CN103675008B - 加权模糊的工业熔融指数软测量仪表及方法 - Google Patents
加权模糊的工业熔融指数软测量仪表及方法 Download PDFInfo
- Publication number
- CN103675008B CN103675008B CN201310433112.1A CN201310433112A CN103675008B CN 103675008 B CN103675008 B CN 103675008B CN 201310433112 A CN201310433112 A CN 201310433112A CN 103675008 B CN103675008 B CN 103675008B
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- fuzzy
- mfrac
- math
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000005259 measurement Methods 0.000 title claims abstract description 40
- 238000012549 training Methods 0.000 claims abstract description 135
- 238000012706 support-vector machine Methods 0.000 claims abstract description 41
- 238000000691 measurement method Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 4
- 239000011159 matrix material Substances 0.000 claims description 50
- 238000004519 manufacturing process Methods 0.000 claims description 24
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 21
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 claims description 21
- 238000007781 pre-processing Methods 0.000 claims description 18
- 230000008569 process Effects 0.000 claims description 17
- 238000005457 optimization Methods 0.000 claims description 15
- 238000006116 polymerization reaction Methods 0.000 claims description 13
- 238000004458 analytical method Methods 0.000 claims description 12
- 238000012843 least square support vector machine Methods 0.000 claims description 9
- 230000005484 gravity Effects 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000005303 weighing Methods 0.000 claims 1
- 230000002708 enhancing effect Effects 0.000 abstract 1
- 230000001629 suppression Effects 0.000 abstract 1
- 239000000155 melt Substances 0.000 description 13
- -1 Polypropylene Polymers 0.000 description 12
- 239000004743 Polypropylene Substances 0.000 description 12
- 229920001155 polypropylene Polymers 0.000 description 12
- 230000000903 blocking effect Effects 0.000 description 5
- 239000003054 catalyst Substances 0.000 description 5
- 238000003556 assay Methods 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 3
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
Landscapes
- Feedback Control In General (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明公开了一种加权模糊的工业熔融指数软测量仪表及方法。该软测量方法通过使用加权最小二乘支持向量机作为模糊方程系统中的局部方程,对训练样本进行模糊化处理以增强系统对噪声的抑制,从而得到更精确的软测量预报值。在本发明中,用于测量易测变量的现场智能仪表、控制站与DCS数据库连接,所述加权模糊的工业熔融指数软测量仪表的输出端与熔融指数软测量值显示仪连接;本发明具有在线测量、抗噪声能力强、模型自动更新、推广性能好的特点。
Description
技术领域
本发明设计软测量仪表及方法,尤其涉及一种加权模糊的工业熔融指数软测量仪表及方法。
背景技术
聚丙烯是一种由丙烯聚合而成的半结晶的热塑性塑料,具有较高的耐冲击性,机械性质强韧,抗多种有机溶剂和酸碱腐蚀,在工业界有广泛的应用,是平常最常见的高分子材料之一。熔融指数(MI)是聚丙烯生产中确定最终产品牌号的重要质量指标之一,它决定了产品的不同用途。熔融指数的精确、及时的测量,对生产和科研,都有非常重要的作用和指导意义。然而,熔融指数的在线分析测量目前仍然很难做到,缺乏熔融指数的在线分析仪是制约聚丙烯产品质量的一个主要问题。MI只能通过人工取样、离线化验分析获得,而且一般每2-4小时分析一次,时间滞后大,难以满足生产实时控制的要求。
近年来关于MI的在线预报的研究工作大部分都集中在人工神经网络上面,取得了不错的效果。但是人工神经网络也有其自身的缺点,例如过拟合、隐含层的节点数目和参数不好确定。其次,工业现场采集到的DCS数据也因为噪音、人工操作误差等带有一定的不确定误差,所以使用确定性强的人工神经网络的预报模型一般推广能力不强。
1965年美国数学家L.Zadeh首先提出了模糊集合的概念。随后模糊逻辑以其更接近于日常人们的问题和语意陈述的方式,开始代替坚持所有事物都可以用二元项表示的经典逻辑。模糊逻辑迄今已经成功应用在了工业的多个领域之中,例如家电、工业控制等领域。2003年,Demirci提出了模糊方程的概念,通过使用模糊隶属度矩阵和和其变形构建一个新的输入矩阵,接着在局部方程中以反模糊方法中的重心法得出解析值作为最后的输出。对于丙烯聚合生产过程中熔融指数的软测量,考虑到工业生产过程中的噪音影响以及操作误差,可以使用模糊逻辑的模糊性能降低误差对整个预报精度的影响。
支持向量机,由Vapnik在1998年引入,由于其良好的推广能力,被广泛应用在模式识别、拟合和分类问题中。由于标准支持向量机对孤立点和噪点敏感,所以后来又提出了加权最小二乘支持向量机。加权最小二乘支持向量机相比于标准支持向量机能够更好地处理带有噪点的样本数据,这里被选作模糊方程中的局部方程。
发明内容
为了克服已有的丙烯聚合生产过程的测量精度不高、对噪声敏感度低、推广性能差的不足,本发明提供一种在线测量、计算速度快、模型自动更新、抗噪声能力强、推广性能好的加权模糊的工业聚丙烯生产熔融指数软测量仪表及方法。
一种加权模糊的工业聚丙烯生产熔融指数软测量仪表,包括用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库以及熔融指数软测量值显示仪,所述现场智能仪表、控制站与DCS数据库连接,所述软测量仪表还包括加权模糊的软测量模型,所述DCS数据库与所述加权模糊的软测量模型的输入端连接,所述加权模糊的软测量模型的输出端与熔融指数软测量值显示仪连接,所述加权模糊的软测量模型包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出。
作为优选的一种方案,所述加权模糊的软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊方程模型。
一种加权模糊的工业聚丙烯生产熔融指数软测量方法,所述软测量方法主要包括以下步骤:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)、对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出。
作为优选的一种方案:所述软测量方法还包括以下步骤:4)、定期将离线化验数据输入到训练集中,更新模糊方程模型。
本发明的技术构思为:对丙烯聚合生产过程的重要质量指标熔融指数进行在线软测量,克服已有的聚丙稀熔融指数测量仪表测量精度不高、对噪声敏感度低、推广性能差的不足,引入模糊方程对模糊方程和加权最小二乘支持向量机局部方程模型。此模型相对于已有的熔融指数软测量模型有以下优点:(1)减小了噪声和人工操作误差对模型预报精度的影响;(2)增强了模型的推广性能,对过拟合进行有效的抑制。
本发明的有益效果主要表现在:1、在线测量;2、模型自动更新;3、抗噪声干扰能力强、4、精度高;5、推广能力强。
附图说明
图1是加权模糊的工业聚丙烯生产熔融指数软测量仪表及方法的基本结构示意图;
图2是加权模糊的软测量模型结构示意图。
具体实施方式
下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
实施例1
参照图1、图2,一种加权模糊的工业聚丙烯生产熔融指数软测量仪表,包括丙烯聚合生产过程1、用于测量易测变量的现场智能仪表2、用于测量操作变量的控制站3、存放数据的DCS数据库4以及熔融指数软测量值显示仪6,所述现场智能仪表2、控制站3与丙烯聚合生产过程1连接,所述现场智能仪表2、控制站3与DCS数据库4连接,所述软测量仪表还包括加权最小二乘支持向量机模糊方程的软测量模型5,所述DCS数据库4与所述加权模糊的软测量模型5的输入端连接,所述加权模糊的软测量模型5的输出端与熔融指数软测量值显示仪6连接,所述加权模糊的软测量模型包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出。
作为优选的一种方案,所述加权模糊的软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊方程系统模型。
根据反应机理以及流程工艺分析,考虑到聚丙烯生产过程中对熔融指数产生影响的各种因素,取实际生产过程中常用的九个操作变量和易测变量作为建模变量,有:三股丙稀进料流率,主催化剂流率,辅催化剂流率,釜内温度、压强、液位,釜内氢气体积浓度。表1列出了软测量模型5输入的9个建模变量,分别为釜内温度(T)、釜内压力(p)、釜内液位(L)、釜内氢气体积浓度(Xv)、3股丙烯进料流率(第一股丙稀进料流率f1,第二股丙稀进料流率f2,第三股丙稀进料流率f3)、2股催化剂进料流率(主催化剂流率f4,辅催化剂流率f5)。反应釜中的聚合反应是反应物料反复混合后参与反应的,因此模型输入变量涉及物料的过程变量采用前若干时刻的平均值。此例中数据采用前一小时的平均值。熔融指数离线化验值作为软测量模型5的输出变量。通过人工取样、离线化验分析获得,每4小时分析采集一次。
现场智能仪表2及控制站3与丙烯聚合生产过程1相连,与DCS数据库4相连;软测量模型5与DCS数据库及软测量值显示仪6相连。现场智能仪表2测量丙烯聚合生产对象的易测变量,将易测变量传输到DCS数据库4;控制站3控制丙烯聚合生产对象的操作变量,将操作变量传输到DCS数据库4。DCS数据库4中记录的变量数据作为加权模糊的软测量模型5的输入,软测量值显示仪6用于显示加权模糊的软测量模型5的输出,即软测量值。
表1:加权模糊的软测量模型所需建模变量
变量符号 | 变量含义 | 变量符号 | 变量含义 |
T | 釜内温度 | f1 | 第一股丙稀进料流率 |
p | 釜内压强 | f2 | 第二股丙稀进料流率 |
L | 釜内液位 | f3 | 第三股丙稀进料流率 |
Xv | 釜内氢气体积浓度 | f4 | 主催化剂流率 |
f5 | 辅催化剂流率 |
加权模糊的软测量模型5,包括以下3个部分:
数据预处理模块7,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊方程模块8,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出。
模型更新模块9,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊方程模型。
实施例2
参照图1、图2,一种加权模糊模型的工业聚丙烯生产熔融指数软测量方法,所述软测量方法主要包括以下步骤:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)、对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出。
作为优选的一种方案:所述软测量方法还包括以下步骤:4)、定期将离线化验数据输入到训练集中,更新模糊方程系统模型。
本实施例的方法具体实现步骤如下:
步骤1:对丙烯聚合生产过程对象1,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入。操作变量和易测变量由DCS数据库4获得。
步骤2:对样本数据进行预处理,由数据预处理模块7完成。
步骤3:基于模型训练样本数据建立模糊方程模型8。输入数据如步骤2所述获得,输出数据由离线化验获得。
步骤4:模型更新模块9定期将离线化验数据输入到训练集中,更新模糊方程模型,加权模糊模型的软测量模型5建立完成。
步骤5:熔融指数软测量值显示仪6显示加权模糊的软测量模型5的输出,完成对工业聚丙烯生产熔融指数软测量的显示。
Claims (2)
1.一种加权模糊的工业熔融指数软测量仪表,包括用于测量易测变量的现场智能仪表、用于测量操作变量的控制站、存放数据的DCS数据库以及熔融指数软测量值显示仪,所述现场智能仪表、控制站与DCS数据库连接,其特征在于:所述软测量仪表还包括加权模糊的软测量模型,所述DCS数据库与所述加权模糊的软测量模型的输入端连接,所述加权模糊的软测量模型的输出端与熔融指数软测量值显示仪连接,所述加权模糊的软测量模型包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本;σx表示训练样本的标准差,σ2 x表示训练样本的方差;
模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化;设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,取作2,‖·‖为范数表达式;
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,取或exp(μik),Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵;
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合;设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵;由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出;K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵;αm,m=1,…,N是对应的拉格朗日乘子的第m个分量;
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出;
所述的加权模糊的软测量模型还包括:模型更新模块,用于模型的在线更新,定期将离线化验数据输入到训练集中,更新模糊方程模型。
2.一种用如权利要求1所述的加权模糊的工业熔融指数软测量仪表实现的软测量方法,其特征在于:所述软测量方法具体实现步骤如下:
1)、对丙烯聚合生产过程对象,根据工艺分析和操作分析,选择操作变量和易测变量作为模型的输入,操作变量和易测变量由DCS数据库获得;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1;该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,N为训练样本数,为训练样本的均值,X为标准化后的训练样本;σx表示训练样本的标准差,σ2 x表示训练样本的方差;
3)、对从数据预处理模块传过来的训练样本,进行模糊化;设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则第i个标准化后的训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,取作2,‖·‖为范数表达式;
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,取或exp(μik),Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵;
加权最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合;设模型训练样本的第i个目标输出为Oi,加权重的支持向量机通过变换把拟合问题等价于如下二次规划问题:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而ωi,i=1,…,N和γ分别是加权最小二乘支持向量机的权重和惩罚因子,是加权最小二乘支持向量机松弛变量的第i个分量ξi标准差的估计,c1为常数,这里取2.5,c2为常数,这里取3,上标T表示矩阵的转置,μik表示第i个标准化后的训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵;
由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出;K<·>是加权最小二乘支持向量机的核函数,这里K<·>取线性核函数;μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵;αm,m=1,…,N是对应的拉格朗日乘子的第m个分量;
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
其中,为模糊群k在训练样本i的输出;
所述软测量方法还包括以下步骤:4)、定期将离线化验数据输入到训练集中,更新模糊方程模型。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433112.1A CN103675008B (zh) | 2013-09-22 | 2013-09-22 | 加权模糊的工业熔融指数软测量仪表及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433112.1A CN103675008B (zh) | 2013-09-22 | 2013-09-22 | 加权模糊的工业熔融指数软测量仪表及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103675008A CN103675008A (zh) | 2014-03-26 |
CN103675008B true CN103675008B (zh) | 2015-08-19 |
Family
ID=50313213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310433112.1A Expired - Fee Related CN103675008B (zh) | 2013-09-22 | 2013-09-22 | 加权模糊的工业熔融指数软测量仪表及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103675008B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106127326B (zh) * | 2016-05-16 | 2020-08-18 | 苏州京高数字科技有限公司 | 一种化工材料加工熔融指数预报方法 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017374A (zh) * | 2006-12-28 | 2007-08-15 | 浙江大学 | 基于盲源信号分析的聚丙烯熔融指数软测量仪表及方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008036968A1 (de) * | 2008-08-08 | 2010-02-11 | Endress + Hauser Gmbh + Co. Kg | Diagnoseverfahren eines Prozessautomatisierungssystem |
-
2013
- 2013-09-22 CN CN201310433112.1A patent/CN103675008B/zh not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101017374A (zh) * | 2006-12-28 | 2007-08-15 | 浙江大学 | 基于盲源信号分析的聚丙烯熔融指数软测量仪表及方法 |
Non-Patent Citations (3)
Title |
---|
基于混合模糊隶属度的模糊双支持向量机研究;丁胜锋等;《计算机应用研究》;20130228;第30卷(第2期);全文 * |
模糊支持向量机中隶属度的确定与分析;张翔等;《中国图象图形学报》;20060831;第11卷(第8期);全文 * |
蒋华琴.智能支持向量机方法及其在丙烯聚合熔融指数预报中的应用.《中国优秀硕士学位论文全文数据库 工程科技I辑》.2012, * |
Also Published As
Publication number | Publication date |
---|---|
CN103675008A (zh) | 2014-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103675011B (zh) | 最优支持向量机的工业熔融指数软测量仪表和方法 | |
CN103675006B (zh) | 最小二乘的工业熔融指数软测量仪表和方法 | |
CN103472865B (zh) | 智能最小二乘的农药废液焚烧炉炉温最佳化系统及方法 | |
Li et al. | Gaussian process regression with heteroscedastic noises—A machine-learning predictive variance approach | |
CN108595892A (zh) | 基于时间差分模型的软测量建模方法 | |
Hu et al. | Weighted kernel fuzzy C-means-based broad learning model for time-series prediction of carbon efficiency in iron ore sintering process | |
CN103674778A (zh) | Rbf粒子群优化的工业熔融指数软测量仪表和方法 | |
Thiruneelakandan et al. | Measurement of oxygen content in water with purity through soft sensor model | |
CN103675005B (zh) | 最优模糊网络的工业熔融指数软测量仪表及方法 | |
CN103675009B (zh) | 模糊方程的工业熔融指数软测量仪表及方法 | |
CN103675010B (zh) | 支持向量机的工业熔融指数软测量仪表及方法 | |
CN103675012B (zh) | Bp粒子群优化的工业熔融指数软测量仪表和方法 | |
CN109507889A (zh) | 卷积神经网络的丙烯聚合生产过程最优在线预报系统 | |
CN103675008B (zh) | 加权模糊的工业熔融指数软测量仪表及方法 | |
Yuan et al. | Abnormal condition identification via OVR-IRBF-NN for the process industry with imprecise data and semantic information | |
CN103472867B (zh) | 支持向量机的农药生产废液焚烧炉炉温最佳化系统及方法 | |
CN103630568B (zh) | Bp网络的工业熔融指数软测量仪表及方法 | |
CN103488089B (zh) | 自适应的农药废液焚烧炉有害物排放达标控制系统及方法 | |
CN103678953A (zh) | 基于贝叶斯组合神经网络的生物发酵产量在线预报方法 | |
CN103472728B (zh) | 机器学习的农药焚烧炉有害物排放达标控制系统及方法 | |
CN103472727B (zh) | 群智加权的农药焚烧炉有害物排放达标控制系统及方法 | |
CN109726474B (zh) | 一种在线校正的丙烯聚合生产过程多尺度预报系统 | |
CN113764048A (zh) | 一种聚丙烯生产质量在线测量系统 | |
CN103675007B (zh) | Rbf网络的工业熔融指数软测量仪表及方法 | |
Tie et al. | A hybrid intelligent soft-sensor model for dynamic particle size estimation in grinding circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150819 Termination date: 20180922 |
|
CF01 | Termination of patent right due to non-payment of annual fee |