CN103710747B - Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source - Google Patents

Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source Download PDF

Info

Publication number
CN103710747B
CN103710747B CN201310629266.8A CN201310629266A CN103710747B CN 103710747 B CN103710747 B CN 103710747B CN 201310629266 A CN201310629266 A CN 201310629266A CN 103710747 B CN103710747 B CN 103710747B
Authority
CN
China
Prior art keywords
nitride
seconds
single crystal
trimethyl
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310629266.8A
Other languages
Chinese (zh)
Other versions
CN103710747A (en
Inventor
李忠辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 55 Research Institute
Original Assignee
CETC 55 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 55 Research Institute filed Critical CETC 55 Research Institute
Priority to CN201310629266.8A priority Critical patent/CN103710747B/en
Publication of CN103710747A publication Critical patent/CN103710747A/en
Application granted granted Critical
Publication of CN103710747B publication Critical patent/CN103710747B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The present invention is the nitride single crystal film prepared of interval, a kind of N source supply source and method, and its structure is aluminium nitride AlN buffer layer in single crystalline substrate; Being nitride single crystal film on aluminium nitride AlN buffer layer, its preparation method, comprises following processing step: 1) single crystalline substrate puts into reaction chamber, high bake; 2) in single crystalline substrate, Al soakage layer is prepared; 3) on soakage layer, prepare aluminium nitride AlN buffer layer; 4) on aluminium nitride AlN buffer layer, nitride single crystal film is prepared; 5) it is down to room temperature, takes out. Advantage: present method, because preparing on the basis of aluminium nitride advantage in interval supply source method, adds In atmosphere and the advantage of Al soakage layer, so further improving crystal and the surface quality of aluminum nitride buffer layer and nitride single crystal film, reduces membrane stress; Have that structure is simple, technique is controlled; Surface topography is good; The features such as low cost.

Description

Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source
Technical field
The present invention relates to one and utilize In tensio-active agent and Al soakage layer, in single crystalline substrate, aluminum nitride buffer layer is prepared in conveying N source in interval, thus nitride single crystal film and method are prepared in interval, the N source conveying improving nitride single crystal film quality. Belong to wide bandgap semiconductor epitaxial material technical field.
Background technology
At present, nitride film is because lacking high-quality homo-substrate, hetero epitaxy mode is mostly adopted to prepare the nitride epitaxial film of better quality, but there is bigger lattice and difference of thermal expansion coefficients between foreign substrate and epitaxial film, belong to big mismatch system, highdensity dislocation and defect will be produced in epitaxial film. How difference according to substrate kind, can adopt gan or aluminium nitride as buffer layer. Aluminum nitride buffer layer is because lattice parameter is less, and stable in properties, produces stress to the nitride film of growth on it, can reduce in epitaxial film because mismatch stress produces the probability of crackle, in addition, because its insulativity is better, in electronics and microwave device, more application is obtained.
Although aluminum nitride buffer layer can be prepared by conventional epitaxy method, but because the physics-chem characteristic of self is limited, higher preparation temperature will be conducive to improving crystalline perfection. The ceiling temperature of present epitaxial device is on the low side, except no special changes a social system heater block, otherwise, it is very difficult to obtain high-quality aluminium nitride material. Through exploring, the method for growing aluminum nitride has growth and interval supply source growth method continuously. Continuous growth method be aluminium nitride process of growth keeps Al source and N source unremitting continue to lead to into, prepare aluminium nitride by processing condition such as adjustment temperature, pressure, flows; Interval supply source growth method is that Al source and N source or one wherein are in a pulsed fashion apart from one another by leading to into reaction chamber, object avoids Al source and N source to mix too early, reduce pre-reaction, relatively add the surface transport length of Al atom simultaneously, so just can when not improving growth temperature, lead to the quality into improvement of terms aluminium nitride such as time, flow, interval times by adjustment Al source and N source, reduce the upper temperature limit requirement of epitaxial device.The obstacle of continuous growth method needs the growth temperature significantly improving epitaxial device, faces the transformation difficult problems such as power supply, well heater, pilot circuit, reaction chamber. It is utilize existing installation that interval leads to the advantage for method, does not need to improve preparation temperature, just can be improved the preparation of aluminium nitride by the input mode and order changing source. Although interval supply source method is better than the effect of continuous growth method, but the length surface of the just Al atom changed, the quality of aluminium nitride is not improved from change Al this basic reason of atomic surface travelling speed.
Summary of the invention
The present invention proposes the conveying of a kind of interval, N source and prepare nitride single crystal film and method; its object is intended to the above-mentioned defect overcome existing for prior art; adopting In atmosphere protection and Al layer to infiltrate, in single crystalline substrate, the method for aluminum nitride buffer layer and nitride single crystal film is prepared in input N source in interval. Interval supply source method can increase Al atomic surface migration length, prepare high quality aluminum nitride buffer layer, on this basis, introduce In on the one hand as tensio-active agent, fundamentally improve the travelling speed of Al atom at substrate surface, and continue to lead to into certain time after AlN synthesis terminates, impel the improvement of surface quality; On the other hand Al source is led to into substrate surface prior to N source, it is possible to form soakage layer at substrate surface, reduce the surface energy of substrate, lead to into N source and Al soakage layer generation aluminium nitride subsequently, it is to increase the crystal mass of aluminium nitride. In addition, after AlN synthesis terminates, In source also to be continued to lead to and closes into for some time again, ensure that the planeness on surface and slickness. Present method is not when improving growth temperature, it is possible to improve crystal mass and the surface topography of nitride single crystal film further, reduces stress, avoids continuous growing method and interval supply source method prepares the deficiency of AlN buffer layer. Having method simple, technology difficulty is little, it is easy to the advantages such as realization.
The technical solution of the present invention: nitride single crystal film and method are prepared in the conveying of a kind of interval, N source, and its structure is aluminium nitride AlN buffer layer in single crystalline substrate; Aluminium nitride AlN buffer layer is nitride single crystal film.
Its preparation method, comprises following processing step:
1) single crystalline substrate puts into reaction chamber, high bake;
2) in single crystalline substrate, Al soakage layer is prepared;
3) on soakage layer, prepare aluminium nitride AlN buffer layer;
4) on aluminium nitride AlN buffer layer, nitride single crystal film is prepared;
5) it is down to room temperature, takes out.
The advantage of the present invention: 1) AlN buffer layer preparation process and preparation terminate all to adopt in rear for some time In atmosphere protection, effectively increases the travelling speed of Al atom, it is to increase the crystal mass of aluminum nitride buffer layer is smooth with surface. 2) adopt Al soakage layer to reduce surface energy, improve stress and the crystal mass of aluminum nitride buffer layer. 3) the AlN buffer layer of interval, N source input preparation contributes to realizing two-dimensional growth, the stress of buffering nitride single crystal film, it is to increase crystal and surface quality. 4) structure is simple, and preparation technology is controlled. 5) cost is low, is widely used, it is possible to growing nitride series monocrystal film and multilayered structure.
Accompanying drawing explanation
Accompanying drawing 1 is the structural representation of nitride single crystal film.
Accompanying drawing 2 is the leading to into sequential schematic of In source in aluminum nitride buffer layer preparation process, Al source and N source.
In figure, 1 be single crystalline substrate, 2 be aluminium nitride (AlN) buffer layer, 3 is nitride single crystal film.
Embodiment
Comparison accompanying drawing 1, nitride single crystal film, its structure is aluminium nitride AlN buffer layer 2 in single crystalline substrate 1; Aluminium nitride AlN buffer layer 2 is nitride single crystal film 3.
A method for the brilliant film of nitride is prepared in the conveying of interval, N source, comprises following processing step:
1) single crystalline substrate puts into reaction chamber, high bake;
2) in single crystalline substrate, Al soakage layer is prepared;
3) on soakage layer, prepare aluminium nitride AlN buffer layer;
4) on aluminium nitride AlN buffer layer, nitride single crystal film is prepared;
5) it is down to room temperature, takes out.
Described single crystalline substrate is sapphire, silicon carbide (SiC), silicon (Si), gan, aluminium nitride, silicon-on-insulator (SOI) or lithium aluminate.
After described aluminium nitride AlN buffer layer preparation process terminates with preparation at the appointed time, lead to all the time into In source.
Described aluminium nitride AlN buffer layer adopts and first leads to continually and steadily into Al source, then stops the interval carrying method preparation of 5-30 second after leading to the N source 5-30 second, until AlN buffer layer thickness meets requirement.
The preparation temperature TL of described aluminium nitride AlN buffer layer is 500 DEG C��TL��1300 DEG C, and thickness t is 10nm��t��1000nm.
Described nitride single crystal film comprises gan, aluminium nitride, nitrogenize indium binary single-crystal film, or consisting of many units monocrystal thin films, and multilayered structure.
Embodiment 1
1) select single crystalline Si substrate, put into MOCVD reaction chamber;
2) being warming up to 1080 DEG C, hydrogen atmosphere toasts 10 minutes;
3) it is cooled to 600 DEG C, 150torr, leads to into trimethyl indium and trimethyl aluminium 30 seconds;
4) lead to ammonia and stop 30 seconds after 30 seconds, then lead to ammonia and stop 30 seconds after 30 seconds, keep leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 100nm, close trimethyl aluminium;
5) lead to into ammonia, stop after 30 seconds leading to into trimethyl indium;
6) it is warming up to 1060 DEG C, 100Torr, leads to and grow 2 �� m-thick GaN single crystal films into trimethyl-gallium;
7) close trimethyl-gallium, drop to room temperature in protection of ammonia.
Embodiment 2
1) select monocrystalline SOI substrate, put into MOCVD reaction chamber;
2) being warming up to 1060 DEG C, hydrogen atmosphere toasts 10 minutes;
3) it is cooled to 1000 DEG C, 100torr, leads to into trimethyl indium and trimethyl aluminium 20 seconds;
4) lead to ammonia and stop 20 seconds after 20 seconds, then lead to ammonia and stop 20 seconds after 20 seconds, keep leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 500nm, close trimethyl aluminium;
5) lead to into ammonia, stop after 20 seconds leading to into trimethyl indium;
6) close trimethyl aluminium, it is warming up to 1060 DEG C, 100Torr, leads to and grow 3 �� m-thick n type GaN single crystal films into trimethyl-gallium and silane;
7) close trimethyl-gallium and silane, drop to room temperature in protection of ammonia.
Embodiment 3
1) select monocrystalline sapphire substrate, put into MOCVD reaction chamber;
2) being warming up to 1100 DEG C, hydrogen atmosphere toasts 10 minutes;
3) it is cooled to 1080 DEG C, 80torr, leads to into trimethyl indium and trimethyl aluminium 30 seconds;
4) lead to ammonia and stop 15 seconds after 10 seconds, then lead to ammonia and stop 15 seconds after 10 seconds, keep leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 1000nm, close trimethyl aluminium;
5) lead to into ammonia, stop after 30 seconds leading to into trimethyl indium;
6) it is warming up to 1060 DEG C, 100Torr, leads to and grow 1 �� m-thick into trimethyl-gallium and trimethyl aluminium
7) AlGaN monocrystal thin films;
8) close trimethyl-gallium and trimethyl aluminium, drop to room temperature in protection of ammonia.
Embodiment 4
1) select monocrystal SiC substrate, put into MOCVD reaction chamber;
2) being warming up to 1100 DEG C, hydrogen atmosphere toasts 10 minutes;
3) it is warming up to 1200 DEG C, 50torr, leads to into trimethyl indium and trimethyl aluminium 10 seconds;
4) lead to ammonia and stop 10 seconds after 15 seconds, then lead to ammonia and stop 10 seconds after 15 seconds, keep leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 200nm, close trimethyl aluminium;
5) lead to into ammonia, stop after 15 seconds leading to into trimethyl indium;
6) it is cooled to 1060 DEG C, 100Torr, leads to and grow 1 �� m-thick AlGaN monocrystal thin films into trimethyl-gallium and trimethyl aluminium;
7) close trimethyl-gallium and trimethyl aluminium, drop to room temperature in protection of ammonia.
Embodiment 5
1) select monocrystal SiC substrate, put into MBE reaction chamber;
2) it is warming up to 890 DEG C, toasts 10 minutes;
3) it is warming up to 910 DEG C, leads to into indium source and aluminium source 10 seconds;
4) nitrogenous source stops 5 seconds after leading to 5 seconds, then leads to nitrogenous source and stops 5 seconds after 5 seconds, keeps leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 10nm, and closedown aluminium source;
5) lead to into nitrogenous source, stop after 10 seconds leading to into indium source;
6) it is cooled to 800 DEG C, leads to the GaN single crystal film growing 2 �� m-thick into Ga source;
7) close Ga and N source, it is down to room temperature.
The nitride single crystal film growing low-dislocation-density it is possible not only to, it is also possible to continue the various device architecture of growth thereon according to aforesaid method.
Preparation broad stopband monocrystal thin films structure involved in the present invention and method can utilize common such as MOCVD(metal organic-matter chemical gas deposition), CVD(chemical vapor deposition), MBE(molecular beam epitaxy), UHVCVD(high vacuum chemical gas deposition) etc. film preparing technology realize, according to technology feature, the realization of the present invention includes but not limited to aforesaid method.

Claims (1)

1. a method for gallium nitride single crystal film is prepared in the conveying of interval, N source, it is characterized in that comprising following processing step:
1) select single crystalline Si substrate, put into MOCVD reaction chamber;
2) being warming up to 1080 DEG C, hydrogen atmosphere toasts 10 minutes;
3) it is cooled to 600 DEG C, 150Torr, leads to trimethyl indium and trimethyl aluminium after 30 seconds; Start step 4), still continue to lead to into trimethyl indium and trimethyl aluminium in aluminium nitride process of growth;
4) lead to ammonia and stop 30 seconds after 30 seconds, then lead to ammonia and stop 30 seconds after 30 seconds, keep leading to into ammonia by this regular intervals, until aluminium nitride thickness reaches 100nm, close trimethyl aluminium;
5) lead to into ammonia, stop after 30 seconds leading to into trimethyl indium;
6) it is warming up to 1060 DEG C, 100Torr, leads to and grow 2 �� m-thick GaN single crystal films into trimethyl-gallium;
7) close trimethyl-gallium, drop to room temperature in protection of ammonia.
CN201310629266.8A 2013-12-02 2013-12-02 Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source Active CN103710747B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310629266.8A CN103710747B (en) 2013-12-02 2013-12-02 Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310629266.8A CN103710747B (en) 2013-12-02 2013-12-02 Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source

Publications (2)

Publication Number Publication Date
CN103710747A CN103710747A (en) 2014-04-09
CN103710747B true CN103710747B (en) 2016-06-08

Family

ID=50404085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310629266.8A Active CN103710747B (en) 2013-12-02 2013-12-02 Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source

Country Status (1)

Country Link
CN (1) CN103710747B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695999B (en) * 2013-12-02 2016-04-27 中国电子科技集团公司第五十五研究所 Nitride single crystal film prepared by a kind of alternately supply source and method
CN113539786B (en) * 2020-04-17 2024-05-28 中国科学院苏州纳米技术与纳米仿生研究所 Silicon-based gallium nitride epitaxial structure and preparation method thereof
CN111739791B (en) * 2020-08-25 2020-12-18 中电化合物半导体有限公司 Epitaxial structure of gallium nitride material and preparation method
CN112242463B (en) * 2020-09-29 2022-05-20 苏州紫灿科技有限公司 Deep ultraviolet LED with pulse doped electron blocking layer and preparation method thereof
CN112735943B (en) * 2020-12-31 2023-08-15 广东省科学院半导体研究所 Preparation method for growing nitrogen polar III nitride semiconductor film on silicon substrate
CN113802178A (en) * 2021-08-06 2021-12-17 中国电子科技集团公司第五十五研究所 Epitaxial method for improving interface morphology between gallium nitride heteroepitaxy and substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313412A (en) * 2000-03-10 2001-09-19 广镓光电股份有限公司 Process for generating epitaxial layer of III-family nitrode on monocrystal substrate and its products and equipment
CN101397693A (en) * 2008-10-28 2009-04-01 厦门乾照光电有限公司 Method for high quality single crystal indium nitride film growth
CN101445956A (en) * 2007-11-28 2009-06-03 中国科学院半导体研究所 Method for epitaxial growth of nitride films
CN101603172A (en) * 2008-06-10 2009-12-16 北京大学 The method of a kind of growing AIN or AlGaN film
CN102412123A (en) * 2011-11-07 2012-04-11 中山市格兰特实业有限公司火炬分公司 Preparation method for aluminium nitride
CN103695999A (en) * 2013-12-02 2014-04-02 中国电子科技集团公司第五十五研究所 Nitride single crystal membrane prepared by alternate source supply and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078613A (en) * 2006-08-24 2008-04-03 Rohm Co Ltd Method of producing nitride semiconductor, and nitride semiconductor element
JP5995302B2 (en) * 2011-07-05 2016-09-21 パナソニック株式会社 Manufacturing method of nitride semiconductor light emitting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313412A (en) * 2000-03-10 2001-09-19 广镓光电股份有限公司 Process for generating epitaxial layer of III-family nitrode on monocrystal substrate and its products and equipment
CN101445956A (en) * 2007-11-28 2009-06-03 中国科学院半导体研究所 Method for epitaxial growth of nitride films
CN101603172A (en) * 2008-06-10 2009-12-16 北京大学 The method of a kind of growing AIN or AlGaN film
CN101397693A (en) * 2008-10-28 2009-04-01 厦门乾照光电有限公司 Method for high quality single crystal indium nitride film growth
CN102412123A (en) * 2011-11-07 2012-04-11 中山市格兰特实业有限公司火炬分公司 Preparation method for aluminium nitride
CN103695999A (en) * 2013-12-02 2014-04-02 中国电子科技集团公司第五十五研究所 Nitride single crystal membrane prepared by alternate source supply and method

Also Published As

Publication number Publication date
CN103710747A (en) 2014-04-09

Similar Documents

Publication Publication Date Title
CN103695999B (en) Nitride single crystal film prepared by a kind of alternately supply source and method
CN103710747B (en) Nitride single crystal film and method are prepared in the conveying of a kind of interval, N source
CN110504343B (en) Gallium oxide film based on sapphire substrate and growth method and application thereof
CN102925968B (en) A kind of strain regulate and control method of nitride single crystal film
CN101302648B (en) Gallium nitride thin film epitaxial growth structure and method
CN109065438B (en) Preparation method of AlN thin film
JP2008531458A (en) Single-step high-temperature nucleation method for lattice-mismatched substrates
CN105543969B (en) A kind of growing method of improvement AlN film crystal quality
CN101515543B (en) Gallium nitride membrane structure grown on silicon substrate and growing method thereof
WO2012162196A3 (en) Methods for improved growth of group iii nitride buffer layers
CN101145516A (en) Silicon base nitride single crystal thin film epitaxial structure and growth method
CN111188090A (en) Homoepitaxial growth method of high-quality aluminum nitride film
KR101672213B1 (en) Method for manufacturing semiconductor device
WO2006086471A2 (en) A method to grow iii-nitride materials using no buffer layer
CN109524292A (en) A method of growing high-quality gallium nitride film on a silicon substrate
US20130052838A1 (en) Annealing method to reduce defects of epitaxial films and epitaxial films formed therewith
Uesugi et al. Fabrication of AlN templates on SiC substrates by sputtering-deposition and high-temperature annealing
CN113921376A (en) Silicon-based GaN film and epitaxial growth method thereof
CN106252211A (en) A kind of preparation method of AlN epitaxial layer
CN102651310B (en) Wide bandgap monocrystal film prepared from multiple buffer layers and method
CN104593772B (en) A kind of heteroepitaxial growth antimonide method for semiconductor in Macrolattice mismatch substrate
JP4738748B2 (en) Method for producing group III nitride single crystal
CN116666196A (en) kappa-Ga without rotational domains 2 O 3 Film and kappa- (Al) x Ga 1-x ) 2 O 3 /κ-Ga 2 O 3 Preparation method of heterojunction
CN1327042C (en) Method for growing single-crystal zinc oxide film by using zinc oxide buffer layer
CN213150800U (en) Aluminum nitride nucleation layer structure with nano interlayer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant