联网环境下的交叉口交通流微观控制方法 Download PDF

Info

Publication number
CN103714704B
CN103714704B CN201310695748.3A CN201310695748A CN103714704B CN 103714704 B CN103714704 B CN 103714704B CN 201310695748 A CN201310695748 A CN 201310695748A CN 103714704 B CN103714704 B CN 103714704B
Authority
CN
China
Prior art keywords
vehicle
speed
time
car
uniform velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310695748.3A
Other languages
English (en)
Other versions
CN103714704A (zh
Inventor
林培群
卓福庆
顾玉牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201310695748.3A priority Critical patent/CN103714704B/zh
Publication of CN103714704A publication Critical patent/CN103714704A/zh
Application granted granted Critical
Publication of CN103714704B publication Critical patent/CN103714704B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Traffic Control Systems (AREA)

Abstract

本发明公开了一种车联网环境下的交叉口交通流微观控制方法,包括步骤:设交叉口停车线前长度为d的一段路段为变速控制区,停车线内的区域为匀速控制区;当车辆驶达变速控制区时,获取其初始状态S0(v0,t0),其中v0为速度,t0为时刻;根据每辆车到达匀速控制区内冲突点的时间和占用的时间,从车流的可穿越时间间隙中为该车寻找一个可安全通过的时空轨迹,得到该车进入匀速控制区的“速度—时间”参数S1(v1,t1);根据得到的S0(v0,t0)和S1(v1,t1),求取在变速控制区内车辆的动力学运行参数;车辆按照上述步骤计算出来的运动参数进行自动驾驶。本发明能对个体车辆的运动过程进行精细化、系统性的统筹,从而使交通系统的整体运行效率得到明显提升。

Description

一种车联网环境下的交叉口交通流微观控制方法
技术领域
本发明涉及道路交叉口信号控制技术研究领域,特别涉及一种车联网环境下的交叉口交通流微观控制方法。
背景技术
目前除了流量较小的路口采用自组织、无信号控制方式以外,大部分城市交叉口都采用信号灯控制的方式,该方式包括单点、干线、区域控制等多种技术形式。作为智能交通系统的重要组成部分,交叉口信号控制技术在许多城市得到了推广和应用,然而实践表明,即便采用国际上先进的区域协调控制系统(如SCATS,用于上海、广州、沈阳等;SCOOT,用于北京、成都、大连等),对缓解城市交通拥堵状况的效果也比较有限,因此目前基于信号灯的控制方式无法满足日益增长的交通需求。
目前,物联网、移动互联网等技术正在快速发展,车联网(以车-车、车-路实时互联为特征)成为物联网最活跃的分支,而车载环境下的无线接入基础IEEE802.11p和IEEE1609协议族分别于2010年11月、12月正式颁布。车联网技术为进行交通流精确控制提供了广阔的技术空间。
在这种背景下,提供一种能够对个体车辆的运动过程进行精细化、系统性的统筹,从而使交通系统的整体运行效率得到明显提升的交通流控制方法具有重要的意义。
发明内容
本发明的主要目的在于克服现有技术的缺点与不足,提供一种车联网环境下的交叉口交通流微观控制方法,该方法对个体车辆的运动过程进行精细化、系统性的统筹,从而使交通系统的整体运行效率得到明显提升。
本发明的目的通过以下的技术方案实现:一种车联网环境下的交叉口交通流微观控制方法,包括步骤:
(1)设交叉口停车线前长度为d的一段路段为变速控制区,停车线内的区域为匀速控制区;每个交叉口均配有一个中心控制器,每个车辆在进入变速控制区和匀速控制区后与中心控制器进行实时信息交互并在中心控制器的作用下进行完全自动驾驶,车辆在变速控制区内能自由变速,但在匀速控制区内车辆需按其进入交叉口停车线的速度匀速行驶,直至驶离匀速控制区;
(2)当车辆驶达变速控制区时,获取其初始状态S0(v0,t0),其中v0为速度,t0为时刻;
(3)根据每辆车到达匀速控制区内冲突点的时间和占用的时间,从车流的可穿越时间间隙中为该车寻找一个可安全通过的时空轨迹,得到该车进入匀速控制区的“速度—时间”参数S1(v1,t1);
(4)根据得到的S0(v0,t0)和S1(v1,t1),以车辆加速度为控制对象,求取在变速控制区内车辆的动力学运行参数,且在变速控制区内同一方向前后车辆应满足以下关系式:
S k P a t h ( x , y ) ( t ) - S k - 1 P a t h ( x , y ) ( t ) ≥ Δ S
式中:表示进口道为x转向为y的第k辆车在路段上的位置;Path(x,y)表示车辆的流向,x表示车辆进口道,y表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距;
(5)车辆按照步骤(3)、(4)计算出来的运动参数进行自动驾驶。
具体的,所述步骤(2)中,获取的车辆初始状态S0(v0,t0)中,v0为车辆的瞬时速度,即点速度。
优选的,所述步骤(3)中计算车辆进入匀速控制区的“速度—时间”参数S1(v1,t1)的步骤如下:
(3-1)设变速控制区长度为d,车辆从进入变速控制区到驶离交叉口的过程中,最大加速度为amax,最大减速度为amin,最大速度为vmax,在匀速控制区行驶的最小速度为vmin
(3-2)计算车辆进入匀速控制区的最早时间tmin
d - v m a x 2 - v 0 2 2 a m a x ≤ 0 , 则: t min = - v 0 + v 0 2 + 2 a max d a max + t 0 ;
否则: t min = v max - v 0 a max + d - v max 2 - v 0 2 2 a max c max + t 0 ;
令T(n)=tmin
(3-3)计算车辆进入匀速控制区的速度:
车辆n于时间点T(n)到达停车线,需经过N个冲突点以通过交叉口,为避免在冲突点发生时空重叠,车辆n经过停车线的速度V(n)受到其他车辆速度的约束:
L C i V ( n ) + T ( n ) - M ( A C i j ) V ( A C i j ) - T ( A C i j ) ≥ Δ T ( A C i j ) ;
M ( A C i j ) V ( A C i j ) + T ( A C i j ) - L C i V ( n ) - T ( n ) ≥ Δ T ( A C i j ) ;
上式中:表示冲突点Ci到车辆n的进口道停车线的距离;表示通过冲突点Ci的第j辆车,i=1,2,…,N;表示冲突点Ci到车辆进口道停车线的距离;分别表示车辆进入交叉口停车线的时间和速度;表示车辆n与车辆的安全时距;
求取在上述约束条件下车辆n可无冲突地通过N个冲突点的速度集合,如果集合不为空,则取集合中的最大值,记为vm,否则令T(n)=T(n)+Td,Td是一个时间调整量,重新根据约束条件计算新的使车辆n可无冲突地通过N个冲突点的速度集合;
(3-4)令v1=vm,t1=T(n),得到运行参数S1(v1,t1)。
具体的,所述步骤(3-3)中,在约束条件下车辆n可无冲突地通过N个冲突点的速度集合的方法是:
(3-3-1)计算车辆对车辆n的速度V(n)的约束区间
{ V ( n ) | V ( n ) ≤ L C i Δ T ( A C i j ) - T ( n ) + M ( A C i j ) V ( A C i j ) + T ( A C i j ) V ( n ) ≥ L C i M ( A C i j ) V ( A C i j ) + T ( A C i j ) - Δ T ( A C i j ) - T ( n ) } ;
(3-3-2)计算经过冲突点Ci的所有车辆对车辆n的速度约束区间,组成一个集合,记为Z(Ci),其中i=1,2,…,N,那么:
Z ( C 1 ) = { VS n A C 1 1 , VS n A C 1 2 , ... , VS n A C 1 j , j = 1 , 2 , ... , k C 1 } Z ( C 2 ) = { VS n A C 2 1 , VS n A C 2 2 , ... , VS n A C 2 j , j = 1 , 2 , ... , k C 2 } . . . Z ( C N ) = { VS n A C N 1 , VS n A C N 2 , ... , VS n A C N j , j = 1 , 2 , ... , k C N } ;
上式中:表示经过冲突点C1,C2,…,CN的车辆数;
(3-3-3)令集合Q={V(n)|vmin≤V(n)≤vmax},则车辆n可无冲突地通过N个冲突点的速度集合为:
VS(n)=Z(C1)∩Z(C2)…∩Z(CN)∩Q;
(3-3-4)如果VS(n)不为空,则进入匀速控制区的速度取集合VS(n)中的最大值,记为vm,执行步骤(3-4);如果VS(n)为空,则令T(n)=T(n)+Td,重新执行步骤(3-3-1)-(3-3-3),其中,Td是一个时间调整量。
优选的,所述步骤(4)中,根据得到的S0(v0,t0)和S1(v1,t1),在变速控制区内车辆的动力学运行参数的计算步骤如下:
(4-1)以车辆加速度为控制对象,对车辆在变速控制区的行驶过程实行三段控制,包括:以加/减速度a1作时间为tt1的匀变速运动;以速度v作时间为tt的匀速运动;以加/减速度a2作时间为tt2的匀变速运动;
(4-2)上述三段控制过程中的6个动力学参数应满足如下约束条件:
t1-t0=tt1+tt+tt2
v=a1tt1+v0
v1=a1tt1+v0+a2t2
d = v 2 - v 0 2 2 a 1 + v t t + v 1 2 - v 2 2 a 2 ;
同时,车辆还应满足自身的动力学约束条件和同方向前后车的时空约束条件:
f(t0)=v0
f(t1)=v1
∫ t 0 t 1 f ( t ) d t = d ;
f′(t)∈[-amin,amax];
S k P a t h ( x , y ) ( t ) - S k - 1 P a t h ( x , y ) ( t ) ≥ Δ S ;
式中:f(t)为车辆的速度;表示进口道为x转向为y的第k辆车在路段上的位置;Path(x,y)表示车辆的流向,x表示车辆进口道,y表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距;
上述所有约束条件组成一个多约束非线性数学规划模型,对其求解,如果有可行解,则得到相应6个动力学参数;如果无解,回到步骤(3)寻找新的S1(v1,t1)。
本发明与现有交叉口控制方法相比,具有如下优点和有益效果:
本发明提出分区域控制思想,设置交叉口变速控制区和匀速控制区,在每个交叉口均配有一个中心控制器,使每个车辆在进入控制区后能与中心控制器进行实时信息交互并在中心控制器的作用下进行完全自动驾驶,然后根据车辆进入变速控制区的初始运行状态和从匀速控制区车辆安全通行的时空轨迹中得到的车辆进入匀速控制区需达到的运行状态,按照建立的变速控制区段内加速度序列的数学模型和控制方法求解车辆在变速控制区运行的动力学参数,根据求得的动力学参数控制车辆在交叉口变速控制区段进行合理地加减速使车辆能在预定的时刻、以预定的速度进入交叉口并按照前面找到的安全通行时空轨迹通过交叉口。因此,本发明能对个体车辆的运动过程进行精细化、系统性的统筹,使交通系统的整体运行效率得到显著的提升,以解决现有交叉口信号控制方式效率不高,通行能力无法满足需求而造成的交通拥堵、延误严重的状况。
附图说明
图1是本实施例中分区控制示意图。
图2是本实施例中车辆时空轨迹示意图。
图3是本实施例中控制方法流程图。
图4是本实施例中控制目标示意图。
图5是本实施例中变速控制区内三段控制方法。
图6是本实例中交叉口示意图。
图7是本实例中变速控制区车辆时空轨迹图。
图8是本实例中变速控制区车辆速度变化曲线图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例基于以下假设:
(1)每个交叉口配有一个中心控制器(CC)作为后台统筹控制单元;
(2)个体车辆(VC)进入控制区域后完全自动驾驶,VC与CC可实时通信;
(3)VC能向CC提交目的地(行驶路径)、准确的空间位置和速度信息;
(4)CC可对VC进行运动过程控制;
(5)VC与CC之间的通信无传输延迟或延迟在可接受范围之内;
(6)车辆行驶路面平坦,重力对车辆加速度的影响可忽略;
(7)只考虑机动车。
由于交叉口中心地带冲突点众多、冲突点之间距离较短,为保证行车安全性,如图1所示,把交叉口停车线前一段长度为d的路段划出来,作为变速控制区,把停车线内区域称为匀速控制区。
当某辆车驶达变速控制区时,获取它的初始状态S0(v0,t0)(其中v0为速度,t0为时刻)。然后从匀速控制区车流的可穿越时间间隙中为该车寻找一个可安全通过的时空轨迹,得到该车进入交叉口匀速控制区的状态S1(v1,t1)。在此基础上根据S0(v0,t0)和S1(v1,t1)计算车辆在变速控制区内速度、加速度等动力学参数。
车辆通过变速控制区和匀速控制区的运动过程可直观地用有一定宽度的时空轨迹描述,如图2所示。其中Vehicle-Occupation用来描述每辆经过匀速控制区的车辆对冲突点的时间占用,表征了车辆到达冲突点的时间和占用的时间。图2中的A表示变速控制区内车辆行驶时空轨迹,B表示车辆在匀速控制区内可以安全通行的时空轨迹。所示Vehicle-Occupation模型和时空轨迹求取方法使得具有任意多个冲突点的交叉口都能采用统一的框架进行建模和求解,因此具有较好的普适性。
经过冲突点C的某一车辆A的Vehicle-Occupation记为vo(C,A),所有经过C的车辆的Vehicle-Occupation集合可记为VO(C)。变速控制区长度为d,车辆从进入变速控制区到驶离交叉口的过程中,最大加速度为amax,最大减速度为amin,最大速度为vmax,在匀速控制区行驶的最小速度为vmin,则车辆必须满足以下约束:
(1)车辆自身的动力学约束条件:
f(t0)=v0(1)
f(t1)=v1(2)
∫ t 0 t 1 f ( t ) d t = d - - - ( 3 )
f′(t)∈[-amin,amax](4)
上式中:f(t)表示车辆速度;t表示时刻。
(2)同方向前后车的时空约束条件:
S k P a t h ( x , y ) ( t ) - S k - 1 P a t h ( x , y ) ( t ) ≥ Δ S - - - ( 6 )
式中:表示进口道为x转向为y的第k辆车在路段上的位置;Path(x,y)表示车辆的流向,x表示车辆进口道,y表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距。
(3)冲突方向车辆的时空约束条件:
式中:C1,C2,…,CN表示车辆A通过交叉口必须经过的N个冲突点。
如图2所示,要实现对车辆的控制,有两个关键问题需要解决:
(1)让车辆避免冲突的匀速控制区时空轨迹获取方法,关键是找到可行的S1(v1,t1);
(2)车辆在变速控制区完成从状态S0到S1的转变的车辆动力学参数求解算法。
下面结合图3对本实施例的控制方法详述如下,包括以下步骤:
步骤S1:车辆进入变速控制区时,获取车辆初始状态S0(v0,t0);
步骤S2:计算车辆进入匀速控制区的时空轨迹,即得到“速度-时间”状态参数S1(v1,t1),具体步骤如步骤S21~步骤S24所示;
步骤S21:计算车辆进入匀速控制区的最早时间tmin
d - v max 2 - v 0 2 2 a max ≤ 0 , 则:
t min = - v 0 + v 0 2 + 2 a max d a max + t 0 - - - ( 8 )
否则:
t min = v max - v 0 a max + d - v max 2 - v 0 2 2 a max v max + t 0 - - - ( 9 )
令T(n)=tmin
步骤S22:计算车辆进入匀速控制区速度:
首先,车辆n于时间点T(n)到达停车线,需经过N个冲突点以通过交叉口,为避免在冲突点发生时空重叠,车辆n经过停车线的速度V(n)会受到其他车辆速度的约束:
L C i V ( n ) + T ( n ) - M ( A C i j ) V ( A C i j ) - T ( A C i j ) ≥ Δ T ( A C i j ) - - - ( 10 )
· M ( A C i j ) V ( A C i j ) + T ( A C i j ) - L C i V ( n ) - T ( n ) ≥ Δ T ( A C i j ) . - - - ( 11 )
上式中:表示冲突点Ci到车辆n的进口道停车线的距离;表示通过冲突点Ci的第j辆车,i=1,2,…,N;表示冲突点Ci到车辆进口道停车线的距离;分别表示车辆进入交叉口停车线的时间和速度;表示车辆n与车辆的安全时距。
然后,计算车辆进入匀速控制区速度,步骤如下:
a:通过式(10)和式(11)得到车辆对车辆n的速度V(n)的约束区间
{ V ( n ) | V ( n ) ≤ L C i Δ T ( A C i j ) - T ( n ) + M ( A C i j ) V ( A C i j ) + T ( A C i j ) V ( n ) ≥ L C i M ( A C i j ) V ( A C i j ) + T ( A C i j ) - Δ T ( A C i j ) - T ( n ) } - - - ( 12 )
b:计算经过冲突点Ci的所有车辆对车辆n的速度约束区间,组成一个集合,记为Z(Ci),其中i=1,2,…,N,那么:
Z ( C 1 ) = { VS n A C 1 1 , VS n A C 1 2 , ... , VS n A C 1 j , j = 1 , 2 , ... , k C 1 } Z ( C 2 ) = { VS n A C 2 1 , VS n A C 2 2 , ... , VS n A C 2 j , j = 1 , 2 , ... , k C 2 } . . . Z ( C N ) = { VS n A C N 1 , VS n A C N 2 , ... , VS n A C N j , j = 1 , 2 , ... , k C N } - - - ( 13 )
上式中:表示经过冲突点C1,C2,…,CN的车辆数。
c:令集合Q={V(n)|vmin≤V(n)≤vmax},则车辆n可无冲突地通过N个冲突点的速度集合为:
VS(n)=Z(C1)∩Z(C2)…∩Z(CN)∩Q(14)
d:如果VS(n)不为空,为使车辆尽快通过交叉口,它进入匀速控制区的速度应取集合VS(n)中的最大值,记为vm,执行下面步骤S23;如果VS(n)为空,则令T(n)=T(n)+Td,重新执行步骤a~d,其中,Td是一个时间调整量;
步骤S23:令v1=vm,t1=T(n),得到S1(v1,t1);
步骤S3:变速控制区动力学参数求解:
根据S0(v0,t0)和S1(v1,t1),车辆在变速控制区应完成的状态变化如式(15)所示。
变速控制区的控制目标为一个积分过程,如图4所示。
S = ∫ t 0 t 1 f ( t ) d t = d - - - ( 16 )
车辆从t0时刻作变速运动到t1时刻结束,应满足式(1)~式(7)的约束。
为实现这个变速过程,以车辆加速度为控制对象,对车辆在变速控制区的行驶过程实行三段控制,如图5所示:
(1)第一阶段A:以加/减速度a1作时间为tt1的匀变速运动;
(2)第二阶段B:以速度v作时间为tt的匀速运动;
(3)第三阶段C:以加/减速度a2作时间为tt2的匀变速运动。
上述三段控制过程中的6个动力学参数应满足:
t1-t0=tt1+tt+tt2(17)
v=a1tt1+v0(18)
v1=a1tt1+v0+a2t2(19)
d = v 2 - v 0 2 2 a 1 + v t t + v 1 2 - v 2 2 a 2 - - - ( 20 )
由式(1)~式(7)和式(17)~式(20)组成一个多约束非线性数学规划模型。对其求解,如果有可行解,得到相应6个动力学参数;如果无解,回到步骤S2寻找新的S1(v1,t1)。
下面以图6所示的交叉口为例来详细说明本实施例所述控制方法的应用过程。在此图中,交叉口右转车流实行渠化分流,每个进口道均有1条直行车道和1条左转专用车道,因此具有普遍代表性。
为便于计算,对车辆的时间维度以相对时间来描述,单位为s,空间距离单位为m,速度单位为m/s。设交叉口各进口直行车道停车线到第一个冲突点的距离为3m,到第二个冲突点的距离为7m,到第三个冲突点的距离为10m,到第四个冲突点的距离为13m,冲突方向车辆间的安全时距取1s。控制过程中的具体参数设置如表1所示。
表1参数设置
从时刻0开始,交叉口路段先后有三辆车A、B、C到达变速控制区,各车辆状态如表2所示。
表2车辆进入变速控制区状态表
下面按照前面所提控制方法为车辆A、B、C制定控制方案。
(1)车辆A控制方案制定过程如下:
步骤S1:获得车辆初始状态S0(17,0);
步骤S2:计算车辆进入匀速控制区的“速度-时间”参数S1(v1,t1);
步骤S21:计算车辆进入匀速控制区的最早时间tmin。因为所以车辆进入匀速控制区的最早时间T(n)=tmin=5.1;
步骤S22:计算车辆进入匀速控制区速度,因为车辆A速度不受其他车辆影响,经过执行步骤a~d,求得其进入交叉口速度应取最大值vm=vmax=25,进入交叉口的时间T(n)=tmin=5.1并执行步骤S23;
步骤S23:令v1=vm=25,t1=T(n)=5.1,得到S1(25,5.1);
步骤S3:变速控制区动力学参数求解:由S0(17,0)和S1(25,5.1)根据三段控制方法,求得相应的动力学控制参数如表3所示。
表3车辆A动力学控制参数
(2)车辆B控制方案制定过程如下:
步骤S1:获得车辆初始状态S0(10,1);
步骤S2:计算车辆进入匀速控制区的“速度-时间”参数S1(v1,t1);
步骤S21:计算车辆进入匀速控制区的最早时间tmin。因为车辆进入匀速控制区的最早时间T(n)=tmin=6.8;
步骤S22:计算车辆进入匀速控制区速度,因为车辆B速度可能会受到车辆A的影响,经过执行步骤a~d,求解得到,T(n)=6.8,vm=vmax=25,并执行步骤S23;
步骤S23:令v1=vm=25,t1=T(n)=6.8,得到S1(25,6.8);
步骤S3:变速控制区动力学参数求解:由S0(10,1)和S1(25,6.8)根据三段控制方法,求得相应的动力学控制参数如表4所示。
表4车辆B动力学控制参数
(3)车辆C控制方案制定过程如下:
步骤S1:获得车辆初始状态S0(17,1.5);
步骤S2:计算车辆进入匀速控制区的“速度-时间”参数S1(v1,t1);
步骤S21:计算车辆进入匀速控制区的最早时间tmin。因为车辆进入匀速控制区的最早时间T(n)=tmin=6.6;
步骤S22:计算车辆进入匀速控制区速度,因为车辆C速度可能会受到车辆B的影响,经过执行步骤a~d,求解得到,T(n)=7.6,vm=vmax=25,并执行步骤S23;
步骤S23:令v1=vm=25,t1=T(n)=7.6,得到S1(25,7.6);
步骤S3:变速控制区动力学参数求解:由S0(17,1.5)和S1(25,7.6)根据三段控制方法,求得相应的动力学控制参数如表5所示。
表5车辆C动力学控制参数
车辆A、B、C在变速控制区的时空轨迹和速度变化曲线分别如图7、图8所示。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (2)

1.一种车联网环境下的交叉口交通流微观控制方法,其特征在于,包括步骤:
(1)设交叉口停车线前长度为d的一段路段为变速控制区,停车线内的区域为匀速控制区;每个交叉口均配有一个中心控制器,每个车辆在进入变速控制区和匀速控制区后与中心控制器进行实时信息交互并在中心控制器的作用下进行完全自动驾驶,车辆在变速控制区内能自由变速,但在匀速控制区内车辆需按其进入交叉口停车线的速度匀速行驶,直至驶离匀速控制区;
(2)当车辆驶达变速控制区时,获取其初始状态S0(v0,t0),其中v0为车辆的瞬时速度,即点速度,t0为时刻;
(3)根据每辆车到达匀速控制区内冲突点的时间和占用的时间,从车流的可穿越时间间隙中为该车寻找一个可安全通过的时空轨迹,得到该车进入匀速控制区的“速度—时间”参数S1(v1,t1);
(4)根据得到的S0(v0,t0)和S1(v1,t1),以车辆加速度为控制对象,求取在变速控制区内车辆的动力学运行参数,且在变速控制区内同一方向前后车辆应满足以下关系式:
S k P a t h ( x , y ) ( t ) - S k - 1 P a t h ( x , y ) ( t ) ≥ Δ S
式中:表示进口道为x转向为y的第k辆车在路段上的位置;Path(x,y)表示车辆的流向,x表示车辆进口道,y表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距;
(5)车辆按照步骤(3)、(4)计算出来的运动参数进行自动驾驶;
所述步骤(3)中计算车辆进入匀速控制区的“速度—时间”参数S1(v1,t1)的步骤如下:
(3-1)设变速控制区长度为d,车辆从进入变速控制区到驶离交叉口的过程中,最大加速度为amax,最大减速度为amin,最大速度为vmax,在匀速控制区行驶的最小速度为vmin
(3-2)计算车辆进入匀速控制区的最早时间tmin
d - v m a x 2 - v 0 2 2 a m a x ≤ 0 , 则: t min = - v 0 + v 0 2 + 2 a max d a max + t 0 ;
否则: t min = v max - v 0 a max + d - v max 2 - v 0 2 2 a max v max + t 0 ;
令T(n)=tmin
(3-3)计算车辆进入匀速控制区的速度:
车辆n于时间点T(n)到达停车线,需经过N个冲突点以通过交叉口,为避免在冲突点发生时空重叠,车辆n经过停车线的速度V(n)受到其他车辆速度的约束:
L C i V ( n ) + T ( n ) - M ( A C i j ) V ( A C i j ) - T ( A C i j ) ≥ Δ T ( A C i j ) ;
M ( A C i j ) V ( A C i j ) + T ( A C i j ) - L C i V ( n ) - T ( n ) ≥ Δ T ( A C i j ) ;
上式中:表示冲突点Ci到车辆n的进口道停车线的距离;表示通过冲突点Ci的第j辆车,i=1,2,…,N;表示冲突点Ci到车辆进口道停车线的距离;分别表示车辆进入交叉口停车线的时间和速度;表示车辆n与车辆的安全时距;
求取在上述约束条件下车辆n可无冲突地通过N个冲突点的速度集合,如果集合不为空,则取集合中的最大值,记为vm,否则令T(n)=T(n)+Td,Td是一个时间调整量,重新根据约束条件计算新的使车辆n可无冲突地通过N个冲突点的速度集合;
(3-4)令v1=vm,t1=T(n),得到运行参数S1(v1,t1);
所述步骤(3-3)中,在约束条件下车辆n可无冲突地通过N个冲突点的速度集合的方法是:
(3-3-1)计算车辆对车辆n的速度V(n)的约束区间
{ V ( n ) | V ( n ) ≤ L C i Δ T ( A C i j ) - T ( n ) + M ( A C i j ) V ( A C i j ) + T ( A C i j ) V ( n ) ≥ L C i M ( A C i j ) V ( A C i j ) + T ( A C i j ) - Δ T ( A C i j ) - T ( n ) } ;
(3-3-2)计算经过冲突点Ci的所有车辆对车辆n的速度约束区间,组成一个集合,记为Z(Ci),其中i=1,2,…,N,那么:
Z ( C 1 ) = { VS n A C 1 1 , VS n A C 1 2 , ... , VS n A C 1 j , j = 1 , 2 , ... , k C 1 } Z ( C 2 ) = { VS n A C 2 1 , VS n A C 2 2 , ... , VS n A C 2 j , j = 1 , 2 , ... , k C 2 } . . . Z ( C N ) = { VS n A C N 1 , VS n A C N 2 , ... , VS n A C N j , j = 1 , 2 , ... , k C N } ;
上式中:表示经过冲突点C1,C2,…,CN的车辆数;
(3-3-3)令集合Q={V(n)|vmin≤V(n)≤vmax},则车辆n可无冲突地通过N个冲突点的速度集合为:
VS(n)=Z(C1)∩Z(C2)…∩Z(CN)∩Q;
(3-3-4)如果VS(n)不为空,则进入匀速控制区的速度取集合VS(n)中的最大值,记为vm,执行步骤(3-4);如果VS(n)为空,则令T(n)=T(n)+Td,重新执行步骤(3-3-1)-(3-3-3)。
2.根据权利要求1所述的车联网环境下的交叉口交通流微观控制方法,其特征在于,所述步骤(4)中,根据得到的S0(v0,t0)和S1(v1,t1),在变速控制区内车辆的动力学运行参数的计算步骤如下:
(4-1)以车辆加速度为控制对象,对车辆在变速控制区的行驶过程实行三段控制,包括:以加/减速度a1作时间为tt1的匀变速运动;以速度v作时间为tt的匀速运动;以加/减速度a2作时间为tt2的匀变速运动;
(4-2)上述三段控制过程中的6个动力学参数应满足如下约束条件:
t1-t0=tt1+tt+tt2
v=a1tt1+v0
v1=a1tt1+v0+a2t2
d = v 2 - v 0 2 2 a 1 + v t t + v 1 2 - v 2 2 a 2 ;
同时,车辆还应满足自身的动力学约束条件和同方向前后车的时空约束条件:
f(t0)=v0
f(t1)=v1
∫ t 0 t 1 f ( t ) d t = d ;
f′(t)∈[-amin,amax];
S k P a t h ( x , y ) ( t ) - S k - 1 P a t h ( x , y ) ( t ) ≥ Δ S ;
式中:f(t)为车辆的速度;表示进口道为x转向为y的第k辆车在路段上的位置;Path(x,y)表示车辆的流向,x表示车辆进口道,y表示车辆转向;k表示车辆顺序;ΔS表示同一方向前后车安全间距;
上述所有约束条件组成一个多约束非线性数学规划模型,对其求解,如果有可行解,则得到相应6个动力学参数;如果无解,回到步骤(3)寻找新的S1(v1,t1)。
CN201310695748.3A 2013-12-16 2013-12-16 一种车联网环境下的交叉口交通流微观控制方法 Active CN103714704B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310695748.3A CN103714704B (zh) 2013-12-16 2013-12-16 一种车联网环境下的交叉口交通流微观控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310695748.3A CN103714704B (zh) 2013-12-16 2013-12-16 一种车联网环境下的交叉口交通流微观控制方法

Publications (2)

Publication Number Publication Date
CN103714704A CN103714704A (zh) 2014-04-09
CN103714704B true CN103714704B (zh) 2016-01-06

Family

ID=50407632

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310695748.3A Active CN103714704B (zh) 2013-12-16 2013-12-16 一种车联网环境下的交叉口交通流微观控制方法

Country Status (1)

Country Link
CN (1) CN103714704B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106558216A (zh) * 2015-09-29 2017-04-05 扬智科技股份有限公司 用于车辆的控制系统及车辆交通控制方法
CN105741585B (zh) * 2016-04-25 2018-08-28 哈尔滨工业大学 面向节油的基于车联网的车辆轨迹平滑控制方法
CN105913659A (zh) * 2016-05-19 2016-08-31 上海海事大学 基于系统动力学的交叉口通行能力测算方法
CN105882658B (zh) * 2016-06-13 2018-02-27 清华大学 两交叉口间加速‑匀速‑减速三段式驾驶模式的节能方法
CN106652493B (zh) * 2016-12-29 2019-01-29 东南大学 一种车联网环境下的交叉口信号优化控制方法
CN106920407A (zh) * 2017-01-25 2017-07-04 东南大学 一种交叉口信号配时控制信息传输方法
CN106846867A (zh) * 2017-03-29 2017-06-13 北京航空航天大学 一种车联网环境下信号交叉口绿色驾驶车速诱导方法及仿真系统
CN106935056B (zh) * 2017-04-28 2019-11-29 北京交通大学 基于间隙理论的智能车交叉路口协同控制方法
CN108091155B (zh) 2017-11-13 2020-04-28 华为技术有限公司 车联网中的交通流控制方法及其装置
CN108564234B (zh) * 2018-05-08 2020-06-02 北京航空航天大学 一种智能网联汽车的交叉口无信号自组织通行控制方法
CN108694841B (zh) * 2018-05-24 2020-06-30 北理慧动(常熟)车辆科技有限公司 一种基于v2x技术的智能车辆通行路口红绿灯方法
CN109003448B (zh) * 2018-08-02 2021-07-16 北京图森智途科技有限公司 一种交叉路口的导航方法、设备及系统
CN111243307B (zh) * 2018-11-28 2021-12-14 驭势科技(北京)有限公司 一种用于在路口调度具有自动驾驶功能的车辆的系统与方法
CN112349086B (zh) * 2019-08-06 2022-03-11 财团法人车辆研究测试中心 路口车速决策方法及其系统
CN111311959B (zh) * 2020-02-12 2021-05-28 北京邮电大学 多路口协同控制方法、装置、电子设备及存储介质
CN111325981B (zh) * 2020-02-29 2021-09-21 华南理工大学 一种智能网联条件下的交叉口交通流微观控制方法
CN113753073B (zh) * 2021-01-12 2024-07-16 京东鲲鹏(江苏)科技有限公司 车速控制方法、装置、设备及存储介质
CN113012450B (zh) * 2021-02-24 2022-03-25 清华大学 一种基于约束树的无信号灯交叉口智能车通行决策方法
CN114997451A (zh) * 2022-08-05 2022-09-02 深圳市城市交通规划设计研究中心股份有限公司 一种公路场景下自动驾驶车辆的预约通行方法及计算设备
CN115440062B (zh) * 2022-08-25 2023-12-29 苏州摩卡智行信息科技有限公司 基于智能网联环境的场站节点交通协调方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794517A (zh) * 2010-03-05 2010-08-04 苏晓峰 平面交叉路口车辆通行控制方法
CN102426790A (zh) * 2011-08-21 2012-04-25 苏以捷 平面交叉路口通行控制系统和方法
CN103050015A (zh) * 2012-12-15 2013-04-17 浙江交通职业技术学院 城市平交道口交通诱导系统
CN103065488A (zh) * 2012-12-19 2013-04-24 北京交通大学 具有闯红灯预警提示功能的车路协同预警系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028097A (ja) * 1999-07-14 2001-01-30 Matsushita Electric Ind Co Ltd 交通管理システムおよび信号機制御方法
JP4375488B2 (ja) * 2007-10-11 2009-12-02 トヨタ自動車株式会社 運転支援装置
JP4882957B2 (ja) * 2007-10-25 2012-02-22 住友電気工業株式会社 車両運転支援システム、運転支援装置、車両及び車両運転支援方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101794517A (zh) * 2010-03-05 2010-08-04 苏晓峰 平面交叉路口车辆通行控制方法
CN102426790A (zh) * 2011-08-21 2012-04-25 苏以捷 平面交叉路口通行控制系统和方法
CN103050015A (zh) * 2012-12-15 2013-04-17 浙江交通职业技术学院 城市平交道口交通诱导系统
CN103065488A (zh) * 2012-12-19 2013-04-24 北京交通大学 具有闯红灯预警提示功能的车路协同预警系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
基于车路一体化的交叉口车辆驾驶辅助系统;王建强等;《中国公路学报》;20130715;第26卷(第4期);第169-175段 *

Also Published As

Publication number Publication date
CN103714704A (zh) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103714704B (zh) 一种车联网环境下的交叉口交通流微观控制方法
CN111325981B (zh) 一种智能网联条件下的交叉口交通流微观控制方法
CN106875710B (zh) 一种面向网联自动驾驶车辆的交叉口自组织控制方法
CN107933551B (zh) 一种智能车队换道方法
CN104882008B (zh) 一种车联网环境下的无信号交叉口车辆协同控制方法
CN106218638B (zh) 一种智能网联汽车协同换道控制方法
CN103236177B (zh) 一种基于车网路多系统融合的智能交互系统的控制方法
CN108011947A (zh) 一种车辆协作式编队行驶系统
CN105577771B (zh) 一种基于车车通信和车路通信的车辆协同驾驶方法
CN107730931A (zh) 一种车路协同环境下车辆编队控制及其信号优化方法
CN105774800A (zh) 一种混合车辆队列中车辆间的碰撞缓解方法及装置
CN107331182A (zh) 一种面向连续信号交叉口的网联环境下自动驾驶车速控制方法
CN104183124B (zh) 一种基于单路口交通信号信息的主干道车速规划方法
CN104192148B (zh) 一种基于交通信号信息预知的主干道车速规划方法
CN103863364A (zh) 一种基于调度信号的货运机车自动操纵实时优化控制系统
CN102442323A (zh) 列车自动驾驶系统实现站间运行自动驾驶曲线生成的方法
CN104183145B (zh) 交通干线三路口控制子区双向绿波协调控制方法
CN107248297A (zh) 一种车路协同环境下交叉口栅格化信号相位时长计算方法
CN104183147A (zh) 改善公交准点率的公交车行驶速度控制方法
CN103956066B (zh) 多车协同快速通过道路瓶颈口的方法
CN104200656A (zh) 一种基于交通信号信息的主干道车速规划方法
CN107393321A (zh) 一种用于预防车辆排队溢出的现代有轨电车交叉口优先控制方法
CN107478238A (zh) 一种新能源汽车无人驾驶系统及控制方法
CN110228479A (zh) 一种考虑驾驶员驾驶风格的车速引导方法
CN111325975A (zh) 一种智能网联车辆在汇入口区域的集中优化协调方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant