CN108872681B - An Optical Current Transformer Based on Strip Radial Polarization Grating - Google Patents
An Optical Current Transformer Based on Strip Radial Polarization Grating Download PDFInfo
- Publication number
- CN108872681B CN108872681B CN201810776271.4A CN201810776271A CN108872681B CN 108872681 B CN108872681 B CN 108872681B CN 201810776271 A CN201810776271 A CN 201810776271A CN 108872681 B CN108872681 B CN 108872681B
- Authority
- CN
- China
- Prior art keywords
- magnetic
- strip
- polarization grating
- image sensor
- conduction plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 title claims abstract description 20
- 239000012788 optical film Substances 0.000 claims abstract description 11
- 238000006073 displacement reaction Methods 0.000 claims description 3
- 238000000034 method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 14
- 238000001514 detection method Methods 0.000 abstract description 3
- 239000010409 thin film Substances 0.000 abstract description 2
- 230000005540 biological transmission Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/0092—Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
本发明涉及一种基于条形径向偏振光栅实现的光学电流互感器,包括集磁环、光源、第一导磁板、第二导磁板、CCD图像传感器、起偏器、磁光薄膜和条形径向偏振光栅;所述集磁环设置于母线外侧;所述集磁环设置有一开口,所述开口平行设置有第一导磁板和第二导磁板;所述第一导磁板上侧设置有光源;所述第二导磁板下侧设置有CCD图像传感器;所述第一导磁板与第二导磁板之间从上到下依次设置有起偏器、磁光薄膜和形径向偏振光栅;所述第一导磁板与第二导磁板设置有用于光路通过的通孔。本发明的光学电流互感器检测与光功率无关、线性测量且测量范围大。
The invention relates to an optical current transformer based on a strip-shaped radial polarization grating, comprising a magnetic collecting ring, a light source, a first magnetic conducting plate, a second magnetic conducting plate, a CCD image sensor, a polarizer, a magneto-optical film and a strip-shaped radial polarization grating; the magnetic collecting ring is arranged on the outside of the bus bar; the magnetic collecting ring is provided with an opening, and the opening is provided with a first magnetic conducting plate and a second magnetic conducting plate in parallel; the first magnetic conducting plate A light source is arranged on the upper side of the plate; a CCD image sensor is arranged on the lower side of the second magnetic conductive plate; a polarizer, a magneto-optical device are arranged between the first magnetic conductive plate and the second magnetic conductive plate from top to bottom in sequence. Thin film and radial polarization grating; the first magnetic conductive plate and the second magnetic conductive plate are provided with through holes for the light path to pass through. The detection of the optical current transformer of the present invention is independent of optical power, has linear measurement and has a large measurement range.
Description
技术领域technical field
本发明属于电力系统电流测量技术领域,具体涉及一种基于条形径向偏振光栅实现的光学电流互感器。The invention belongs to the technical field of electric power system current measurement, and in particular relates to an optical current transformer realized based on a strip-shaped radial polarization grating.
背景技术Background technique
光学电流互感器采用光学传感技术,具有绝缘性能好、抗干扰能力强、无暂态磁饱和、数字化等优点,符合智能电网的发展需求。光学电流互感器的基本原理是基于法拉第磁光效应,即线偏振光在与其传播方向平行的外界磁场作用下通过磁光材料时,其偏振面将发生旋转,旋转的角度与电流的大小成正比。现有检测模式无法直接、线性地测量旋转角,而是采用偏振光光强解调模式进行间接测量。这一测量方法存在如下问题(1)光功率相关性。光源的波动、传输损耗、光纤老化、起偏器和检偏器的角度误差、光电转换和模数转换误差等因素均直接影响测量结果。(2)非线性测量。需要将法拉第磁致旋光角控制在很小的角度(小于1度)内以实现近似线性,导致动态测量范围小。(3)温漂问题。光源、光学器件,光电转换器件与电子器件的温漂直接影响出射光强的大小,导致测量误差。Optical current transformers use optical sensing technology, which has the advantages of good insulation performance, strong anti-interference ability, no transient magnetic saturation, and digitalization, which meets the development needs of smart grids. The basic principle of the optical current transformer is based on the Faraday magneto-optical effect, that is, when linearly polarized light passes through the magneto-optical material under the action of an external magnetic field parallel to its propagation direction, its polarization plane will rotate, and the angle of rotation is proportional to the magnitude of the current. . Existing detection modes cannot directly and linearly measure the rotation angle, but use the polarized light intensity demodulation mode for indirect measurement. This measurement method has the following problems (1) Optical power correlation. The fluctuation of light source, transmission loss, fiber aging, angle error of polarizer and analyzer, photoelectric conversion and analog-to-digital conversion error and other factors directly affect the measurement results. (2) Nonlinear measurement. The Faraday magneto-optical rotation angle needs to be controlled within a small angle (less than 1 degree) to achieve approximate linearity, resulting in a small dynamic measurement range. (3) The problem of temperature drift. The temperature drift of light sources, optical devices, photoelectric conversion devices and electronic devices directly affects the magnitude of the outgoing light intensity, resulting in measurement errors.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于提供一种基于条形径向偏振光栅实现的光学电流互感器,实现检测模式与光功率无关、线性测量且测量范围大。In view of this, the purpose of the present invention is to provide an optical current transformer based on a strip-shaped radial polarization grating, which realizes the detection mode independent of optical power, linear measurement and large measurement range.
为实现上述目的,本发明采用如下技术方案:To achieve the above object, the present invention adopts the following technical solutions:
一种基于条形径向偏振光栅实现的光学电流互感器,其特征在于:包括集磁环、光源、第一导磁板、第二导磁板、光路、CCD图像传感器、起偏器、磁光薄膜和条形径向偏振光栅;所述集磁环设置于母线外侧;所述集磁环设置有一开口,所述开口平行设置有第一导磁板和第二导磁板;所述第一导磁板上侧设置有光源;所述第二导磁板下侧设置有CCD图像传感器;所述第一导磁板与第二导磁板之间从上到下依次设置有起偏器、磁光薄膜和条形径向偏振光栅;所述第一导磁板与第二导磁板设置有用于光路通过的通孔。An optical current transformer based on a strip-shaped radial polarization grating is characterized in that it includes a magnetic collecting ring, a light source, a first magnetic conductive plate, a second magnetic conductive plate, an optical path, a CCD image sensor, a polarizer, a magnetic Optical film and strip-shaped radial polarization grating; the magnetic collecting ring is arranged on the outside of the bus bar; the magnetic collecting ring is provided with an opening, and the opening is provided with a first magnetic conducting plate and a second magnetic conducting plate in parallel; A light source is arranged on the upper side of a magnetic conductive plate; a CCD image sensor is arranged on the lower side of the second magnetic conductive plate; polarizers are arranged between the first magnetic conductive plate and the second magnetic conductive plate from top to bottom. , a magneto-optical film and a strip-shaped radial polarization grating; the first and second magnetic conductive plates are provided with through holes for the passage of light paths.
进一步的,所述光源与CCD图像传感器以开口中线为轴对称设置;Further, the light source and the CCD image sensor are arranged symmetrically with the opening centerline as the axis;
进一步的,包括以下步骤:Further, the following steps are included:
步骤S1:母线通电流,集磁环在第一导磁板和第二导磁板之间形成均匀磁场;Step S1: the busbar is energized, and the magnetic collecting ring forms a uniform magnetic field between the first magnetic conductive plate and the second magnetic conductive plate;
步骤S2:光源出射的激光通过起偏器得到线偏振光;Step S2: the laser light emitted by the light source obtains linearly polarized light through a polarizer;
步骤S3:线偏振光经过磁光薄膜,偏振面发生旋转,进入条形径向偏振光栅形成条形光斑并输入至CCD图像传感器;Step S3: the linearly polarized light passes through the magneto-optical film, and the plane of polarization rotates, enters the strip-shaped radial polarization grating to form a strip-shaped light spot and is input to the CCD image sensor;
步骤S3:外加磁场发生变化时,条形光斑同步位移,并且保持原有的强度分布;Step S3: when the external magnetic field changes, the strip light spot is displaced synchronously, and the original intensity distribution is maintained;
步骤S4:CCD图像传感器对光强图像分析处理得到最大或最小光强的位置,计算出光斑位移量,得到待测的电流值。Step S4: The CCD image sensor analyzes and processes the light intensity image to obtain the position of the maximum or minimum light intensity, calculates the displacement of the light spot, and obtains the current value to be measured.
进一步的,通过磁光薄膜的线偏振光的在磁场作用下产生法拉第磁致旋光角,其大小与待测电流成正比,条形径向偏振光栅将通过磁光薄膜的线偏振光转换成光强分布图像。与条形径向偏振光栅上某一振透方向一致的线偏振光能透过光栅,而与该振透方向垂直的线偏振光不能透过光栅,因此在条形径向偏振光栅上某一区域内透射光强由最大递减到最小,形成一个形状固定的条形光斑。利用CCD图像传感器对透过光栅的光斑图像进行定位,得到法拉第磁致旋光角的大小和待测电流值。Further, the linearly polarized light passing through the magneto-optical film generates a Faraday magneto-rotation angle under the action of a magnetic field, and its magnitude is proportional to the current to be measured, and the strip-shaped radial polarization grating converts the linearly polarized light passing through the magneto-optical film into light. Strong distribution image. The linearly polarized light that is consistent with a certain vibration transmission direction on the strip radially polarized grating can pass through the grating, while the linearly polarized light perpendicular to the vibration transmission direction cannot pass through the grating. The transmitted light intensity in the area decreases from the maximum to the minimum, forming a strip-shaped light spot with a fixed shape. The CCD image sensor is used to locate the light spot image passing through the grating to obtain the Faraday magneto-rotation angle and the current value to be measured.
本发明与现有技术相比具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:
1、本发明与光功率不具有相关性,测量结果更精确。1. The present invention has no correlation with optical power, and the measurement result is more accurate.
2、本发明实现线性测量,测量范围更大。2. The present invention realizes linear measurement and has a larger measurement range.
附图说明Description of drawings
图1是本发明原理图;Fig. 1 is the principle diagram of the present invention;
图2是本发明一实施例中条形径向偏振光栅示意图;2 is a schematic diagram of a strip-shaped radial polarization grating in an embodiment of the present invention;
图中:1-母线,2-集磁环,3-光源,4-第一导磁板,5-第二导磁板,6-光路,7-CCD图像传感器,8-起偏器,9-磁光薄膜,10-条形径向偏振光栅。In the figure: 1-bus bar, 2-magnetic collecting ring, 3-light source, 4-first magnetic conductive plate, 5-second magnetic conductive plate, 6-optical path, 7-CCD image sensor, 8-polarizer, 9 - Magneto-optic thin film, 10-stripe radial polarization grating.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
请参照图1,本发明提供一种基于条形径向偏振光栅实现的光学电流互感器,其特征在于:包括集磁环2、光源3、第一导磁板4、第二导磁板5、光路6、CCD图像传感器7、起偏器8、磁光薄膜9和形径向偏振光栅10;所述集磁环2设置于母线1外侧;所述集磁环2设置有一开口,所述开口平行设置有第一导磁板4和第二导磁板5;所述第一导磁板4上侧设置有光源3;所述第二导磁板5下侧设置有CCD图像传感器7;所述第一导磁板4与第二导磁板5之间从上到下依次设置有起偏器8、磁光薄膜9和形径向偏振光栅10;所述第一导磁板4与第二导磁板5设置有用于光路6通过的通孔。Referring to FIG. 1 , the present invention provides an optical current transformer based on a strip-shaped radial polarization grating, which is characterized in that it includes a
本发明一实施例中,母线1通电流,集磁环2在第一导磁板4和第二导磁板5之间形成均匀磁场。光源3出射的激光通过起偏器8得到线偏振光。线偏振光经过磁光薄膜9,偏振面发生旋转,并进入条形径向偏振光栅10形成条形光斑,条形径向偏振光栅结构如附图2所示。当外加磁场发生变化时,条形光斑同步位移,并且保持原有的强度分布。经CCD图像传感器7对光强图像分析处理得到最大或最小光强的位置,计算出光斑位移量,得到待测的电流值。这一测量方式实现了对电流的线性测量,且具有光功率无关性。In an embodiment of the present invention, the
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。The above descriptions are only preferred embodiments of the present invention, and all equivalent changes and modifications made according to the scope of the patent application of the present invention shall fall within the scope of the present invention.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810776271.4A CN108872681B (en) | 2018-07-16 | 2018-07-16 | An Optical Current Transformer Based on Strip Radial Polarization Grating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810776271.4A CN108872681B (en) | 2018-07-16 | 2018-07-16 | An Optical Current Transformer Based on Strip Radial Polarization Grating |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108872681A CN108872681A (en) | 2018-11-23 |
CN108872681B true CN108872681B (en) | 2020-11-10 |
Family
ID=64302267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810776271.4A Active CN108872681B (en) | 2018-07-16 | 2018-07-16 | An Optical Current Transformer Based on Strip Radial Polarization Grating |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108872681B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109669065A (en) * | 2018-12-11 | 2019-04-23 | 龙岩学院 | The voltage measurement method realized based on bar shaped radial polarisation grating |
CN109521245A (en) * | 2018-12-11 | 2019-03-26 | 龙岩学院 | The current measuring method realized based on combination half-wave plate |
CN109521244A (en) * | 2018-12-11 | 2019-03-26 | 龙岩学院 | The current measuring method realized based on S wave plate |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190521B2 (en) * | 2002-09-13 | 2007-03-13 | Technion Research And Development Foundation Ltd. | Space-variant subwavelength dielectric grating and applications thereof |
WO2011106553A2 (en) * | 2010-02-24 | 2011-09-01 | The Regents Of The University Of California | Planar, low loss transmitting or reflecting lenses using sub-wavelength high contrast grating |
CN105403514A (en) * | 2015-11-25 | 2016-03-16 | 福州大学 | Multi-wavelength incidence single-shot ellipsometry measurement method |
CN106597053A (en) * | 2017-01-24 | 2017-04-26 | 福州大学 | Straight optical path linear optical current sensor and current detection method |
CN106872754A (en) * | 2017-01-24 | 2017-06-20 | 福州大学 | The linear optics current sensor and detection method realized based on 4 quadrant detector |
CN107621356A (en) * | 2017-10-31 | 2018-01-23 | 中国科学院苏州生物医学工程技术研究所 | A Microscope Focus Offset Measuring Equipment |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102981204B (en) * | 2012-11-30 | 2015-02-18 | 中国科学院上海光学精密机械研究所 | 193nm fused quartz grating polarizer and application thereof to photoetching equipment |
-
2018
- 2018-07-16 CN CN201810776271.4A patent/CN108872681B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7190521B2 (en) * | 2002-09-13 | 2007-03-13 | Technion Research And Development Foundation Ltd. | Space-variant subwavelength dielectric grating and applications thereof |
WO2011106553A2 (en) * | 2010-02-24 | 2011-09-01 | The Regents Of The University Of California | Planar, low loss transmitting or reflecting lenses using sub-wavelength high contrast grating |
CN105403514A (en) * | 2015-11-25 | 2016-03-16 | 福州大学 | Multi-wavelength incidence single-shot ellipsometry measurement method |
CN106597053A (en) * | 2017-01-24 | 2017-04-26 | 福州大学 | Straight optical path linear optical current sensor and current detection method |
CN106872754A (en) * | 2017-01-24 | 2017-06-20 | 福州大学 | The linear optics current sensor and detection method realized based on 4 quadrant detector |
CN107621356A (en) * | 2017-10-31 | 2018-01-23 | 中国科学院苏州生物医学工程技术研究所 | A Microscope Focus Offset Measuring Equipment |
Non-Patent Citations (5)
Title |
---|
A Linear Optical Current Transducer Based on;Zhikun Xu et al.;《IEEE Sensors Journal》;20171201;第17卷(第23期);第7894-7900页 * |
一种基于径向偏振解调的线性光学电流传感器;谭巧等;《红外与激光工程》;20180228;第47卷(第2期);第0222003-1-0222003-6页 * |
光通信中的亚波长光栅及分束器件的研究;王莹;《中国优秀硕士学位论文全文数据库 信息科技辑》;20180315(第03期);I136-961 * |
光通信系统中新型亚波长光栅与半导体光探测器集成的研究;房文敬;《中国博士学位论文全文数据库 信息科技辑》;20180215(第02期);I136-65 * |
实现线性测量的光学电压传感器设计;谭巧等;《电力系统自动化》;20170210;第41卷(第3期);第135-140页 * |
Also Published As
Publication number | Publication date |
---|---|
CN108872681A (en) | 2018-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108872681B (en) | An Optical Current Transformer Based on Strip Radial Polarization Grating | |
CN101865827B (en) | Magnetooptic ellipsometry measurement device and measurement method | |
CN102426281B (en) | Longitudinal modulation optical voltage sensor | |
CN106872754B (en) | The linear optics current sensor and detection method realized based on 4 quadrant detector | |
CN106597053A (en) | Straight optical path linear optical current sensor and current detection method | |
CN103364349A (en) | Device utilizing adjustable wave length laser to carry out magneto-optical ellipsometry test and measuring method | |
CN103439001A (en) | Method and device for measuring and evaluating inhomogeneous vector polarized light | |
CN103163360A (en) | Optical current sensor and current measurement method based on comparative measurement structure | |
CN201382851Y (en) | A high-precision testing device for characteristic parameters of liquid crystal spatial light modulator | |
Fan et al. | An electric field measurement method based on electro-optical modulation for corona discharge in air | |
CN102928647B (en) | Optical profile type voltage sensor system and corresponding iterative demodulation method | |
CN103335821B (en) | The measurement mechanism of quarter-wave plate phase retardation and measuring method | |
CN102680408B (en) | Magnetic Circular Dichroism Photoconductivity Spectroscopy Measurement System | |
CN102032880B (en) | AC (alternating current) magneto-optical modulation wide angle detection device and method | |
CN103278310B (en) | A kind of optical fiber quarter wave plate phase delay temperature characteristic measuring device and method | |
CN104458590A (en) | Perpendicular magnetization film test device | |
CN103698585B (en) | Multi-range optical current sensor | |
CN218647069U (en) | A broadband electro-optic surface electric field measuring device | |
CN203396695U (en) | Apparatus for magnetic field optical elliptic polarization test by using tunable wavelength laser device | |
JP2024025607A (en) | Film thickness measuring device and measuring method based on laser ellipsometry system | |
CN205353238U (en) | Electro -optical crystal half -wave electric field and response characteristic measuring device | |
CN102565725B (en) | Device and method for measuring alternating Faraday magnetic declination angle by using signal spectrum | |
CN203909120U (en) | Temperature compensating optical current measuring module and optical current transformer | |
CN205484007U (en) | Verdet constant measuring device of magneto optic material | |
CN201281724Y (en) | Optical current sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |