CN103698583A - Flake film pasting optical current sensor - Google Patents
Flake film pasting optical current sensor Download PDFInfo
- Publication number
- CN103698583A CN103698583A CN201410007257.XA CN201410007257A CN103698583A CN 103698583 A CN103698583 A CN 103698583A CN 201410007257 A CN201410007257 A CN 201410007257A CN 103698583 A CN103698583 A CN 103698583A
- Authority
- CN
- China
- Prior art keywords
- film
- sensor
- current sensor
- optical
- flake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种光学电流互感器,属于光学测量领域。The invention relates to an optical current transformer and belongs to the field of optical measurement.
背景技术Background technique
目前的光学电流传感器相比于传统的电磁式互感器,在体积和重量上有了较大的下降。但目前的光学电流传感器由于使用的逆磁性光学玻璃旋光系数较小,不得不依靠增加光学玻璃长度的方式来提高测量灵敏度。这种结构传感器的缺点是,光学玻璃长度的增加引起了传感器体积的增大,没有最好的发挥光学电流传感器体积小型化的优势,使现有光学电流传感器的适用性降低且成本增加。Compared with the traditional electromagnetic transformer, the current optical current sensor has a large reduction in volume and weight. However, due to the small optical rotation coefficient of the diamagnetic optical glass used in the current optical current sensor, the measurement sensitivity has to be improved by increasing the length of the optical glass. The disadvantage of this structural sensor is that the increase in the length of the optical glass leads to an increase in the volume of the sensor, and the advantage of the miniaturization of the optical current sensor is not fully utilized, which reduces the applicability and increases the cost of the existing optical current sensor.
发明内容Contents of the invention
本发明的目的是为了解决现有依靠增加光学玻璃长度的方式来提高测量灵敏度的光学电流传感器适用性低且成本增加的问题,本发明提供一种薄片贴膜式光学电流传感器。The object of the present invention is to solve the problems of low applicability and increased cost of existing optical current sensors that rely on increasing the length of optical glass to improve measurement sensitivity. The present invention provides a thin film-mounted optical current sensor.
本发明的薄片贴膜式光学电流传感器,它包括光源、第一偏振片、薄片贴膜式传感器、第二偏振片和光电探测器;所述薄片贴膜式传感器包括第一薄膜、透明基底玻璃和第二薄膜,第一薄膜和第二薄膜分别贴附于基底玻璃的两个通光面上;所述光源发出的光束经第一偏振片透射的后偏振光入射至薄片贴膜式传感器,入射至薄片贴膜式传感器的偏振光依次透过第一薄膜、透明的基底玻璃和第二薄膜,透过第二薄膜的光入射至第二偏振片,透过第二偏振片的偏振光入射至光电探测器。The thin-film-mounted optical current sensor of the present invention comprises a light source, a first polarizer, a thin-film-mounted sensor, a second polarizer and a photodetector; the thin-film-mounted sensor includes a first film, a transparent substrate glass and a second The film, the first film and the second film are attached to the two light-transmitting surfaces of the base glass respectively; the light beam emitted by the light source is transmitted by the first polarizer and the polarized light is incident on the film-attached sensor, and then incident on the film-attached sensor. The polarized light of the type sensor passes through the first film, the transparent base glass and the second film in sequence, the light passing through the second film enters the second polarizer, and the polarized light passing through the second polarizer enters the photodetector.
所述第一薄膜和第二薄膜均为高法拉第旋光系数的光学材料薄膜。Both the first thin film and the second thin film are optical material thin films with high Faraday optical rotation coefficient.
所述第一薄膜为多片薄膜叠加,所述第二薄膜为多片薄膜叠加。The first film is a stack of multiple films, and the second film is a stack of multiple films.
本发明的有益效果:本发明所述薄片贴膜式传感器由一片普通透明玻璃作为基底,在通光方向上贴附上具有高法拉第旋光系数的光学材料薄膜,偏振光束在通过此薄膜时在待测电流产生磁场的作用下产生磁光效应,其偏振面的角度发生偏转。调制后的光束透射过第二偏振片,最后入射到光电探测器的光输入端。所述薄片贴膜式传感器的透明基底玻璃4厚度可根据需要加工,因而可以在保证本发明所述的光学传感器一定灵敏度的前提下,减小基底玻璃的长度,从而减小了体积,节约了成本,且与现有的相比适用性更强了。此外,第一薄膜7和第二薄膜8的结构便于通过增加薄膜数量的方式调整光学灵敏度,因而这种光学传感器同时具有结构灵活的特点。本发明的与现有的薄片贴膜式光学电流传感的基底玻璃的长度相比降低了50%。Beneficial effects of the present invention: the sheet-mounted film-type sensor of the present invention is made of a piece of ordinary transparent glass as a substrate, and an optical material film with a high Faraday rotation coefficient is attached in the direction of light transmission. The magneto-optical effect is generated under the action of the magnetic field generated by the current, and the angle of the polarization plane is deflected. The modulated light beam is transmitted through the second polarizer, and finally incident on the light input end of the photodetector. The thickness of the
附图说明Description of drawings
图1为具体实施方式一所述的薄片贴膜式光学电流传感器的原理示意图。FIG. 1 is a schematic diagram of the principle of the thin film-mounted optical current sensor described in the first embodiment.
具体实施方式Detailed ways
具体实施方式一:结合图1说明本实施方式,本实施方式所述的薄片贴膜式光学电流传感器,它包括光源1、第一偏振片2、薄片贴膜式传感器、第二偏振片5和光电探测器6;所述薄片贴膜式传感器包括第一薄膜7、透明的基底玻璃4和第二薄膜8,第一薄膜7和第二薄膜8分别贴附于基底玻璃4的两个通光面上;所述光源1发出的光束经第一偏振片2透射后的偏振光入射至薄片贴膜式传感器,入射至薄片贴膜式传感器的偏振光依次透过第一薄膜7、透明基底玻璃4和第二薄膜8,透过第二薄膜8的光入射至第二偏振片5,透过第二偏振片5的偏振光入射至光电探测器6。Specific Embodiment 1: This embodiment is described in conjunction with FIG. 1. The thin-film-mounted optical current sensor described in this embodiment includes a light source 1, a
本发明所述述薄片贴膜式传感器由一片普通透明玻璃作为基底,在通光方向上贴附上第一薄膜7和第二薄膜8,偏振光束在通过此薄膜时在待测电流产生磁场的作用下产生磁光效应,其偏振面的角度发生偏转。调制后的光束透射过第二偏振片,最后入射到光电探测器的光输入端。本实施方式的工作原理为利用法拉第磁光效应,该效应指线偏振光在通过磁光材料时,在沿着光传播方向的外加磁场作用下,偏振光的偏振面发生旋转。偏振面的旋转角大小与外加磁场大小有关,而由于外加磁场大小直接取决于待测电流,因而待测电流值可通过偏振光的旋转角大小测得。本实施方式所述磁光效应在透明基底玻璃4通表面的磁光材料的薄膜中产生。The sheet-mounted film-type sensor of the present invention is made of a piece of common transparent glass as the substrate, and the
具体实施方式二:本实施方式是对具体实施方式一所述的薄片贴膜式光学电流传感器的进一步限定,所述第一薄膜7和第二薄膜8均为高法拉第旋光系数的光学材料薄膜。Embodiment 2: This embodiment is a further limitation of the sheet-mounted film-type optical current sensor described in Embodiment 1. Both the
所述第一薄膜7和第二薄膜8的材料均具有很高的旋光系数,被制成薄膜后可贴附在透明玻璃表面。所述透明基底玻璃4透光性好,易于加工,可根据需要加工成薄片,所述薄片的厚度为0.5mm-5mm。The materials of the first
具体实施方式三:本实施方式是对具体实施方式一所述的薄片贴膜式光学电流传感器的进一步限定,所述第一薄膜7为多片薄膜叠加,所述第二薄膜8为多片薄膜叠加。Specific Embodiment 3: This embodiment is a further limitation of the sheet-mounted film-type optical current sensor described in Specific Embodiment 1. The
本实施方式中,本实施方式中,在确定第一薄膜7和第二薄膜8的厚度的基础上,通过薄膜数量,可以进一步增大光学电流传感器的灵敏度,从而满足实际需求。In this embodiment, on the basis of determining the thicknesses of the first
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410007257.XA CN103698583B (en) | 2014-01-08 | 2014-01-08 | Thin slice adhesive film type optical current sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410007257.XA CN103698583B (en) | 2014-01-08 | 2014-01-08 | Thin slice adhesive film type optical current sensor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103698583A true CN103698583A (en) | 2014-04-02 |
CN103698583B CN103698583B (en) | 2016-06-22 |
Family
ID=50360180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410007257.XA Expired - Fee Related CN103698583B (en) | 2014-01-08 | 2014-01-08 | Thin slice adhesive film type optical current sensor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103698583B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108084899A (en) * | 2018-01-16 | 2018-05-29 | 苏州征之魂专利技术服务有限公司 | A kind of automobile adhesive film structure |
CN110045169A (en) * | 2019-04-29 | 2019-07-23 | 上海大学 | A kind of optical current sensor and measuring system of magneto-optic memory technique multi-stage cascade |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101672870A (en) * | 2009-08-13 | 2010-03-17 | 苏州纳米技术与纳米仿生研究所 | Magneto-optic current transducer and manufacturing method thereof |
CN102759369A (en) * | 2011-04-29 | 2012-10-31 | 北京世纪德润科技有限公司 | Primary current signal simulator for optical current transformer |
CN103163360A (en) * | 2013-03-20 | 2013-06-19 | 哈尔滨工业大学 | Optical current sensor and current measurement method based on comparative measurement structure |
-
2014
- 2014-01-08 CN CN201410007257.XA patent/CN103698583B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101672870A (en) * | 2009-08-13 | 2010-03-17 | 苏州纳米技术与纳米仿生研究所 | Magneto-optic current transducer and manufacturing method thereof |
CN102759369A (en) * | 2011-04-29 | 2012-10-31 | 北京世纪德润科技有限公司 | Primary current signal simulator for optical current transformer |
CN103163360A (en) * | 2013-03-20 | 2013-06-19 | 哈尔滨工业大学 | Optical current sensor and current measurement method based on comparative measurement structure |
Non-Patent Citations (2)
Title |
---|
KAZUO KYUMA等: "Fiber Optic Measuring System for Electric Current by Using a Magnetooptic Sensor", 《JOURNAL OF QUANTUM ELECTRONICS》 * |
冯则坤等: "光纤电流传感器与掺Bi磁光石榴石薄膜", 《信息记录材料》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108084899A (en) * | 2018-01-16 | 2018-05-29 | 苏州征之魂专利技术服务有限公司 | A kind of automobile adhesive film structure |
CN110045169A (en) * | 2019-04-29 | 2019-07-23 | 上海大学 | A kind of optical current sensor and measuring system of magneto-optic memory technique multi-stage cascade |
Also Published As
Publication number | Publication date |
---|---|
CN103698583B (en) | 2016-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017054374A1 (en) | Optical sensing device for two-dimensional electric field measurement | |
CN102426281B (en) | Longitudinal modulation optical voltage sensor | |
EP2434301B1 (en) | Electric current measuring apparatus | |
CN105181112A (en) | Diaphragm type low-fineness F-P optical fiber sound pressure transducer based on FBG | |
CN104764798B (en) | A kind of visualization leakage magnetic detection device | |
WO2021035897A1 (en) | Mobile terminal | |
CN203324388U (en) | Optical crystal electric field sensor based on DFB laser | |
CN106597053A (en) | Straight optical path linear optical current sensor and current detection method | |
CN103698583B (en) | Thin slice adhesive film type optical current sensor | |
CN105675039A (en) | Method for calibrating any peak delay amount of photoelastic modulator | |
WO2020161953A1 (en) | Interference type photomagnetic field sensor device | |
CN109507490B (en) | Common-path interference electric field sensor with stable temperature of static working point | |
CN103116057B (en) | Garnet type photoelectric type current sensor device and preparation method | |
CN103197118A (en) | Garnet type current sensing device and manufacturing method of garnet module | |
CN108896192A (en) | Pulse autocorrelation measurement device and measurement method based on single-layer graphene | |
CN108872681B (en) | An Optical Current Transformer Based on Strip Radial Polarization Grating | |
CN103345014A (en) | Polarizing Prism Based on α-BaTeMo2O9 Crystal | |
WO2017120717A1 (en) | Electro-optic phase modulation system | |
CN207181650U (en) | Sagnac magnetic field sensors based on magnetic fluid filled micro-structure optical fiber | |
CN102928909B (en) | A kind of phase delay device based on surface phasmon | |
CN110456442A (en) | A preparation technology of polarizer for 3D LED display | |
US20240004130A1 (en) | Micro-nano structure sensitive to laser beam in specific direction | |
CN211043881U (en) | Miniaturized active line polarizer laminated structure with controllable polarization angle | |
JP7229939B2 (en) | mobile terminal | |
JP2012047929A5 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160622 |