CN102928909B - A kind of phase delay device based on surface phasmon - Google Patents
A kind of phase delay device based on surface phasmon Download PDFInfo
- Publication number
- CN102928909B CN102928909B CN201210419568.8A CN201210419568A CN102928909B CN 102928909 B CN102928909 B CN 102928909B CN 201210419568 A CN201210419568 A CN 201210419568A CN 102928909 B CN102928909 B CN 102928909B
- Authority
- CN
- China
- Prior art keywords
- metal nanoparticle
- metal
- phase
- metal nanoparticles
- phase delay
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000002082 metal nanoparticle Substances 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 3
- 229910052737 gold Inorganic materials 0.000 claims description 3
- 239000010931 gold Substances 0.000 claims description 3
- 239000005304 optical glass Substances 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 239000004332 silver Substances 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 14
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 238000001514 detection method Methods 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract description 2
- 239000004973 liquid crystal related substance Substances 0.000 abstract description 2
- 239000002105 nanoparticle Substances 0.000 abstract description 2
- 239000013078 crystal Substances 0.000 abstract 1
- 150000002739 metals Chemical class 0.000 abstract 1
- 238000011160 research Methods 0.000 abstract 1
- 239000002086 nanomaterial Substances 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001808 coupling effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
Landscapes
- Polarising Elements (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明公开了一种基于表面等离激元的相位延迟器,现有关于光学相位调制器的发明与研究多是基于双折射晶体,液晶等传统光学器件,这些设计只适用于较大尺度的光学器件,不利于集成化。本发明利用金属的表面等离激元特性,将相位延迟器缩小到纳米量级,并且可以通过改变纳米颗粒的尺寸结构,有效地对特定波长的光实现相位延迟。该结构可以被应用到各种光学检测紧密仪器中。
The present invention discloses a phase retarder based on surface plasmon polaritons. Most of the existing inventions and researches on optical phase modulators are based on traditional optical devices such as birefringent crystals and liquid crystals. These designs are only applicable to larger scales. Optical devices are not conducive to integration. The invention utilizes the surface plasmon properties of metals to shrink the phase retarder to the nanometer level, and can effectively achieve phase retardation for light of a specific wavelength by changing the size structure of the nanoparticles. This structure can be applied to various optical detection compact instruments.
Description
技术领域 technical field
本发明属于光电技术领域,涉及一种贵金属纳米结构,具体是一种基于表面等离激元的相位延迟器。 The invention belongs to the field of optoelectronic technology, and relates to a noble metal nanostructure, in particular to a phase retarder based on surface plasmons.
背景技术 Background technique
在光学元件领域,相位延迟器能对特定偏振方向的光产生附加光程差。最常见的相位延迟器即波片。波片利用的基本原理是材料的双折射性质,即材料在不同方向上对于光的折射率不同。其中半波波片能够改变线偏振光的偏振方向,四分之一波片能够将线偏振光转变为圆偏振光。此外,液晶相位调制器能实现可调的相位变化。这一系列基本元件已经被广泛应用于各种光学精密仪器中,用于光谱、光学检测等领域。 In the field of optical components, a phase retarder can produce an additional optical path difference for light with a specific polarization direction. The most common phase retarder is the wave plate. The basic principle used by the wave plate is the birefringence property of the material, that is, the refractive index of the material is different for light in different directions. Among them, the half-wave plate can change the polarization direction of linearly polarized light, and the quarter-wave plate can convert linearly polarized light into circularly polarized light. In addition, liquid crystal phase modulators can achieve adjustable phase changes. This series of basic components has been widely used in various optical precision instruments for spectrum, optical detection and other fields.
经过对于传统光相位调制器的文献检索发现,最小的相位延迟波片在尺寸上最薄能够达到几百微米。而伴随着集成光学与现代精密加工工艺的飞速进步,片上集成光学器件的尺度也随之不断小型化,达到纳米尺度。在这一量级上,由于材料本身双折射特性以及折射率大小的限制,上述有关的设计原理不再能实现,因此目前还没有能制造出有效的纳米级相位延迟元件。 After searching the literature for traditional optical phase modulators, it is found that the smallest phase retardation wave plate can be as thin as hundreds of microns in size. With the rapid progress of integrated optics and modern precision processing technology, the scale of on-chip integrated optical devices has also been continuously miniaturized, reaching the nanometer scale. At this level, due to the limitations of the birefringence properties of the material itself and the size of the refractive index, the above-mentioned related design principles can no longer be realized, so no effective nanoscale phase delay elements have been manufactured yet.
发明内容 Contents of the invention
本发明的目的是针对上述现有构想与技术的不足,利用金属纳米结构的光学特性,提出了一种基于表面等离激元的相位延迟器。 The purpose of the present invention is to address the shortcomings of the above-mentioned existing concepts and technologies, and propose a phase retarder based on surface plasmons by utilizing the optical properties of metal nanostructures.
本发明解决其技术问题采用的技术方案如下: The technical scheme that the present invention solves its technical problem adopts is as follows:
本发明包括透明衬底以及金属纳米颗粒。 The invention includes transparent substrates as well as metal nanoparticles.
所述的透明衬底主要用于支撑金属纳米颗粒,采用各向同性且低色散的光学玻璃,不对入射光起调制作用。 The transparent substrate is mainly used to support metal nanoparticles, isotropic and low-dispersion optical glass is used, and does not modulate incident light.
所述的金属纳米颗粒对于入射光起主要的调制作用,金属纳米颗粒的形状可多种,包括盘状、球形、棒状、三角形;每三颗金属纳米颗粒为一组,且每组金属纳米颗粒的形状为其中一种或其中几种结构所构成的组合结构,每组金属纳米颗粒之间的边距大于100纳米,且多组金属纳米颗粒呈周期性阵列分布。通常金属纳米结构被设计为盘型结构,从集成光学与加工工艺方面考虑,盘型结构可通过掩膜,刻蚀,蒸镀或溅射来实现。 The metal nanoparticles play a major role in modulating the incident light, and the shapes of the metal nanoparticles can be various, including disk, spherical, rod, and triangle; every three metal nanoparticles are a group, and each group of metal nanoparticles The shape is one of them or a combined structure composed of several of them, the distance between each group of metal nanoparticles is greater than 100 nanometers, and multiple groups of metal nanoparticles are distributed in a periodic array. Usually metal nanostructures are designed as disk structures. From the perspective of integrated optics and processing technology, disk structures can be realized by masking, etching, evaporation or sputtering.
所述金属纳米颗粒的尺寸为亚波长级,其尺寸为:直径50纳米,厚度10纳米,每组金属纳米颗粒中颗粒与颗粒的边间距15纳米。金属纳米颗粒的尺寸和结构主要影响的是对于入射光调制的相位的大小。 The size of the metal nanoparticles is sub-wavelength level, the size is: 50 nanometers in diameter, 10 nanometers in thickness, and the distance between particles in each group of metal nanoparticles is 15 nanometers. The size and structure of metal nanoparticles mainly affect the magnitude of the phase modulation for incident light.
本发明具有的有益效果是: The beneficial effects that the present invention has are:
本发明利用金属纳米颗粒的光学特性,相比现有元件来说体积大大缩小(厚度几十纳米到几百纳米),可以在材料界面上完成相位的调制,可以认为是一种二维相位延迟器。这样的结构易于大规模光学集成,可以作为光学检测仪器的重要元件。 The invention utilizes the optical properties of metal nanoparticles, and compared with the existing components, the volume is greatly reduced (tens of nanometers to hundreds of nanometers in thickness), and the phase modulation can be completed on the material interface, which can be considered as a two-dimensional phase delay device. Such a structure is easy for large-scale optical integration and can be used as an important component of optical detection instruments.
附图说明 Description of drawings
图1为本发明整体结构示意图; Fig. 1 is a schematic diagram of the overall structure of the present invention;
图2为本发明每组金属纳米颗粒的单元示意图; Fig. 2 is the unit schematic diagram of each group of metal nanoparticles of the present invention;
图3为本发明的相位延迟谱。 Fig. 3 is the phase delay spectrum of the present invention.
具体实施方式 Detailed ways
下面结合附图对本发明的具体实施方式做详细说明:本实施方式案例以本发明提出的基于表面等离激元的相位延迟器为前提,但本发明的保护范围并不限于下述实施方式与案例。 The specific implementation of the present invention will be described in detail below in conjunction with the accompanying drawings: the case of this implementation is based on the phase retarder based on surface plasmons proposed by the present invention, but the scope of protection of the present invention is not limited to the following implementation and case.
如图1所示,一种基于表面等离激元的相位延迟器包括透明衬底1以及金属纳米颗粒。 As shown in FIG. 1 , a phase retarder based on surface plasmons includes a transparent substrate 1 and metal nanoparticles.
所述的透明衬底主要用于支撑金属纳米颗粒,采用各向同性且低色散的光学玻璃,不对入射光起调制作用。 The transparent substrate is mainly used to support metal nanoparticles, isotropic and low-dispersion optical glass is used, and does not modulate incident light.
所述的金属纳米颗粒对于入射光起主要的调制作用,金属纳米颗粒的形状可多种,包括盘状、球形、棒状、三角形;每三颗金属纳米颗粒为一组,且每组金属纳米颗粒的形状为其中一种或其中几种结构所构成的组合结构,每组金属纳米颗粒之间的边距大于100纳米,且多组金属纳米颗粒呈周期性阵列分布。在图中,金属纳米结构被设计为盘型结构。从集成光学与加工工艺方面考虑,盘型结构可通过掩膜,刻蚀,蒸镀或溅射来实现。 The metal nanoparticles play a major role in modulating the incident light, and the shapes of the metal nanoparticles can be various, including disk, spherical, rod, and triangle; every three metal nanoparticles are a group, and each group of metal nanoparticles The shape is one of them or a combined structure composed of several of them, the distance between each group of metal nanoparticles is greater than 100 nanometers, and multiple groups of metal nanoparticles are distributed in a periodic array. In the figure, the metal nanostructure is designed as a disk-shaped structure. From the perspective of integrated optics and processing technology, the disc structure can be realized by masking, etching, evaporation or sputtering.
如图2所示,在每一组金属纳米颗粒中,金属纳米颗粒形状为盘状,且材料是金和银,两种材料都在可见波段有较强的等离子体共振效应。通过两种材料颗粒的耦合效应,可在光谱上形成一个相位被调制的窗口,实现特定的相位延迟功能。通过替换金属纳米颗粒的材料,也可选择性地对于某个波长范围的光进行相位调制。图2中所示的金属纳米颗粒的尺寸为:直径50纳米,厚度10纳米,每组金属纳米颗粒中颗粒与颗粒的边间距15纳米。金属纳米颗粒的尺寸和结构主要影响的是对于入射光调制的相位的大小,图中所设计的结构对于目标波长可实现对正交的两个偏振引起的相位差。且图中中间的金属纳米颗粒2-2材料为金,两边的金属纳米颗粒2-2材料均为银。偏振光分量3、偏振光分量4相互正交,并入射到金属纳米颗粒上,然后与金属纳米颗粒在作用时发生等离子体共振,对偏振光分量3、偏振光分量4产生不同的相位延迟。 As shown in Figure 2, in each group of metal nanoparticles, the shape of the metal nanoparticles is disk, and the materials are gold and silver, both of which have strong plasmon resonance effects in the visible band. Through the coupling effect of the two material particles, a phase-modulated window can be formed on the spectrum to achieve a specific phase delay function. By substituting the material of the metal nanoparticles, phase modulation can also be selectively performed for light in a certain wavelength range. The size of the metal nanoparticles shown in FIG. 2 is: 50 nanometers in diameter, 10 nanometers in thickness, and the particle-to-particle side spacing in each group of metal nanoparticles is 15 nanometers. The size and structure of metal nanoparticles mainly affect the size of the phase modulated by the incident light. The structure designed in the figure can realize the phase difference caused by the two orthogonal polarizations for the target wavelength. In addition, the material of the metal nanoparticle 2-2 in the middle of the figure is gold, and the material of the metal nanoparticle 2-2 on both sides is silver. The polarized light component 3 and the polarized light component 4 are orthogonal to each other, and are incident on the metal nanoparticles, and then plasmon resonance occurs when interacting with the metal nanoparticles, producing different phase delays for the polarized light components 3 and 4.
如图3所示是一种特定结构尺寸下的相位调制特性。在短波范围(<500nm),该结构基本对于光透明。在长波范围(590-650nm),纳米结构对于入射光的相位延迟达到 ,并且形成一个较宽带的窗口,能够实现传统的四分之一波片的功能,可将线偏振光与圆偏振光进行相互转换。所述金属纳米颗粒的尺寸为亚波长级。 As shown in Fig. 3, it is a phase modulation characteristic under a specific structure size. In the short wavelength range (<500nm), the structure is essentially transparent to light. In the long wavelength range (590-650nm), the phase retardation of the nanostructures to the incident light reaches , and form a wide-band window, which can realize the function of a traditional quarter-wave plate, and can convert linearly polarized light and circularly polarized light into each other. The size of the metal nanoparticles is sub-wavelength.
相位延迟器的相位延迟功能由衬底上的金属纳米结构决定。在具体使用中,可以按照需求制造所需的结构。其中可以调整的参数有:纳米颗粒的形状、数量、大小、材料、间距等。从而相位差的大小、窗口位置、窗口宽度随之改变。这样就实现了基于表面等离激元的相位延迟器。 The phase delay function of the phase retarder is determined by the metal nanostructure on the substrate. In specific use, the required structure can be manufactured according to the requirement. The parameters that can be adjusted include: shape, quantity, size, material, spacing, etc. of nanoparticles. Therefore, the size of the phase difference, the window position, and the window width change accordingly. In this way, a phase retarder based on surface plasmons is realized.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210419568.8A CN102928909B (en) | 2012-10-29 | 2012-10-29 | A kind of phase delay device based on surface phasmon |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201210419568.8A CN102928909B (en) | 2012-10-29 | 2012-10-29 | A kind of phase delay device based on surface phasmon |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102928909A CN102928909A (en) | 2013-02-13 |
CN102928909B true CN102928909B (en) | 2015-10-21 |
Family
ID=47643747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201210419568.8A Expired - Fee Related CN102928909B (en) | 2012-10-29 | 2012-10-29 | A kind of phase delay device based on surface phasmon |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102928909B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2535515A (en) * | 2015-02-19 | 2016-08-24 | Univ Birmingham | Metasurface for control of light propogation |
CN107315204A (en) * | 2017-05-24 | 2017-11-03 | 深圳凌波近场科技有限公司 | Ultra-thin surfaces ripple photonic crystal |
CN108845412B (en) * | 2018-08-27 | 2020-07-17 | 上海理工大学 | Phase plate design method in compact phase contrast microscope |
CN111307067A (en) * | 2020-03-30 | 2020-06-19 | 深圳大学 | Optical measurement system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101792268A (en) * | 2009-12-31 | 2010-08-04 | 浙江大学 | Method for preparing metal/SiO2 composite granular film by oil-water interface self assembly method |
CN102706835A (en) * | 2012-05-14 | 2012-10-03 | 中央民族大学 | Sensing chip of dual-detecting biochemical sensing detector and preparation method thereof |
CN102747320A (en) * | 2012-07-31 | 2012-10-24 | 武汉大学 | Preparation method of noble metal nano-particle array |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649901B2 (en) * | 2002-03-14 | 2003-11-18 | Nec Laboratories America, Inc. | Enhanced optical transmission apparatus with improved aperture geometry |
JP2004061870A (en) * | 2002-07-29 | 2004-02-26 | Kyocera Corp | Optical element and optical module using the same |
US7630132B2 (en) * | 2005-05-23 | 2009-12-08 | Ricoh Company, Ltd. | Polarization control device |
-
2012
- 2012-10-29 CN CN201210419568.8A patent/CN102928909B/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101792268A (en) * | 2009-12-31 | 2010-08-04 | 浙江大学 | Method for preparing metal/SiO2 composite granular film by oil-water interface self assembly method |
CN102706835A (en) * | 2012-05-14 | 2012-10-03 | 中央民族大学 | Sensing chip of dual-detecting biochemical sensing detector and preparation method thereof |
CN102747320A (en) * | 2012-07-31 | 2012-10-24 | 武汉大学 | Preparation method of noble metal nano-particle array |
Also Published As
Publication number | Publication date |
---|---|
CN102928909A (en) | 2013-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107340559B (en) | High efficiency and broad band circular polarization switching device and method based on super clever surface | |
Duempelmann et al. | Four-fold color filter based on plasmonic phase retarder | |
Kubo et al. | Tunable photonic band gap crystals based on a liquid crystal-infiltrated inverse opal structure | |
CN104570402B (en) | Spatial light modulator based on metamaterial structure and preparation method thereof | |
Kossyrev et al. | Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix | |
Yang et al. | Large-scale colloidal self-assembly by doctor blade coating | |
Jen et al. | Biologically inspired achromatic waveplates for visible light | |
Evans et al. | Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal | |
Gorkunov et al. | Extreme optical activity and circular dichroism of chiral metal hole arrays | |
CN102928909B (en) | A kind of phase delay device based on surface phasmon | |
WO2014117673A1 (en) | Reflective nanorod surface plasma optical filter | |
CN109270031B (en) | A Circular-Rectangular Composite Nanohole Array Surface Plasmonic Fiber Sensor | |
CN105891609A (en) | Thermal mechanical type electromagnetic radiation detector | |
Liu et al. | Plasmon-boosted magneto-optics | |
CN106019451B (en) | Full Stokes vector polarizer based on surface plasma primitive | |
CN104880755B (en) | A kind of sub-wave length metal grating polarizer for being monolithically integrated in high index of refraction substrate | |
CN102981199A (en) | Surface plasma nanometer ring light filter | |
CN111504947A (en) | Surface plasmon refractive index sensor based on MIM annular lattice array | |
CN105242341B (en) | A kind of super surface quarter-wave plate based on surface plasmons | |
CN107238885A (en) | Metal Meta Materials wave plate | |
CN105480931A (en) | Visible light bidirectional absorber structure | |
Chuang et al. | Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle | |
CN106646680A (en) | One-way wave guide device based on composite structures | |
Wang et al. | Tri-functional metamaterials integrated with vanadium dioxide in terahertz regions | |
CN105549132B (en) | A kind of near-infrared omnidirectional absorber based on hyperbolic photonic crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20151021 Termination date: 20181029 |
|
CF01 | Termination of patent right due to non-payment of annual fee |