CN103691058A - 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台 - Google Patents

帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台 Download PDF

Info

Publication number
CN103691058A
CN103691058A CN201310670414.0A CN201310670414A CN103691058A CN 103691058 A CN103691058 A CN 103691058A CN 201310670414 A CN201310670414 A CN 201310670414A CN 103691058 A CN103691058 A CN 103691058A
Authority
CN
China
Prior art keywords
fpga
brain stimulation
deep brain
neuron
parameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310670414.0A
Other languages
English (en)
Other versions
CN103691058B (zh
Inventor
邓斌
张茂华
王晓军
魏熙乐
李会艳
于海涛
王江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201310670414.0A priority Critical patent/CN103691058B/zh
Publication of CN103691058A publication Critical patent/CN103691058A/zh
Application granted granted Critical
Publication of CN103691058B publication Critical patent/CN103691058B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明提供一种帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,该实验平台包括有相互连接的FPGA开发板和上位机,其中FPGA开发板用来实现基底核-丘脑神经元网络模型和深度脑刺激控制器,上位机用来设计上位机软件界面并与FPGA开发板进行通讯。本发明的有益效果是作为生物神经网络的无动物实验、基于高速运算的FPGA神经元网络实验平台实现了对复杂的帕金森病灶区神经元网络的建模,并且能够达到在时间尺度上与真实生物神经元的一致性。该平台为研究帕金森疾病的放电机制,和深度脑刺激控制基底核-丘脑神经元网络的异常放电模式提供了更加接近真实神经网络的可视化研究平台,对帕金森疾病治疗的研究有重要的实用价值。

Description

帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台
技术领域
本发明涉及生物医学工程技术,特别是一种帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台。
背景技术
帕金森病是一种由中枢神经系统功能退化引起的退行性神经系统疾病,会导致患者肌肉僵硬、震颤、运动徐缓,甚至丧失运动能力。帕金森状态主要源自于基底核-丘脑-皮层回路中丘脑神经元无法准确的中继大脑皮层兴奋性信息。建立基底核-丘脑(BG-TC)神经元网络有助于实现帕金森状态的分析与控制。研究发现,人脑中基底核区域主要包含丘脑底核(Subthalamicnucleus,STN)、苍白球外侧(Globus Pallidus externa,GPe)和苍白球内侧(Globus Pallidus,GPi)三部分。因而建立STN,GPe,GPi和TC核团之间的神经网络模型是研究帕金森状态的关键环节。80年代末期,深度脑刺激(DeepBrain Stimulation,DBS)应用于临床治疗帕金森疾病并取得了良好的效果,尤其是基底核-丘脑DBS已经成为治疗中晚期帕金森的首选治疗方法。因此应用DBS控制BG-TC神经元网络的异常放电模式具有重要的研究价值。
考虑到人脑中大约存在一千亿个神经元,相互错综复杂的突触连接使之形成大量大规模的神经元网络,所以进行生物实验存在一定的局限性;计算机仿真软件则不能满足大规模复杂神经元网络研究对运行速度的要求,而传统的串行计算数字芯片,如单片机、DSP等也很难满足神经元网络即时计算的要求。因此BG-TC神经元网络和DBS控制器的高性能硬件实现,是一个全新的研究方向。
现场可编程门阵列(Field Programmable Gate Array,FPGA)技术在以生物神经系统为对象的计算神经科学领域的应用逐渐受到重视。相对于模拟系统灵活性差,开发周期长等缺点,FPGA有着体积小、密度高、计算速度快(最高速率可达150MHz)、编程灵活、修改参数方便、低功耗、低成本、可重新配置、高可靠性等特点。应用能够并行运算的FPGA实现神经元及网络的运算和特性分析,可实现在真实时间尺度下运行,运算效率高,便于应用,且集成度高,在神经元网络特性研究、仿生学、智能系统及神经疾病治疗等方面有着广阔的应用前景,因此FPGA对于神经元与神经元网络模型的硬件实现具有重要意义。
现有的技术还处于基础阶段,因此仍存在以下缺点:运用FPGA实现的硬件仿真神经元网络模型结构比较简单,复杂网络的实现仍然是一个难点,因此实际应用价值较低;人机界面尚未完善,因此对FPGA硬件神经元网络的操作分析比较困难。
发明内容
针对上述技术中存在的不足,本发明的目的是提供一种帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,以利于更改病态的放电模式,实现对FPGA神经元网络模型、深度脑刺激控制器进行参数配置,接收FPGA神经元网络模型上传的数据,实时观察神经元放电行为和控制效果。
为实现上述目的,本发明采用的技术方案是提供一种帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其中:该实验平台包括有相互连接的FPGA开发板和上位机,FPGA开发板用来实现基底核-丘脑神经元网络模型和深度脑刺激控制器,上位机用来设计上位机软件界面并与FPGA开发板进行通讯。
本发明的有益效果是该仿真实验平台实现了复杂的帕金森病灶区基底核-丘脑(BG-TC)神经元网络的建模,设计了可视化人机界面,提高了系统的灵活性和易操作性,能够达到在时间尺度上与真实生物神经元数学模型的一致性;该平台为研究帕金森疾病的放电机制,和DBS控制BG-TC神经元网络的异常放电模式提供了更加接近真实神经网络的可视化研究平台,对帕金森疾病治疗的研究有重要的实用价值。作为无动物实验的手段,基于高速运算的FPGA神经元网络实验平台的应用在我国乃至全世界都属于一项全新的科技领域。本设计创新的提出了帕金森疾病基底核-丘脑网络的深度脑刺激FPGA实验平台,有以下几点优势:1、所设计的硬件仿真模型能够实现在时间尺度上与真实生物神经元的一致性;2、为帕金森疾病研究提供了更加快速的硬件试验平台;3、本发明中,神经元模型的关键参数、突触连接强度以及神经元网络结构都可以通过上位机软件界面配置,这就使利用计算机配置实验设备的各种特性成为了可能;4、本设计中加入了DBS控制器,可以实现对病态网络的控制;5、上位机软件界面的设计使得网络放电状态能够直观的显示,为治疗帕金森病的研究提供了更好的可视化平台。
附图说明
图1为本发明的FPGA硬件实验平台结构示意图;
图2为本发明的流水线数据模型;
图3为本发明的突触电流产生模块;
图4为本发明的寄存器模块;
图5为本发明的上位机软件界面示意图。
图中:
1.FPGA开发板2.上位机3.BG-TC网络模型4.DBS控制器5.上位机软件界面6.GPe神经元核团模型7.STN神经元核团模型8.GPi神经元核团模型9.TC神经元核团模型10.初值模块11.流水线数据模型12.寄存器模块13.突触电流产生模块14.USB接口15.输入数据总线16.输出数据总线17.多巴胺参数总线18.输入数据信号19.初值信号20.突触电流21.神经元膜电压信号22.神经元多巴胺信号23.DBS控制信号24.选择器25.流水线数据通路26.神经元核团突触连接矩阵27.逻辑运算模块28.上位机软件界面波形显示部分29.上位机软件界面参数配置部分30.上位机软件界面DBS控制器配置部分
具体实施方式
结合附图对本发明的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台结构加以说明。
本发明的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台的设计思想是首先在FPGA上建立具有多神经元核团、复杂耦合的基底核-丘脑神经元网络模型;然后在FPGA上独立于神经元网络模型设计深度脑刺激控制器,深度脑刺激控制信号作为外部电流刺激施加给模型,通过刺激更改基底核-丘脑神经元网络的病态放电模式,使丘脑正确中继大脑皮层的兴奋性信号;最后设计上位机软件界面,上位机软件界面通过设置参数并传输到FPGA,实现对网络耦合结构和初始状态的配置,不同的参数可以模拟正常状态和帕金森状态的放电特性,同时也可以把FPGA中神经元网络放电动态数据上传到上位机,在上位机软件界面进行放电动态波形的显示。该实验平台包括有相互连接的FPGA开发板和上位机,其中FPGA开发板用来实现基底核-丘脑神经元网络模型和深度脑刺激控制器,上位机用来设计上位机软件界面并与FPGA开发板进行通讯。
所述基底核-丘脑(BG-TC)神经元网络模型由GPe、STN、GPi和TC神经元核团模型相互耦合组成。对于单独的GPe、STN、GPi和TC神经元核团模型,在FPGA中采用流水线技术搭建,使复杂逻辑操作分步完成,从而在资源有限的情况下提高系统的吞吐量。流水线的思想实际上就是利用延时将一个计算过程分为若干个子过程,在一个时钟周期内,每个子过程同时分别处理不同神经元、不同状态时刻的数据,模型数据交叉在移位寄存器中保存,并随着时钟转移。在一个神经元数据通路中,流水线的级数P与神经元个数N相等,这样便可实现N个神经元的运算。因此GPe、STN、GPi和TC神经元核团的模型可以由4个不同的流水线数据模型实现,每个模型都包含多个神经元。不同神经元之间的耦合作用由突触电流产生,突触电流的产生又取决于耦合结构、突触前膜电位和多巴胺参数。耦合结构由突触连接矩阵来表示,突触前各个神经元的膜电位与突触连接矩阵、多巴胺参数进行逻辑运算,可以得到突触后神经元的突触电流输入。突触前各个神经元的膜电位和多巴胺参数由流水线数据模型计算得到,存储在FPGA的BRAM中,突触连接矩阵由外设寄存器存储,计算时进行同步调用,这样便可实现GPe、STN、GPi和TC神经元之间的耦合,最终实现完整的基底核-丘脑神经元网络模型。不同的模型参数会产生不同的放电现象,因此设计两组不同的参数使模型分别产生正常放电模式和帕金森病态的放电模式。
所述深度脑刺激(DBS)控制器:DBS治疗帕金森机制的本质是外电场对BG-TC网络的调控作用,在场效应下,刺激波形、参数、神经元本身的结构和内在的电生理学特性等都会影响DBS的刺激效果。DBS控制器的本质是一个信号发生器,它对于BG-TC网络模型相当于一个开环控制器,可运用硬件描述语言在FPGA中设计实现;DBS控制信号连接到GPe、STN或GPi核团模型的输入端作为刺激输入,在不同的神经核团中施加DBS控制会改善不同的帕金森症状,所以需要设计一个数据选择器,来实现DBS控制信号在GPe、STN和GPi核团之间的切换,以实现对不同症状的控制。不同的控制信号控制效果不同,因此可通过在上位机软件界面调节DBS控制信号的波形、频率、幅值、脉宽等参数,通过USB传输到FPGA开发板对DBS控制器进行配置,对DBS刺激参数进行快速定性的优化,在控制疾病的同时使功耗最低,实现最优控制的目标。
所述上位机软件界面:上位机软件界面由LabVIEW(Laboratory VirtualInstrument Engineering Workbench,实验室虚拟仪器工程平台)软件开发实现,FPGA开发板作为USB设备通过VISA(Virtual Instrument Software Architecture,虚拟仪器软件体系结构)与上位机相连,上位机LabVIEW软件界面可以通过“VISA读取”来连续接收从FPGA开发板USB接口传输的BG-TC网络模型运算得到的动态数据,在LabVIEW开发的界面进行实时的波形显示;同时可以在LabVIEW界面设置参数通过“VISA写入”输入数据到FPGA中对模型参数和DBS控制器参数进行配置。由于FPGA开发板与上位机是通过USB通用串行总线接口通信,因此在对FPGA写入数据时必须停止数据的上传。由于LabVIEW采用图形化语言设计,开发过程便捷直观,最终呈现在用户面前的是与真实的实验仪器基本相似的操作面板,能实现数据采集和分析处理。
本发明的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台由相互连接的FPGA开发板1和上位机2组成。其中FPGA开发板1用来实现基底核-丘脑神经元网络模型3和深度脑刺激控制器4,上位机2用来设计上位机软件界面5并与FPGA开发板1进行通讯。以下加以说明:
基底核-丘脑(BG-TC)神经元网络模型3
如图1所示,对硬件实验平台系统进行设计,采用Altera低功耗CycloneV SoC5CSXFC6D6F31型号FPGA开发板1,利用Altera推出的一个数字信号处理开发工具DSP Builder可以可视化图形编程,根据神经元核团的数学模型,用欧拉方法进行离散化,运用DSP Builder搭建GPe6、STN7、GPi7和TC8神经元核团的流水线数据模型11。如图2所示,流水线数据模型11主要由查找表、加法、乘法、移位寄存器模块组成,根据网络规模设计流水线深度。所有模块在同时钟下同步运行,并且根据FPGA的结构,运用QUARTUSⅡ软件实现硬件描述语言的转换。把流水线数据模型连续两次运算得到的N个神经元的膜电位21和多巴胺参数22的值存储到FPGA的BRAM12中,神经元流水线数据模型11接收初值信号19、深度脑刺激控制信号23和突触电流信号20作为神经元流水线数据模型11的输入进行运算处理,经过神经元流水线数据模型11运算产生的神经元的膜电位信号21和多巴胺参数信号22输入到FPGA开发板1内部寄存器模块12存储;以便在计算突触电流20时进行调用。
在四种神经元核团模型搭建好以后,建立它们之间的耦合关系,它们之间的耦合作用由突触电流20产生,而突触电流又由耦合结构、突触前膜电位21和多巴胺参数22决定。如图3所示,耦合结构由突触连接矩阵26来表示,突触连接矩阵26由上位机软件QUARTUSⅡ设计直接存储到FPGA开发板1寄存器SRAM中。计算时同步调用存储在BRAM12中的神经元膜电位21、多巴胺参数22和存储在SRAM中的突触连接矩阵26,突触前各个神经元的膜电位21与突触连接矩阵26、多巴胺参数22经过合适的逻辑运算27,得到突触后神经元的突触电流20输入。这样便可实现Gpe6、STN7、Gpi78和TC9神经元核团模型四者之间的耦合关系,最终实现完整的基底核-丘脑神经元网络模型2。
如图4所示,存储器模块12接收神经元流水线数据模型11运算产生的神经元的膜电位信号21和多巴胺参数信号22进行存储;多巴胺参数22通过多巴胺参数总线17传递到不同的神经元核团来实现相互之间的耦合,神经元的膜电位信号21通过输出总线16传递到上位机,用来在上位机软件界面5进行处理。多巴胺参数总线17在传输数据时设计为并行数据传输,使四种神经元核团能够同步运算,从而实现从生物神经元模型到FPGA流水线数据通路的严格的数学推导过程,避免了耦合运算造成的时序混乱现象,保证了所设计的硬件仿真模型在时间尺度上与真实生物神经元数学模型的一致性。
模型的初值模块10由信号给定模块、多路选择模块及常值模块共同完成。为了节省硬件资源,数据采用定点数形式进行运算。初值模块10通过FPGA开发板1内部的数据输入总线15接收由上位机软件界面5传递的数据,对神经元流水线数据模型11进行初始参数的配置,初值模块10通过接收上位机软件界面5赋予的不同参数,使基底核-丘脑网络模型3在运算时表现出正常状态的放电模式或帕金森病态放电模式。
深度脑刺激(DBS)控制器4
运用硬件描述语言在FPGA开发板1中设计信号发生器来模拟DBS控制器4,DBS控制器4运行产生DBS控制信号23,作为外部电流刺激施加到基底核-丘脑网络模型3,然后设计一个选择器24来实现DBS控制信号23在GPe6、STN7和GPi8神经元核团之间的切换,观察控制信号的不同作用位置产生的不同效果,以实现对不同症状的帕金森病进行控制;同时设计DBS控制器4能接受上位机软件界面5传递的频率、幅值、脉宽等参数,来优化DBS控制器4,使其在控制疾病的同时达到功耗最低。
上位机软件界面5
如图5所示,在上位机2运用LabVIEW软件工具来设计上位机软件界面5。FPGA开发板1作为USB设备通过VISA与上位机软件界面5实现数据通信,上位机软件界面(5)通过“VISA读取”接收从FPGA开发板(1)USB接口(14)传输的由基底核-丘脑神经元网络模型(3)运算得到的数据;上位机软件界面(5)设置参数通过“VISA写入”输入数据到FPGA开发板(1)中,对基底核-丘脑网络模型(3)和深度脑刺激控制器(4)进行参数配置。LabVIEW编程时采用多线程编程技术,多线程技术可以实现在图形曲线显示时能兼顾数据处理和存储,并且保证数据的实时连续采集。上位机软件界面5设计分为三个部分:初始参数配置部分29设计实现上位机对FPGA开发板1中BG-TC网络模型3初始参数、网络结构的配置;波形显示部分28设计实现由FPGA上传的膜电位信号21在上位机软件界面5的波形显示;DBS控制器配置部分30设计实现上位机软件界面5对DBS控制器的控制信号参数设置。
FPGA实验平台
由DSP Builder编写基于模块的离散的、固定步长的、定点数运算的BG-TC神经元网络模型,再转成硬件描述语言。经QUARTUSⅡ软件编写完整的运算逻辑和程序结构;编译、分析综合、布局布线,下载到FPGA开发板1中运行。经USB上传FPGA开发板1运算产生的神经元膜电位数据21,在LabVIEW编写的上位机软件界面5对BG-TC网络模型特性进行分析研究。

Claims (5)

1.一种帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其特征是:该实验平台包括有相互连接的FPGA开发板(1)和上位机(2),其中FPGA开发板(1)用来实现基底核-丘脑神经元网络模型(3)和深度脑刺激控制器(4),上位机(2)用来设计上位机软件界面(5)并与FPGA开发板(1)进行通讯;
所述基底核-丘脑神经元网络模型(3)在FPGA开发板(1)中实现,基底核-丘脑神经元网络模型(3)接收深度脑刺激控制器(4)和上位机软件界面(5)传递的信号进行运算,运算产生的膜电位信号(21)传回上位机软件界面(5)进行处理;FPGA基底核-丘脑神经元网络模型(3)包括有GPe(6)、STN(7)、GPi(8)和TC(9)四种神经元核团模型,而GPe(6)、STN(7)、GPi(8)和TC(9)四种神经元核团模型通过多巴胺参数总线(17)连接来模拟真实神经元之间的相互耦合;所述GPe(6)、STN(7)、GPi(8)和TC(9)神经元网络模型均包括有以下相互连接的模块:初值模块(10)、神经元流水线数据模型(11)、存储膜电压和多巴胺参数的寄存器模块(12)和突触电流产生模块(13);
所述深度脑刺激控制器(4)由FPGA开发板(1)实现,深度脑刺激控制器(4)接收由上位机软件界面(5)通过数据输入总线(15)传递的数据,来配置深度脑刺激控制器(4)的刺激信号波形、频率、幅值、脉宽参数;深度脑刺激控制器(4)运行产生深度脑刺激控制信号(23),作为外部电流刺激施加到基底核-丘脑网络模型(3),通过一个数据选择器(24)使深度脑刺激控制信号(23)在GPe(6)、STN(7)和GPi(8)核团之间进行切换;
所述上位机软件界面(5)通过VISA与FPGA开发板(1)的USB接口(14)相连实现数据通信,上位机软件界面(5)通过“VISA读取”接收从FPGA开发板(1)USB接口(14)传输的由基底核-丘脑神经元网络模型(3)运算得到的数据;上位机软件界面(5)设置参数通过“VISA写入”输入数据到FPGA开发板(1)中,对基底核-丘脑网络模型(3)和深度脑刺激控制器(4)进行参数配置。
2.根据权利要求1所述的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其特征是:所述突触电流产生模块(13)包含神经元突触耦合连接矩阵(26)和逻辑运算模块(27),突触耦合连接矩阵(26)接收上位机软件界面(5)传递的信号(18)进行初始化配置;突触电流产生模块(13)接收存储在存储器(12)中的神经元膜电位信号(21)和多巴胺参数总线(17)传递的多巴胺参数信号(22),与突触耦合连接矩阵(26)通过FPGA开发板(1)内部设计的逻辑运算模块(27)进行运算得到突触电流(20),作为神经元的突触电流(20)输入。
3.根据权利要求1所述的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其特征是:所述初值模块(10)通过FPGA开发板(1)内部的数据输入总线(15)接收由上位机软件界面(5)传递的数据,对神经元流水线数据模型(11)进行初始参数的配置,初值模块(10)通过接收上位机软件界面(5)赋予的不同参数,使基底核-丘脑网络模型(3)在运算时表现出正常状态的放电模式或帕金森病态放电模式。
4.根据权利要求1所述的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其特征是:神经元流水线数据模型(11)接收初值信号(19)、深度脑刺激控制信号(23)和突触电流信号(20)作为神经元流水线数据模型(11)的输入进行运算处理,经过神经元流水线数据模型(11)运算产生的神经元的膜电位信号(21)和多巴胺参数信号(22)输入到FPGA开发板(1)内部寄存器模块(12)存储;神经元的流水线数据模型(11)在一个数据路径中实现N个神经元处理进程,N为流水线深度;神经元的流水线数据模型(11)有三条流水线数据通路(25),其中的神经元膜电位(21)通路和多巴胺参数(22)通路与寄存器模块(12)相连,把神经元膜电位信号(21)和多巴胺参数信号(22)输入到寄存器模块(12)进行存储,神经元的膜电位(21)的变化代表神经元的放电动作,多巴胺参数(22)用来计算突触电流(20),实现神经元之间的耦合。
5.根据权利要求1所述的帕金森病基底核-丘脑网络的深度脑刺激FPGA实验平台,其特征是:所述存储器模块(12)接收神经元流水线数据模型(11)运算产生的神经元的膜电位信号(21)和多巴胺参数信号(22)进行存储;多巴胺参数(22)通过多巴胺参数总线(17)传递到不同的神经元核团来实现相互之间的耦合,神经元的膜电位信号(21)通过输出总线(16)传递到上位机(2),用来在上位机软件界面(5)进行处理。
CN201310670414.0A 2013-12-10 2013-12-10 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台 Expired - Fee Related CN103691058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310670414.0A CN103691058B (zh) 2013-12-10 2013-12-10 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310670414.0A CN103691058B (zh) 2013-12-10 2013-12-10 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台

Publications (2)

Publication Number Publication Date
CN103691058A true CN103691058A (zh) 2014-04-02
CN103691058B CN103691058B (zh) 2015-10-28

Family

ID=50352822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310670414.0A Expired - Fee Related CN103691058B (zh) 2013-12-10 2013-12-10 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台

Country Status (1)

Country Link
CN (1) CN103691058B (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375878A (zh) * 2014-11-24 2015-02-25 天津大学 弱电磁刺激调制海马网络节律的fpga仿真系统
CN104689473A (zh) * 2015-02-02 2015-06-10 天津大学 基于fpga的电刺激下神经元随机响应及共振实验平台
CN105160205A (zh) * 2015-09-14 2015-12-16 天津大学 基于lnc模型的针刺神经电信号fpga编码分析平台
CN105182794A (zh) * 2015-08-12 2015-12-23 天津大学 基于fpga的闭环电生理实验平台
CN105631222A (zh) * 2016-01-07 2016-06-01 天津大学 前馈神经网络下基于fpga的stdp突触可塑性实验平台
CN105631223A (zh) * 2016-01-07 2016-06-01 天津大学 基于cpg的心肺节律同步控制实验平台
CN105653873A (zh) * 2016-01-15 2016-06-08 天津大学 基于fpga的运动障碍非侵入式康复的闭环脑-机-体系统
CN105845001A (zh) * 2015-11-09 2016-08-10 天津大学 基于fpga的多电极阵列仿真实验平台
CN106203617A (zh) * 2016-06-27 2016-12-07 哈尔滨工业大学深圳研究生院 一种基于卷积神经网络的加速处理单元及阵列结构
CN106407568A (zh) * 2016-10-26 2017-02-15 天津大学 结合有限元分析的帕金森状态下基底核刺激实时仿真平台
CN107590360A (zh) * 2017-08-21 2018-01-16 天津大学 基于fpga的神经元离子通道动态特性实验平台
CN108325078A (zh) * 2018-01-31 2018-07-27 天津大学 可远程控制的多通道dbs装置及评估系统
CN108712921A (zh) * 2015-12-30 2018-10-26 波士顿科学神经调制公司 用于使用神经元网络模型构造神经刺激模式的系统
CN110681050A (zh) * 2019-09-27 2020-01-14 天津大学 一种基于延时反馈控制的噪声深度脑刺激系统
CN110859600A (zh) * 2019-12-06 2020-03-06 深圳市德力凯医疗设备股份有限公司 一种生成脑电信号的方法、存储介质及电子设备
US10974051B2 (en) 2015-12-30 2021-04-13 Boston Scientific Neuromodulation Corporation Method and apparatus for optimizing spatio-temporal patterns of neurostimulation for varying conditions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2605022Y (zh) * 2003-02-27 2004-03-03 中国人民解放军南京军区南京总医院 神经阈值刺激仪
CN2734251Y (zh) * 2004-09-10 2005-10-19 清华大学 一种治疗帕金森病的植入式脑起搏器用的脉冲发生器
CN1886172A (zh) * 2003-11-28 2006-12-27 于利奇研究中心有限公司 用于神经性脑活动去同步化的方法和装置
WO2007002731A2 (en) * 2005-06-28 2007-01-04 Neurosciences Research Foundation, Inc. Addressing scheme for neural modeling and brain-based devices using special purpose processor
CN2899831Y (zh) * 2006-03-13 2007-05-16 张潇潇 一种脑神经网络重建装置
CN101259302A (zh) * 2008-03-10 2008-09-10 西安交通大学 智能脑神经核团电刺激系统
CN101866438A (zh) * 2010-04-30 2010-10-20 天津大学 智能针刺神经元网络实验平台
US8024049B1 (en) * 2003-10-20 2011-09-20 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
CN102193518A (zh) * 2011-05-13 2011-09-21 南京理工大学 基于基底神经节的fpga仿生智能控制芯片

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2605022Y (zh) * 2003-02-27 2004-03-03 中国人民解放军南京军区南京总医院 神经阈值刺激仪
US8024049B1 (en) * 2003-10-20 2011-09-20 University Of Central Florida Research Foundation, Inc. Spatial-temporal deep brain stimulation methods and systems
CN1886172A (zh) * 2003-11-28 2006-12-27 于利奇研究中心有限公司 用于神经性脑活动去同步化的方法和装置
CN2734251Y (zh) * 2004-09-10 2005-10-19 清华大学 一种治疗帕金森病的植入式脑起搏器用的脉冲发生器
WO2007002731A2 (en) * 2005-06-28 2007-01-04 Neurosciences Research Foundation, Inc. Addressing scheme for neural modeling and brain-based devices using special purpose processor
US20070011118A1 (en) * 2005-06-28 2007-01-11 Snook James A Addressing Scheme for Neural Modeling and Brain-Based Devices using Special Purpose Processor
CN2899831Y (zh) * 2006-03-13 2007-05-16 张潇潇 一种脑神经网络重建装置
CN101259302A (zh) * 2008-03-10 2008-09-10 西安交通大学 智能脑神经核团电刺激系统
CN101866438A (zh) * 2010-04-30 2010-10-20 天津大学 智能针刺神经元网络实验平台
CN102193518A (zh) * 2011-05-13 2011-09-21 南京理工大学 基于基底神经节的fpga仿生智能控制芯片

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
RANDALL K. WEINSTEIN: "Methodology and Design Flow for Assisted Neural-Model Implementations in FPGAs", 《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》 *
时瑀: "数字神经元网络的实现与分析研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *
杨康乐: "神经元网络FPGA仿真系统构建的研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104375878A (zh) * 2014-11-24 2015-02-25 天津大学 弱电磁刺激调制海马网络节律的fpga仿真系统
CN104689473A (zh) * 2015-02-02 2015-06-10 天津大学 基于fpga的电刺激下神经元随机响应及共振实验平台
CN105182794A (zh) * 2015-08-12 2015-12-23 天津大学 基于fpga的闭环电生理实验平台
CN105160205B (zh) * 2015-09-14 2018-07-27 天津大学 基于lnc模型的针刺神经电信号fpga编码分析平台
CN105160205A (zh) * 2015-09-14 2015-12-16 天津大学 基于lnc模型的针刺神经电信号fpga编码分析平台
CN105845001A (zh) * 2015-11-09 2016-08-10 天津大学 基于fpga的多电极阵列仿真实验平台
CN105845001B (zh) * 2015-11-09 2019-02-22 天津大学 基于fpga的多电极阵列仿真实验平台
US10974051B2 (en) 2015-12-30 2021-04-13 Boston Scientific Neuromodulation Corporation Method and apparatus for optimizing spatio-temporal patterns of neurostimulation for varying conditions
CN108712921B (zh) * 2015-12-30 2020-05-22 波士顿科学神经调制公司 用于使用神经元网络模型构造神经刺激模式的系统
CN108712921A (zh) * 2015-12-30 2018-10-26 波士顿科学神经调制公司 用于使用神经元网络模型构造神经刺激模式的系统
CN105631222B (zh) * 2016-01-07 2019-03-26 天津大学 前馈神经网络下基于fpga的stdp突触可塑性实验平台
CN105631222A (zh) * 2016-01-07 2016-06-01 天津大学 前馈神经网络下基于fpga的stdp突触可塑性实验平台
CN105631223B (zh) * 2016-01-07 2018-07-27 天津大学 基于cpg的心肺节律同步控制实验平台
CN105631223A (zh) * 2016-01-07 2016-06-01 天津大学 基于cpg的心肺节律同步控制实验平台
CN105653873B (zh) * 2016-01-15 2018-12-11 天津大学 基于fpga的运动障碍非侵入式康复的闭环脑-机-体系统
CN105653873A (zh) * 2016-01-15 2016-06-08 天津大学 基于fpga的运动障碍非侵入式康复的闭环脑-机-体系统
CN106203617A (zh) * 2016-06-27 2016-12-07 哈尔滨工业大学深圳研究生院 一种基于卷积神经网络的加速处理单元及阵列结构
CN106203617B (zh) * 2016-06-27 2018-08-21 哈尔滨工业大学深圳研究生院 一种基于卷积神经网络的加速处理单元及阵列结构
CN106407568A (zh) * 2016-10-26 2017-02-15 天津大学 结合有限元分析的帕金森状态下基底核刺激实时仿真平台
CN107590360B (zh) * 2017-08-21 2019-08-23 天津大学 基于fpga的神经元离子通道动态特性实验平台
CN107590360A (zh) * 2017-08-21 2018-01-16 天津大学 基于fpga的神经元离子通道动态特性实验平台
CN108325078A (zh) * 2018-01-31 2018-07-27 天津大学 可远程控制的多通道dbs装置及评估系统
CN110681050A (zh) * 2019-09-27 2020-01-14 天津大学 一种基于延时反馈控制的噪声深度脑刺激系统
CN110681050B (zh) * 2019-09-27 2023-02-21 天津大学 一种基于延时反馈控制的噪声深度脑刺激系统
CN110859600A (zh) * 2019-12-06 2020-03-06 深圳市德力凯医疗设备股份有限公司 一种生成脑电信号的方法、存储介质及电子设备

Also Published As

Publication number Publication date
CN103691058B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
CN103691058B (zh) 帕金森病基底核-丘脑网络的深度脑刺激fpga实验平台
CN104112066B (zh) 基于fpga的癫痫状态闭环控制实验平台
Yang et al. Real-time neuromorphic system for large-scale conductance-based spiking neural networks
CN104615909B (zh) 基于FPGA的Izhikevich神经元网络同步放电仿真平台
Yang et al. Cost-efficient FPGA implementation of basal ganglia and their Parkinsonian analysis
CN104375878A (zh) 弱电磁刺激调制海马网络节律的fpga仿真系统
CN104689473B (zh) 基于fpga的电刺激下神经元随机响应及共振实验平台
Yang et al. Digital implementations of thalamocortical neuron models and its application in thalamocortical control using FPGA for Parkinson׳ s disease
CN107169184A (zh) 基于FPGA的基底核网络beta节律仿真系统
CN105631222B (zh) 前馈神经网络下基于fpga的stdp突触可塑性实验平台
Yang et al. Efficient digital implementation of a conductance-based globus pallidus neuron and the dynamics analysis
CN106407568A (zh) 结合有限元分析的帕金森状态下基底核刺激实时仿真平台
Rast et al. Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware
CN105845001B (zh) 基于fpga的多电极阵列仿真实验平台
CN105373829B (zh) 一种全连接神经网络结构
CN107590360B (zh) 基于fpga的神经元离子通道动态特性实验平台
D'Angelo et al. The human brain project: high performance computing for brain cells HW/SW simulation and understanding
Wei et al. An embedded multi-core real-time simulation platform of basal ganglia for deep brain stimulation
CN208889147U (zh) 基于fpga的电子突触实验平台
CN105631223B (zh) 基于cpg的心肺节律同步控制实验平台
Chatzipaschalis et al. Parkinson's treatment emulation using asynchronous cellular neural networks
Babel Blue Brain-The Future Generation
CN106842949A (zh) 基于fpga的丘脑皮层放电状态变论域模糊控制系统
CN108711351A (zh) 基于fpga的电子突触实验平台
CN110245389A (zh) 基于FPGA的Spiking前馈网络海马功能仿真系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151028

Termination date: 20201210