CN103673864B - Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element - Google Patents

Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element Download PDF

Info

Publication number
CN103673864B
CN103673864B CN201310609962.2A CN201310609962A CN103673864B CN 103673864 B CN103673864 B CN 103673864B CN 201310609962 A CN201310609962 A CN 201310609962A CN 103673864 B CN103673864 B CN 103673864B
Authority
CN
China
Prior art keywords
silicon
germanium heterojunction
germanium
deep groove
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310609962.2A
Other languages
Chinese (zh)
Other versions
CN103673864A (en
Inventor
雷双瑛
李峄
陈洁
于虹
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201310609962.2A priority Critical patent/CN103673864B/en
Publication of CN103673864A publication Critical patent/CN103673864A/en
Application granted granted Critical
Publication of CN103673864B publication Critical patent/CN103673864B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)

Abstract

本发明公开了一种硅锗异质结纳米线阵列作为敏感元件的应变计,该应变计包括绝缘体上硅圆片,以及覆盖在绝缘体上硅圆片上的氧化层,绝缘体上硅圆片上开有深槽,且深槽的侧壁和底面均设有氧化层,在深槽相对的两个侧壁上分别设有一个生长纳米线的窗口,该窗口上设有锡纳米颗粒催化剂层,锡纳米颗粒催化剂层上生长硅锗异质结纳米线阵列,两个生长纳米线且相对的窗口通过该硅锗异质结纳米线阵列相连接。该应变计采用硅锗异质结纳米线阵列作为敏感元件,提高敏感源灵敏度,同时,还公开该应变计的制备方法,该制备方法简单,且与现有的集成电路工艺具有兼容性。

The invention discloses a strain gauge with a silicon-germanium heterojunction nanowire array as a sensitive element. The strain gauge comprises a silicon-on-insulator wafer and an oxide layer covering the silicon-on-insulator wafer. A deep groove, and the side wall and bottom surface of the deep groove are provided with an oxide layer, and a window for growing nanowires is respectively provided on the two opposite side walls of the deep groove, and a tin nanoparticle catalyst layer is provided on the window. A silicon-germanium heterojunction nanowire array is grown on the particle catalyst layer, and two opposite windows are connected through the silicon-germanium heterojunction nanowire array. The strain gauge adopts a silicon-germanium heterojunction nanowire array as a sensitive element to improve the sensitivity of a sensitive source. At the same time, a preparation method of the strain gauge is disclosed. The preparation method is simple and compatible with the existing integrated circuit technology.

Description

硅锗异质结纳米线阵列作为敏感元件的应变计及制备方法Strain gauge and preparation method of silicon germanium heterojunction nanowire array as sensitive element

技术领域 technical field

本发明涉及一种纳电子机械系统(简称:NEMS)传感器敏感元件,具体来说,涉及一种硅锗异质结纳米线阵列作为敏感元件的应变计及制备方法。 The invention relates to a nano-electro-mechanical system (abbreviation: NEMS) sensor sensitive element, in particular to a strain gauge with a silicon-germanium heterojunction nanowire array as a sensitive element and a preparation method thereof.

背景技术 Background technique

纳米线,尤其是半导体材料的纳米线,由于硅材料、锗材料在当今集成电路领域的重要性,以及制备工艺与成熟的微电子工艺的兼容性备受科学家们的关注。目前,各种材料的纳米线在不同领域都有巨大的应用空间,如发光二极管(LED)、太阳能、传感器等领域。同时,纳机电系统(NEMS)技术的发展大大减小了压力传感器的尺寸,同时由于纳米尺度下的限制效应,作为敏感源的纳米材料拥有在微米尺度下没有的优异性能,从而大大提升了敏感源的灵敏度,为下一代的压力传感器提供了材料支持。而且,随着硅锗异质结纳米线的广泛关注,其优异的性能逐渐被研究发现。 Nanowires, especially nanowires of semiconductor materials, have attracted the attention of scientists due to the importance of silicon and germanium materials in today's integrated circuit field, and the compatibility of preparation processes with mature microelectronics processes. At present, nanowires of various materials have huge application space in different fields, such as light-emitting diodes (LEDs), solar energy, sensors and other fields. At the same time, the development of nanoelectromechanical systems (NEMS) technology has greatly reduced the size of pressure sensors. At the same time, due to the confinement effect at the nanoscale, nanomaterials as sensitive sources have excellent properties that are not available at the micron scale, thus greatly improving the sensitivity. The sensitivity of the source provides material support for the next generation of pressure sensors. Moreover, with the widespread attention of silicon-germanium heterojunction nanowires, their excellent properties have been gradually discovered.

单一组分的半导体纳米材料,虽然也具有比体材料大的压阻效应,但是通常在制作过程中表面被钝化,因而使得引起纳米尺度下巨压阻效应的关键因素——表面态的显著减少,因而大大减小了压阻效应。通常在应用过程中采用多组纳米线同时做为敏感源来提升应变计的灵敏度。硅锗异质结纳米线由于硅锗两种材料的晶格失配,加上量子限制效应往往表现出优异的性能。由于工艺上与当今主流的集成电路工艺的兼容性,采用纳米线做为应变计的的敏感元件比其他光学或者磁动势的材料更易与集成,所以,是一种应变计的理想材料。 Although single-component semiconductor nanomaterials also have a larger piezoresistive effect than bulk materials, the surface is usually passivated during the fabrication process, which makes the key factor that causes the giant piezoresistive effect at the nanometer scale - the significant difference in the surface state. Reduced, thus greatly reducing the piezoresistive effect. Usually in the application process, multiple groups of nanowires are used as the sensitive source at the same time to improve the sensitivity of the strain gauge. Silicon-germanium heterojunction nanowires often exhibit excellent performance due to the lattice mismatch of silicon-germanium and the quantum confinement effect. Due to the compatibility with today's mainstream integrated circuit technology in technology, the use of nanowires as sensitive elements of strain gauges is easier to integrate than other optical or magnetomotive materials, so it is an ideal material for strain gauges.

发明内容 Contents of the invention

技术问题:本发明所要解决的技术问题是:提供一种硅锗异质结纳米线阵列作为敏感元件的应变计,该应变计采用硅锗异质结纳米线阵列作为敏感元件,提高敏感源灵敏度,同时,还提供该应变计的制备方法,该制备方法简单,且与现有的集成电路工艺具有兼容性。 Technical problem: The technical problem to be solved by the present invention is to provide a strain gauge with a silicon-germanium heterojunction nanowire array as a sensitive element, which uses a silicon-germanium heterojunction nanowire array as a sensitive element to improve the sensitivity of the sensitive source and at the same time, a preparation method of the strain gauge is also provided, the preparation method is simple and compatible with the existing integrated circuit technology.

技术方案:为解决上述技术问题,本发明采用如下技术方案: Technical solution: In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions:

一种硅锗异质结纳米线阵列作为敏感元件的应变计,该应变计包括绝缘体上硅圆片,以及覆盖在绝缘体上硅圆片上的氧化层,绝缘体上硅圆片上开有深槽,且深槽的侧壁和底面均设有氧化层,在深槽相对的两个侧壁上分别设有一个生长纳米线的窗口,该窗口上设有锡纳米颗粒催化剂层,锡纳米颗粒催化剂层上生长硅锗异质结纳米线阵列,两个生长纳米线且相对的窗口通过该硅锗异质结纳米线阵列相连接。 A silicon-germanium heterojunction nanowire array as a strain gauge for sensitive elements, the strain gauge includes a silicon-on-insulator wafer and an oxide layer covering the silicon-on-insulator wafer, deep grooves are opened on the silicon-on-insulator wafer, and The side wall and the bottom surface of the deep groove are provided with an oxide layer, and a window for growing nanowires is respectively arranged on the two opposite side walls of the deep groove, a tin nanoparticle catalyst layer is arranged on the window, and a tin nanoparticle catalyst layer is arranged on the window. A silicon-germanium heterojunction nanowire array is grown, and two growing nanowires and opposite windows are connected through the silicon-germanium heterojunction nanowire array.

进一步:所述的硅锗异质结纳米线阵列的阵列密度20-70每平方微米,硅锗异质结纳米线阵列中的硅锗异质结纳米线的半径为20-80纳米。 Further: the array density of the silicon-germanium heterojunction nanowire array is 20-70 per square micron, and the radius of the silicon-germanium heterojunction nanowire in the silicon-germanium heterojunction nanowire array is 20-80 nanometers.

一种上述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,该制备方法包括以下步骤: A preparation method of the above-mentioned silicon-germanium heterojunction nanowire array as a strain gauge of a sensitive element, the preparation method comprises the following steps:

第一步,利用热氧化方法在绝缘体上硅圆片上表面形成保护氧化层,制成带有氧化层的绝缘体上硅圆片; The first step is to form a protective oxide layer on the upper surface of the silicon-on-insulator wafer by thermal oxidation method, and make a silicon-on-insulator wafer with an oxide layer;

第二步,开深槽:通过光刻和反应离子刻蚀方法,在第一步制得的带有氧化层的绝缘体上硅圆片上开深槽; The second step is to open deep grooves: through photolithography and reactive ion etching methods, deep grooves are opened on the silicon-on-insulator wafer with an oxide layer prepared in the first step;

第三步,开出生长纳米线的窗口:利用光刻定位工艺,去除位于深槽两侧壁上的用于生长纳米线的窗口上的氧化层,形成生长纳米线的窗口;深槽两侧壁上,除了窗口以外的其余位置都覆盖有氧化层; The third step is to open the window for growing nanowires: use photolithographic positioning technology to remove the oxide layer on the windows for growing nanowires on the two side walls of the deep groove to form windows for growing nanowires; The walls, except for the windows, are covered with an oxide layer;

第四步,利用电沉积方法,在生长纳米线的窗口表面上得到锡纳米颗粒催化剂层; The fourth step is to use the electrodeposition method to obtain a tin nanoparticle catalyst layer on the surface of the window where the nanowire is grown;

第五步,利用溶液气相法,在锡纳米颗粒催化剂层表面同步生长突变界面的硅锗异质结纳米线,制成硅锗异质结纳米线阵列,使得深槽两侧壁上的生长纳米线的窗口之间通过硅锗异质结纳米线阵列相连。 The fifth step is to use the solution gas phase method to synchronously grow silicon-germanium heterojunction nanowires at the abrupt interface on the surface of the tin nanoparticle catalyst layer to form a silicon-germanium heterojunction nanowire array, so that the growth nanowires on the two side walls of the deep groove The windows of the wires are connected through silicon-germanium heterojunction nanowire arrays.

进一步,所述的第五步中的硅锗异质结纳米线的制备方法包括以下步骤: Further, the preparation method of the silicon-germanium heterojunction nanowire in the fifth step includes the following steps:

步骤501)在450-470℃,热分解笨硅烷产生硅烷气体,做为前导气体,利用前导气体在锡纳米颗粒催化剂层表面生长硅纳米片段; Step 501) thermally decomposing stupid silane at 450-470°C to generate silane gas, which is used as a precursor gas, and using the precursor gas to grow silicon nano-segments on the surface of the tin nanoparticle catalyst layer;

步骤502)将温度降至420-440℃,停止硅纳米片段的生长,同时向烧瓶中注入三苯基锗烷液体,热分解产生锗烷气体,作为锗纳米片段的前导气体,在硅纳米片段上生长锗纳米片段; Step 502) Lower the temperature to 420-440°C to stop the growth of silicon nano-segments, and at the same time, inject triphenylgermane liquid into the flask, and thermally decompose to generate germane gas, which is used as the precursor gas of germanium nano-segments. Growth of germanium nano-segments;

步骤503)周期性重复步骤501)和步骤502),形成突变界面的硅锗异质结纳米线,直至该硅锗异质结纳米线连接深槽两侧壁上的生长纳米线的窗口。 Step 503) Step 501) and Step 502) are periodically repeated to form silicon-germanium heterojunction nanowires with abrupt interface until the silicon-germanium heterojunction nanowires are connected to the windows for growing nanowires on the two side walls of the deep groove.

进一步,所述的第二步包括以下过程:步骤201)采用反应离子刻蚀工艺,在绝缘体上硅圆片(1)上刻蚀形成深槽,使得绝缘体上硅圆片(1)中的硅层剩300-500纳米厚,步骤202)利用热氧化工艺,使整个绝缘体上硅圆片(1)覆盖一层氧化层,步骤203)利用反应离子刻蚀工艺,采用氢氟酸溶液,去除深槽底部的氧化层,步骤204)对深槽底部进行一次反应离子刻蚀,去除位于深槽下方的绝缘体上硅圆片(1)硅层中的部分硅,使得深槽底部的两侧留出厚度为200-400纳米的硅,步骤205)利用热氧化工艺,在深槽的底部和侧壁上,形成30-60纳米厚度的氧化层。 Further, the second step includes the following process: Step 201) using a reactive ion etching process to etch and form deep grooves on the silicon-on-insulator wafer (1), so that the silicon in the silicon-on-insulator wafer (1) The remaining layer is 300-500 nanometers thick, step 202) using thermal oxidation process to cover the entire silicon wafer (1) on the insulator with an oxide layer, step 203) using reactive ion etching process, using hydrofluoric acid solution to remove deep Oxide layer at the bottom of the groove, step 204) Reactive ion etching is performed on the bottom of the deep groove to remove part of the silicon in the silicon layer of the silicon-on-insulator wafer (1) located below the deep groove, so that the two sides of the bottom of the deep groove are left Silicon with a thickness of 200-400 nanometers, step 205) Forming an oxide layer with a thickness of 30-60 nanometers on the bottom and sidewalls of the deep trench by using a thermal oxidation process.

进一步,所述的第四步中,将绝缘体上硅圆片浸没在由混合水溶液和表面活性剂溶液按照体积比为1:6-15组成的微乳液中,其中,混合水溶液由摩尔浓度为0.01-0.05mol/L的锡盐溶液和摩尔浓度为0.2-0.4mol/L的氢氟酸溶液组成,表面活性剂溶液是由顺丁烯二酸二异辛酯磺酸盐和正庚烷溶液混合组成,形成摩尔浓度为0.2-0.4mol/L的表面活性剂溶液;在室温下,对微乳液超声处理20-40分钟,形成半径为5-10纳米的锡纳米颗粒催化剂层,其密度500-1200每平方微米。 Further, in the fourth step, the silicon-on-insulator wafer is immersed in a microemulsion composed of a mixed aqueous solution and a surfactant solution at a volume ratio of 1:6-15, wherein the mixed aqueous solution has a molar concentration of 0.01 -0.05mol/L tin salt solution and hydrofluoric acid solution with a molar concentration of 0.2-0.4mol/L, and the surfactant solution is composed of diisooctyl maleate sulfonate and n-heptane solution , to form a surfactant solution with a molar concentration of 0.2-0.4mol/L; at room temperature, ultrasonically treat the microemulsion for 20-40 minutes to form a tin nanoparticle catalyst layer with a radius of 5-10 nm and a density of 500-1200 per square micron.

有益效果:与现有技术相比,本发明具有如下有益效果: Beneficial effects: compared with the prior art, the present invention has the following beneficial effects:

1.灵敏度和抗噪声能力提高。在NEMS技术领域,使用光刻、反应离子刻蚀技术可以在硅SOI圆片上开出深槽,并在侧墙上定位纳米线生长窗口,然后使用电沉积方法,沉积高密度的锡纳米颗粒,使用SVG方法生长硅锗异质结纳米线。由于在生长硅锗片段的时采用了不同的温度,这样得到的纳米线,硅锗界面突变成都高,较硅纳米线、硅/硅锗异质结纳米结构压阻系数大,同时,得到的纳米线阵列密度高。这有效的提高了应变计的灵敏度,抗噪声能力,并且减少了电阻。 1. The sensitivity and anti-noise ability are improved. In the field of NEMS technology, photolithography and reactive ion etching technology can be used to open deep grooves on silicon SOI wafers, and position nanowire growth windows on the side walls, and then use electrodeposition methods to deposit high-density tin nanoparticles. Silicon-germanium heterojunction nanowires were grown using the SVG method. Due to the different temperatures used when growing the silicon germanium segment, the nanowires obtained in this way have high silicon germanium interface mutations, which are larger than silicon nanowires and silicon/silicon germanium heterojunction nanostructure piezoresistive coefficients. At the same time, the obtained The nanowire array has a high density. This effectively improves the sensitivity of the strain gauge, the ability to resist noise, and reduces the resistance.

2.本发明中生长硅锗异质结纳米的衬底采用(110)SOI圆片,该圆片拥有高掺杂的P型Si(110)器件层,电阻率小于0.1Ω*cm。利用光刻和后续的反应离子刻蚀开槽,两侧墙间的取向为<111>方向,并且深槽的宽度能很好的控制纳米线的长度。侧墙间的宽度即为纳米线的长度,能很好的保证纳米线阵列的一致性。 2. The substrate for growing silicon-germanium heterojunction nanometers in the present invention is a (110) SOI wafer, which has a highly doped P-type Si (110) device layer with a resistivity of less than 0.1Ω*cm. Using photolithography and subsequent reactive ion etching to open grooves, the orientation between the walls on both sides is the <111> direction, and the width of the deep groove can well control the length of the nanowire. The width between the sidewalls is the length of the nanowires, which can well ensure the consistency of the nanowire array.

3.成本低廉。本发明中采用锡(Sn)做为催化剂,成本低廉,而且能够同时高效的满足生长硅和锗纳米片段的要求。更为关键的是,在反应过程中形成的合金中硅、锗元素的比例小于1%。 3. Low cost. In the present invention, tin (Sn) is used as the catalyst, the cost is low, and the requirements for growing silicon and germanium nano-segments can be efficiently met at the same time. More critically, the proportion of silicon and germanium in the alloy formed during the reaction is less than 1%.

4.本发明使用光刻定位开出纳米线的生长区域,并采用电沉积金属催化剂,保证了催化剂只在所规定的区域沉积,而不会出现在氧化层区域。 4. The present invention uses photolithography to position and open the growth area of nanowires, and uses electrodeposited metal catalyst to ensure that the catalyst is only deposited in the specified area and does not appear in the oxide layer area.

附图说明 Description of drawings

图1为本发明的应变计的结构示意图。 Fig. 1 is a schematic structural view of the strain gauge of the present invention.

图2为本发明中窗口和硅锗异质结纳米线阵列的位置关系示意图。 Fig. 2 is a schematic diagram of the positional relationship between the window and the SiGe heterojunction nanowire array in the present invention.

图3为本发明中硅锗异质结纳米线阵列的生长示意图。 Fig. 3 is a schematic diagram of the growth of the SiGe heterojunction nanowire array in the present invention.

图4为本发明制备方法中第二步步骤201)的结构示意图。 Fig. 4 is a schematic structural diagram of the second step (step 201) in the preparation method of the present invention.

图5为本发明制备方法中第二步步骤202)的结构示意图。 Fig. 5 is a schematic structural diagram of the second step (step 202) in the preparation method of the present invention.

图6为本发明制备方法中第二步步骤203)的结构示意图。 Fig. 6 is a schematic structural diagram of the second step (step 203) in the preparation method of the present invention.

图7为本发明制备方法中第二步步骤204)的结构示意图。 Fig. 7 is a schematic structural diagram of the second step (step 204) in the preparation method of the present invention.

图8为本发明制备方法中第二步步骤205)的结构示意图。 Fig. 8 is a schematic structural diagram of the second step (step 205) in the preparation method of the present invention.

图中有:绝缘体上硅圆片1、窗口2、第一侧墙3、第二侧墙4、硅锗异质结纳米线阵列5、锡纳米颗粒催化剂层6、硅纳米片段7、锗纳米片段8、氧化层9。 In the figure are: silicon-on-insulator wafer 1, window 2, first side wall 3, second side wall 4, silicon-germanium heterojunction nanowire array 5, tin nanoparticle catalyst layer 6, silicon nano-segment 7, germanium nano Segment 8, oxide layer 9.

具体实施方式 detailed description

下面结合附图,对本发明的技术方案进行详细的说明。 The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings.

如图1和图2所示,本发明的硅锗异质结纳米线阵列作为敏感元件的应变计,包括绝缘体上硅圆片1(绝缘体上硅,SilicononInsulator,文中简称:SOI),以及覆盖在绝缘体上硅圆片1上的氧化层9,绝缘体上硅圆片1上开有深槽,且深槽的侧壁和底面均设有氧化层,在深槽相对的两个侧壁上分别设有一个生长纳米线的窗口2,该窗口2上设有锡纳米颗粒催化剂层6,锡纳米颗粒催化剂层6上生长硅锗异质结纳米线阵列5,两个生长纳米线且相对的窗口2通过该硅锗异质结纳米线阵列5相连接。 As shown in Figure 1 and Figure 2, the silicon-germanium heterojunction nanowire array of the present invention is used as a strain gauge for sensitive elements, including a silicon-on-insulator wafer 1 (silicon on insulator, Silicon on Insulator, abbreviated as: SOI in the text), and covered in The oxide layer 9 on the silicon-on-insulator wafer 1 is provided with deep grooves on the silicon-on-insulator wafer 1, and the side walls and bottom surfaces of the deep grooves are provided with oxide layers. There is a window 2 for growing nanowires, the window 2 is provided with a tin nanoparticle catalyst layer 6, a silicon germanium heterojunction nanowire array 5 is grown on the tin nanoparticle catalyst layer 6, two opposite windows 2 for growing nanowires The silicon germanium heterojunction nanowire array 5 is connected.

进一步:所述的硅锗异质结纳米线阵列5的阵列密度20-70每平方微米,硅锗异质结纳米线阵列5中的硅锗异质结纳米线的半径为20-80纳米。 Further: the array density of the silicon-germanium heterojunction nanowire array 5 is 20-70 per square micron, and the radius of the silicon-germanium heterojunction nanowire in the silicon-germanium heterojunction nanowire array 5 is 20-80 nanometers.

上述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,包括以下步骤: The above-mentioned silicon germanium heterojunction nanowire array is used as a method for preparing a strain gauge of a sensitive element, comprising the following steps:

第一步,利用热氧化方法在绝缘体上硅圆片1上表面形成保护氧化层,制成带有氧化层的绝缘体上硅圆片; In the first step, a protective oxide layer is formed on the upper surface of the silicon-on-insulator wafer 1 by a thermal oxidation method, and a silicon-on-insulator wafer with an oxide layer is manufactured;

第二步,开深槽:通过光刻和反应离子刻蚀方法,在第一步制得的带有氧化层的绝缘体上硅圆片上开深槽。 The second step is to open deep grooves: through photolithography and reactive ion etching methods, deep grooves are opened on the silicon-on-insulator wafer with an oxide layer prepared in the first step.

第二步具体包括以下过程:步骤201),如图4所示,采用反应离子刻蚀工艺,在绝缘体上硅圆片1上刻蚀形成深槽,使得绝缘体上硅圆片1中的硅层剩300-500纳米厚;步骤202),如图5所示,利用热氧化工艺,使整个绝缘体上硅圆片1覆盖一层氧化层;步骤203),如图6所示,利用反应离子刻蚀工艺,采用氢氟酸溶液,去除深槽底部的氧化层;步骤204),如图7所示,对深槽底部进行一次反应离子刻蚀,去除位于深槽下方的绝缘体上硅圆片1硅层中的部分硅,使得深槽底部的两侧留出厚度为200-400纳米的硅;步骤205),如图8所示,利用热氧化工艺,在深槽的底部和侧壁上,形成30-60纳米厚度的氧化层。 The second step specifically includes the following process: Step 201), as shown in FIG. 4, adopts reactive ion etching process to etch and form deep grooves on the silicon-on-insulator wafer 1, so that the silicon layer in the silicon-on-insulator wafer 1 The remaining thickness is 300-500 nanometers; step 202), as shown in Figure 5, using a thermal oxidation process to cover the entire silicon-on-insulator wafer 1 with an oxide layer; step 203), as shown in Figure 6, using reactive ion etching Etching process, using hydrofluoric acid solution to remove the oxide layer at the bottom of the deep groove; step 204), as shown in Figure 7, perform a reactive ion etching on the bottom of the deep groove to remove the silicon-on-insulator wafer 1 located below the deep groove part of the silicon in the silicon layer, leaving silicon with a thickness of 200-400 nanometers on both sides of the bottom of the deep groove; step 205), as shown in Figure 8, using a thermal oxidation process, on the bottom and side walls of the deep groove, An oxide layer with a thickness of 30-60 nanometers is formed.

第三步,开出生长纳米线的窗口2:利用光刻定位工艺,去除位于深槽两侧壁上的用于生长纳米线的窗口上的氧化层,形成生长纳米线的窗口2;深槽两侧壁上,除了窗口2以外的其余位置都覆盖有氧化层。 The third step is to open the window 2 for growing nanowires: use the photolithographic positioning process to remove the oxide layer on the window for growing nanowires on the two side walls of the deep groove to form the window 2 for growing nanowires; deep groove On both side walls, other positions except the window 2 are covered with an oxide layer.

第四步,利用电沉积方法,在生长纳米线的窗口2表面上得到锡纳米颗粒催化剂层6。 The fourth step is to use the electrodeposition method to obtain a tin nanoparticle catalyst layer 6 on the surface of the window 2 where the nanowires grow.

上述第四步中,将绝缘体上硅圆片1浸没在由混合水溶液和表面活性剂溶液按照体积比为1:6-15组成的微乳液中,其中,混合水溶液由摩尔浓度为0.01-0.05mol/L的锡盐溶液和摩尔浓度为0.2-0.4mol/L的氢氟酸溶液组成,表面活性剂溶液是由顺丁烯二酸二异辛酯磺酸盐和正庚烷溶液混合组成,形成摩尔浓度为0.2-0.4mol/L的表面活性剂溶液;在室温下,对微乳液超声处理20-40分钟,形成半径为5-10纳米的锡纳米颗粒催化剂层,其密度500-1200每平方微米。 In the above fourth step, the silicon-on-insulator wafer 1 is immersed in a microemulsion composed of a mixed aqueous solution and a surfactant solution at a volume ratio of 1:6-15, wherein the mixed aqueous solution has a molar concentration of 0.01-0.05mol /L tin salt solution and hydrofluoric acid solution with a molar concentration of 0.2-0.4mol/L, the surfactant solution is composed of diisooctyl maleate sulfonate and n-heptane solution to form a molar A surfactant solution with a concentration of 0.2-0.4mol/L; at room temperature, ultrasonically treat the microemulsion for 20-40 minutes to form a tin nanoparticle catalyst layer with a radius of 5-10 nanometers and a density of 500-1200 per square micron .

第五步,利用溶液气相法,在锡纳米颗粒催化剂层6表面同步生长突变界面的硅锗异质结纳米线,制成硅锗异质结纳米线阵列5,使得深槽两侧壁上的生长纳米线的窗口2之间通过硅锗异质结纳米线阵列5相连。 The fifth step is to use the solution gas phase method to synchronously grow silicon-germanium heterojunction nanowires at the abrupt interface on the surface of the tin nanoparticle catalyst layer 6 to form a silicon-germanium heterojunction nanowire array 5, so that the two sides of the deep groove The windows 2 for growing nanowires are connected through silicon germanium heterojunction nanowire arrays 5 .

如图3所示,上述第五步中,硅锗异质结纳米线的制备方法包括以下步骤: As shown in Figure 3, in the fifth step above, the preparation method of silicon-germanium heterojunction nanowires includes the following steps:

步骤501)在450-470℃,热分解笨硅烷(PS)产生硅烷气体,做为前导气体,利用前导气体在锡纳米颗粒催化剂层6表面生长硅纳米片段7; Step 501) Thermally decomposing silane (PS) at 450-470°C to generate silane gas as a precursor gas, and using the precursor gas to grow silicon nano-segments 7 on the surface of the tin nanoparticle catalyst layer 6;

步骤502)将温度降至420-440℃,停止硅纳米片段7的生长,同时向烧瓶中注入三苯基锗烷液体,热分解产生锗烷气体,作为锗纳米片段8的前导气体,在硅纳米片段7上生长锗纳米片段8; Step 502) Lower the temperature to 420-440°C, stop the growth of silicon nano-segments 7, and inject triphenylgermane liquid into the flask at the same time, thermally decompose to generate germane gas, which is used as the precursor gas of germanium nano-segments 8, growing germanium nano-segments 8 on the nano-segments 7;

步骤503)周期性重复步骤501)和步骤502),形成突变界面的硅锗异质结纳米线,直至该硅锗异质结纳米线连接深槽两侧壁上的生长纳米线的窗口2。 Step 503) Step 501) and Step 502) are periodically repeated to form silicon-germanium heterojunction nanowires with abrupt interface until the silicon-germanium heterojunction nanowires are connected to the windows 2 for growing nanowires on the two side walls of the deep groove.

实施例 Example

利用上述制备方法制备应变计: Utilize above-mentioned preparation method to prepare strain gauge:

1)准备SOI衬底:选用P型重掺杂器件层SOI衬底,其中器件层厚度为1.6微米,电阻率小于0.1Ω*cm,氧化埋层为2.0微米; 1) Prepare SOI substrate: select P-type heavily doped device layer SOI substrate, in which the thickness of the device layer is 1.6 microns, the resistivity is less than 0.1Ω*cm, and the buried oxide layer is 2.0 microns;

2)热氧化:在SOI衬底表面获得厚度为600纳米的氧化层; 2) Thermal oxidation: obtain an oxide layer with a thickness of 600 nm on the surface of the SOI substrate;

3)光刻:去除第一侧墙3和第二侧墙4之间得到氧化层; 3) Photolithography: remove the oxide layer between the first sidewall 3 and the second sidewall 4;

4)反应离子刻蚀:在SOI衬底上开出深槽,此时,器件层还剩400纳米厚;SOI衬底上的第一侧墙3、第二侧墙4被深槽分隔开; 4) Reactive ion etching: deep grooves are opened on the SOI substrate. At this time, the device layer is still 400 nanometers thick; the first sidewall 3 and the second sidewall 4 on the SOI substrate are separated by deep grooves ;

5)第二次热氧化:获得厚度为200纳米的氧化层,器件层还剩300纳米厚; 5) The second thermal oxidation: an oxide layer with a thickness of 200 nanometers is obtained, and the thickness of the device layer is 300 nanometers;

6)光刻:去除残留器件层上氧化层; 6) Photolithography: remove the oxide layer on the residual device layer;

7)第二次反应离子刻蚀:完全刻蚀掉两侧墙间的器件层,此时,侧墙下方300纳米厚区域未覆盖氧化层; 7) The second reactive ion etching: the device layer between the two side walls is completely etched away. At this time, the 300 nm thick area under the side wall is not covered with the oxide layer;

8)第三次热氧化:在侧墙下方裸露硅局域形成50纳米薄氧化层; 8) The third thermal oxidation: a 50nm thin oxide layer is formed locally on the exposed silicon area under the sidewall;

9)光刻:利用氢氟酸溶液去除生长纳米线区域窗口的薄氧化层; 9) Photolithography: use hydrofluoric acid solution to remove the thin oxide layer of the window of the growing nanowire region;

10)电沉积锡纳米颗粒:沉积过程中,将衬底浸没在含有锡盐溶液、氢氟酸溶液和表面活性剂的微乳液中,室温下超声处理30分钟,形成半径为5-10纳米的颗粒; 10) Electrodeposition of tin nanoparticles: During the deposition process, the substrate is immersed in a microemulsion containing tin salt solution, hydrofluoric acid solution and surfactant, and ultrasonically treated for 30 minutes at room temperature to form particles with a radius of 5-10 nm. particles;

11)溶液气相法生长硅锗异质结纳米线阵列:首先,生长硅片段7,温度为460℃,热分解苯硅烷产生前导气体,5-20分钟,然后将温度降至430℃,接着注入三苯硅烷,生长锗片段,5-20分钟,随后周期性生长硅片段和锗片段,直至纳米线与对面侧墙组装成功。 11) Growth of silicon-germanium heterojunction nanowire arrays by solution vapor phase method: first, grow silicon segment 7 at a temperature of 460°C, thermally decompose phenylsilane to generate a precursor gas for 5-20 minutes, then lower the temperature to 430°C, and then Inject triphenylsilane to grow germanium segments for 5-20 minutes, and then periodically grow silicon segments and germanium segments until the nanowires are successfully assembled with the opposite sidewall.

上述技术方案中,制备所述硅锗异质结纳米线阵列采用光刻辅助定位生长区域,并利高效的溶液气相生长(SVG)方法:在SOI硅圆片上刻蚀形成特定尺寸的深槽,并在生长硅锗纳米线阵列的区域开出没有覆盖氧化层的硅区域。在第三步的去氧化中,用到缓冲氢氟酸(BHF)溶液,并且良好控制刻蚀时间,使得去掉生长纳米线区域的氧化层,其他区域仍有氧化层的覆盖。利用电沉积方法镀锡纳米颗粒,用作生长纳米线催化剂,沉积过程中将衬底浸没在含有锡盐溶液、氢氟酸溶液和表面活性剂的微乳液中,室温下超声处理30分钟,形成半径为5-10纳米的颗粒。在第五步中,生长硅纳米线片段的温度在460℃,较常规的气液固生长(VLS)方法中利用金作为催化剂生长纳米线的温度低300℃,前导气体硅烷是在生长装置中热分解苯硅烷(PS)产生的。随着硅片段的生长,将温度降至430℃以停止硅纳米片段的生长,防止残余的硅烷继续发生反应来保证锗纳米片段的纯度,以此获得很好的突变界面。同时向装置中注入三苯锗烷(英文全称:triphenylgermane,文中简称:TPG),在430℃下TPG分解产生生长锗纳米线的锗烷。在重复以上过程,直至纳米线生长至对面的侧墙。 In the above technical solution, the preparation of the silicon germanium heterojunction nanowire array uses photolithography to assist in positioning the growth region, and utilizes the efficient solution vapor phase growth (SVG) method: etching a deep groove of a specific size on the SOI silicon wafer, And opening a silicon region not covered with an oxide layer in the region where the silicon germanium nanowire array is grown. In the third step of deoxidation, a buffered hydrofluoric acid (BHF) solution is used, and the etching time is well controlled, so that the oxide layer in the growing nanowire area is removed, and other areas are still covered by the oxide layer. Electrodeposition is used to plate tin nanoparticles as a catalyst for growing nanowires. During the deposition process, the substrate is immersed in a microemulsion containing tin salt solution, hydrofluoric acid solution and surfactant, and is ultrasonically treated for 30 minutes at room temperature to form Particles with a radius of 5-10 nm. In the fifth step, the temperature for growing silicon nanowire segments is 460°C, which is 300°C lower than the temperature for growing nanowires using gold as a catalyst in the conventional vapor-liquid-solid growth (VLS) method, and the precursor gas silane is in the growth device Produced by thermal decomposition of phenylsilane (PS). With the growth of the silicon fragments, the temperature was lowered to 430°C to stop the growth of the silicon nano-segments and prevent the residual silane from continuing to react to ensure the purity of the germanium nano-segments, so as to obtain a good abrupt interface. At the same time, triphenylgermane (English full name: triphenylgermane, abbreviation: TPG) is injected into the device, and TPG decomposes at 430°C to produce germane for growing germanium nanowires. The above process is repeated until the nanowire grows to the opposite side wall.

本发明的基于硅锗异质结纳米线阵列的应变计包括SOI衬底、硅锗异质结纳米线阵列两个部分。SOI衬底上深槽下方存在生长纳米线阵列区域,纳米线阵列为硅锗异质结纳米线阵列。通过自组装两个部分形成可靠连接。该应变计由硅锗纳米线阵列感受器件所受应力的变化,经由电极输出反映为电学参数的变化,从而实现高灵敏度的应变计。本发明采用的突变界面的硅锗异质结纳米线结构,该结构的压阻系数比硅材料的压阻系数要大,进而灵敏度得到了提升。在加上阵列结构提高了对应力变化的感应能力。由于硅锗异质结纳米线阵列是并联的,从而提高了整体电学参量变化的大小,进而使得噪声的干扰变弱。 The strain gauge based on the silicon-germanium heterojunction nanowire array of the present invention comprises two parts: an SOI substrate and a silicon-germanium heterojunction nanowire array. There is a growing nanowire array area under the deep groove on the SOI substrate, and the nanowire array is a silicon germanium heterojunction nanowire array. A reliable connection is formed by self-assembly of the two parts. In the strain gauge, the silicon germanium nanowire array senses the change of the stress on the device, and the electrode output is reflected as the change of the electrical parameter, so as to realize the strain gauge with high sensitivity. The invention adopts the silicon-germanium heterojunction nanowire structure with abrupt interface, and the piezoresistive coefficient of the structure is larger than that of the silicon material, thereby improving the sensitivity. Adding the array structure improves the sensitivity to stress changes. Since the silicon-germanium heterojunction nanowire arrays are connected in parallel, the magnitude of the overall electrical parameter change is increased, thereby weakening the interference of noise.

本发明利用硅锗异质结纳米线阵列结构作为敏感元件的应变计,以此获得高压阻系数、高抗噪声能力、高灵敏度。 The invention uses the silicon-germanium heterojunction nanowire array structure as the strain gauge of the sensitive element, so as to obtain high resistance coefficient, high anti-noise ability and high sensitivity.

Claims (6)

1.一种硅锗异质结纳米线阵列作为敏感元件的应变计,其特征在于,该应变计包括绝缘体上硅圆片(1),以及覆盖在绝缘体上硅圆片(1)上的氧化层(9),绝缘体上硅圆片(1)上开有深槽,且深槽的侧壁和底面均设有氧化层,在深槽相对的两个侧壁上分别设有一个生长纳米线的窗口(2),该窗口(2)上设有锡纳米颗粒催化剂层(6),锡纳米颗粒催化剂层(6)上生长硅锗异质结纳米线阵列(5),两个生长纳米线且相对的窗口(2)通过该硅锗异质结纳米线阵列(5)相连接。1. A silicon-germanium heterojunction nanowire array is used as a strain gauge of a sensitive element, characterized in that the strain gauge comprises a silicon-on-insulator wafer (1), and an oxide film covered on the silicon-on-insulator wafer (1) layer (9), a deep groove is opened on the silicon-on-insulator wafer (1), and the sidewall and bottom surface of the deep groove are provided with an oxide layer, and a growth nanowire is respectively arranged on the two opposite sidewalls of the deep groove. window (2), the window (2) is provided with a tin nanoparticle catalyst layer (6), and a silicon germanium heterojunction nanowire array (5) is grown on the tin nanoparticle catalyst layer (6), two growth nanowires And the opposite windows (2) are connected through the silicon-germanium heterojunction nanowire array (5). 2.根据权利要求1所述的硅锗异质结纳米线阵列作为敏感元件的应变计,其特征在于:所述的硅锗异质结纳米线阵列(5)的阵列密度为20-70每平方微米,硅锗异质结纳米线阵列(5)中的硅锗异质结纳米线的半径为20-80纳米。2. The silicon-germanium heterojunction nanowire array according to claim 1 is used as the strain gauge of the sensitive element, characterized in that: the array density of the silicon-germanium heterojunction nanowire array (5) is 20-70 per The square micron, the radius of the silicon germanium heterojunction nanowires in the silicon germanium heterojunction nanowire array (5) is 20-80 nanometers. 3.一种权利要求1所述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,其特征在于,该制备方法包括以下步骤:3. a preparation method of the silicon germanium heterojunction nanowire array as claimed in claim 1 as the strain gauge of the sensitive element, it is characterized in that, the preparation method comprises the following steps: 第一步,利用热氧化方法在绝缘体上硅圆片(1)上表面形成保护氧化层,制成带有氧化层的绝缘体上硅圆片;In the first step, a protective oxide layer is formed on the upper surface of the silicon-on-insulator wafer (1) by a thermal oxidation method, and a silicon-on-insulator wafer with an oxide layer is manufactured; 第二步,开深槽:通过光刻和反应离子刻蚀方法,在第一步制得的带有氧化层的绝缘体上硅圆片上开深槽;The second step is to open deep grooves: through photolithography and reactive ion etching methods, deep grooves are opened on the silicon-on-insulator wafer with an oxide layer prepared in the first step; 第三步,开出生长纳米线的窗口(2):利用光刻定位工艺,去除位于深槽两侧壁上的用于生长纳米线的窗口上的氧化层,形成生长纳米线的窗口(2);深槽两侧壁上,除了窗口(2)以外的其余位置都覆盖有氧化层;The third step is to open a window for growing nanowires (2): use a photolithography positioning process to remove the oxide layer on the windows for growing nanowires on the two side walls of the deep groove to form a window for growing nanowires (2). ); on the two side walls of the deep groove, the rest of the positions except the window (2) are covered with an oxide layer; 第四步,利用电沉积方法,在生长纳米线的窗口(2)表面上得到锡纳米颗粒催化剂层(6);The fourth step is to obtain a tin nanoparticle catalyst layer (6) on the surface of the window (2) where the nanowire grows by using an electrodeposition method; 第五步,利用溶液气相法,在锡纳米颗粒催化剂层(6)表面同步生长突变界面的硅锗异质结纳米线,制成硅锗异质结纳米线阵列(5),使得深槽两侧壁上的生长纳米线的窗口(2)之间通过硅锗异质结纳米线阵列(5)相连。The fifth step is to use the solution gas phase method to synchronously grow silicon-germanium heterojunction nanowires at the abrupt interface on the surface of the tin nanoparticle catalyst layer (6) to form a silicon-germanium heterojunction nanowire array (5), so that the two deep grooves The windows (2) for growing nanowires on the side walls are connected through silicon germanium heterojunction nanowire arrays (5). 4.根据权利要求3所述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,其特征在于,所述的第五步中的硅锗异质结纳米线的制备方法包括以下步骤:4. the silicon germanium heterojunction nanowire array according to claim 3 is as the preparation method of the strain gauge of sensitive element, it is characterized in that, the preparation method of the silicon germanium heterojunction nanowire in the described 5th step comprises The following steps: 步骤501)在450-470℃,热分解笨硅烷产生硅烷气体,做为前导气体,利用前导气体在锡纳米颗粒催化剂层(6)表面生长硅纳米片段(7);Step 501) Thermally decomposing stupid silane at 450-470°C to generate silane gas, which is used as a precursor gas, and using the precursor gas to grow silicon nano-segments (7) on the surface of the tin nanoparticle catalyst layer (6); 步骤502)将温度降至420-440℃,停止硅纳米片段(7)的生长,同时向烧瓶中注入三苯基锗烷液体,热分解产生锗烷气体,作为锗纳米片段(8)的前导气体,在硅纳米片段(7)上生长锗纳米片段(8);Step 502) Lower the temperature to 420-440° C., stop the growth of the silicon nano-segment (7), and inject triphenylgermane liquid into the flask at the same time, thermally decompose to generate germane gas as the precursor of the germanium nano-segment (8) Gas, growing germanium nano-segment (8) on silicon nano-segment (7); 步骤503)周期性重复步骤501)和步骤502),形成突变界面的硅锗异质结纳米线,直至该硅锗异质结纳米线连接深槽两侧壁上的生长纳米线的窗口(2)。Step 503) Step 501) and Step 502) are periodically repeated to form silicon-germanium heterojunction nanowires with abrupt interface until the silicon-germanium heterojunction nanowires are connected to the windows (2 ). 5.根据权利要求3所述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,其特征在于,所述的第二步包括以下过程:步骤201)采用反应离子刻蚀工艺,在绝缘体上硅圆片(1)上刻蚀形成深槽,使得绝缘体上硅圆片(1)中的硅层剩300-500纳米厚,步骤202)利用热氧化工艺,使整个绝缘体上硅圆片(1)覆盖一层氧化层,步骤203)利用反应离子刻蚀工艺,采用氢氟酸溶液,去除深槽底部的氧化层,步骤204)对深槽底部进行一次反应离子刻蚀,去除位于深槽下方的绝缘体上硅圆片(1)硅层中的部分硅,使得深槽底部的两侧留出厚度为200-400纳米的硅,步骤205)利用热氧化工艺,在深槽的底部和侧壁上,形成30-60纳米厚度的氧化层。5. the silicon-germanium heterojunction nanowire array according to claim 3 is as the preparation method of the strain gauge of sensitive element, it is characterized in that, described second step comprises the following process: step 201) adopts reactive ion etching process , etch and form a deep groove on the silicon-on-insulator wafer (1), so that the silicon layer in the silicon-on-insulator wafer (1) is 300-500 nanometers thick, and step 202) utilizes a thermal oxidation process to make the entire silicon-on-insulator The wafer (1) is covered with an oxide layer, step 203) utilizes reactive ion etching process, adopts hydrofluoric acid solution, removes the oxide layer at the bottom of the deep groove, step 204) performs a reactive ion etching on the bottom of the deep groove to remove Part of the silicon in the silicon-on-insulator wafer (1) silicon layer located below the deep groove, so that the two sides of the bottom of the deep groove leave silicon with a thickness of 200-400 nanometers. Step 205) utilizes a thermal oxidation process. On the bottom and sidewalls, an oxide layer with a thickness of 30-60 nanometers is formed. 6.根据权利要求3、4或5所述的硅锗异质结纳米线阵列作为敏感元件的应变计的制备方法,其特征在于,所述的第四步中,将绝缘体上硅圆片(1)浸没在由混合水溶液和表面活性剂溶液按照体积比为1:6-15组成的微乳液中,其中,混合水溶液由摩尔浓度为0.01-0.05mol/L的锡盐溶液和摩尔浓度为0.2-0.4mol/L的氢氟酸溶液组成,表面活性剂溶液是由顺丁烯二酸二异辛酯磺酸盐和正庚烷溶液混合组成,形成摩尔浓度为0.2-0.4mol/L的表面活性剂溶液;在室温下,对微乳液超声处理20-40分钟,形成半径为5-10纳米的锡纳米颗粒催化剂层,其密度500-1200每平方微米。6. according to claim 3,4 or 5 described silicon-germanium heterojunction nanowire arrays as the preparation method of the strain gauge of sensitive element, it is characterized in that, in the described 4th step, silicon-on-insulator wafer ( 1) Submerged in a microemulsion consisting of a mixed aqueous solution and a surfactant solution at a volume ratio of 1:6-15, wherein the mixed aqueous solution is composed of a tin salt solution with a molar concentration of 0.01-0.05mol/L and a molar concentration of 0.2 -0.4mol/L hydrofluoric acid solution, the surfactant solution is composed of diisooctyl maleate sulfonate and n-heptane solution to form a surface active agent with a molar concentration of 0.2-0.4mol/L agent solution; at room temperature, ultrasonically treat the microemulsion for 20-40 minutes to form a tin nanoparticle catalyst layer with a radius of 5-10 nanometers and a density of 500-1200 per square micron.
CN201310609962.2A 2013-11-27 2013-11-27 Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element Expired - Fee Related CN103673864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310609962.2A CN103673864B (en) 2013-11-27 2013-11-27 Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310609962.2A CN103673864B (en) 2013-11-27 2013-11-27 Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element

Publications (2)

Publication Number Publication Date
CN103673864A CN103673864A (en) 2014-03-26
CN103673864B true CN103673864B (en) 2016-03-23

Family

ID=50312152

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310609962.2A Expired - Fee Related CN103673864B (en) 2013-11-27 2013-11-27 Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element

Country Status (1)

Country Link
CN (1) CN103673864B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104843628B (en) * 2015-05-06 2016-11-02 东南大学 A silicon cantilever beam structure and its preparation method
CN104897319A (en) * 2015-05-06 2015-09-09 东南大学 Pressure sensor structure and manufacturing method thereof
CN107640741B (en) * 2017-03-15 2019-11-15 南京大学 A method for controlling the growth morphology and composition of planar silicon germanium and related nanowires based on heterogeneous stacked amorphous film supply
CN106895886B (en) * 2017-04-13 2023-06-16 南京信息工程大学 High-sensitivity gas flow measuring device and method based on giant piezoresistive sensor
US11458538B2 (en) * 2018-11-19 2022-10-04 Honda Motor Co., Ltd. General synthetic strategy for fabrication of multi-metallic nanostructures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120124121A (en) * 2011-05-03 2012-11-13 인하대학교 산학협력단 Preparing method of chemical nanosensor
CN102826504A (en) * 2011-06-14 2012-12-19 中国科学院微电子研究所 Nanowire manufacturing method
CN102945791A (en) * 2012-11-29 2013-02-27 上海集成电路研发中心有限公司 Preparation method of silicon nanowire array
CN103238208A (en) * 2010-12-01 2013-08-07 英特尔公司 Silicon and silicon germanium nanowire structures

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8853790B2 (en) * 2011-04-05 2014-10-07 International Business Machines Corporation Semiconductor nanowire structure reusing suspension pads

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103238208A (en) * 2010-12-01 2013-08-07 英特尔公司 Silicon and silicon germanium nanowire structures
KR20120124121A (en) * 2011-05-03 2012-11-13 인하대학교 산학협력단 Preparing method of chemical nanosensor
CN102826504A (en) * 2011-06-14 2012-12-19 中国科学院微电子研究所 Nanowire manufacturing method
CN102945791A (en) * 2012-11-29 2013-02-27 上海集成电路研发中心有限公司 Preparation method of silicon nanowire array

Also Published As

Publication number Publication date
CN103673864A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
Mohseni et al. In x Ga1–x As nanowire growth on graphene: Van der Waals epitaxy induced phase segregation
US8641912B2 (en) Method for fabricating monolithic two-dimensional nanostructures
Kuykendall et al. Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections
Huang et al. Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching
CN103673864B (en) Silicon germanium heterojunction nano-wire array takes into account preparation method as the strain of sensitive element
CN101229912B (en) Method for preparing gallium nitride nanowire array by dry etching
US8334216B2 (en) Method for producing silicon nanostructures
Yi Semiconductor nanostructures for optoelectronic devices: processing, characterization and applications
Hong et al. Controlled van der Waals heteroepitaxy of InAs nanowires on carbon honeycomb lattices
Saif Islam et al. A novel interconnection technique for manufacturing nanowire devices
Park et al. Inorganic nanostructures grown on graphene layers
JP2011519730A (en) Superlattice / Quantum well nanowire
CN103311305B (en) Silicon-based lateral nano wire multiple-gate transistor and preparation method thereof
Conesa-Boj et al. Vertical “III–V” V-Shaped Nanomembranes Epitaxially Grown on a Patterned Si [001] Substrate and Their Enhanced Light Scattering
Yoo et al. Epitaxial growth of radial Si pin junctions for photovoltaic applications
CN102945791B (en) A kind of preparation method of silicon nanowire array
Ishai et al. Shape-and dimension-controlled single-crystalline silicon and SiGe nanotubes: toward nanofluidic FET devices
Zhang et al. Recent research on one-dimensional silicon-based semiconductor nanomaterials: synthesis, structures, properties and applications
CN102751232A (en) Method for preparing SiGe or Ge nanowire by using germanium concentration technology
Huang et al. InAs nanowires grown by metal–organic vapor-phase epitaxy (MOVPE) employing PS/PMMA diblock copolymer nanopatterning
CN103346070B (en) The method of silicon substrate III-V group nanowire area selection transverse epitaxial growth
Han et al. One-dimensional nanomaterials for energy applications
Shi et al. Zn cluster drifting effect for the formation of ZnO 3D nanoarchitecture
CN102157371A (en) Method for producing monocrystalline silicon nanometer structure
KR101309308B1 (en) Electronic device and manufacturing method thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160323

Termination date: 20191127

CF01 Termination of patent right due to non-payment of annual fee