CN103630498A - 基于高光谱成像技术的脐橙表面农药残留量的检测方法 - Google Patents
基于高光谱成像技术的脐橙表面农药残留量的检测方法 Download PDFInfo
- Publication number
- CN103630498A CN103630498A CN201310562404.5A CN201310562404A CN103630498A CN 103630498 A CN103630498 A CN 103630498A CN 201310562404 A CN201310562404 A CN 201310562404A CN 103630498 A CN103630498 A CN 103630498A
- Authority
- CN
- China
- Prior art keywords
- image
- navel orange
- persticide residue
- reflectivity
- diffuse reflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 235000005976 Citrus sinensis Nutrition 0.000 title claims abstract description 46
- 240000002319 Citrus sinensis Species 0.000 title claims abstract description 46
- 238000005516 engineering process Methods 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title abstract description 18
- 239000000447 pesticide residue Substances 0.000 title abstract description 8
- 238000000701 chemical imaging Methods 0.000 title abstract description 3
- 238000001514 detection method Methods 0.000 claims abstract description 24
- 238000002310 reflectometry Methods 0.000 claims description 39
- 238000001228 spectrum Methods 0.000 claims description 39
- 238000002329 infrared spectrum Methods 0.000 claims description 7
- 230000003595 spectral effect Effects 0.000 abstract description 6
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 239000000575 pesticide Substances 0.000 description 9
- 235000012055 fruits and vegetables Nutrition 0.000 description 7
- 238000012360 testing method Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000003987 organophosphate pesticide Substances 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 239000003905 agrochemical Substances 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000001066 destructive effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000004032 porphyrins Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 239000005558 Fluroxypyr Substances 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- MEFQWPUMEMWTJP-UHFFFAOYSA-N fluroxypyr Chemical compound NC1=C(Cl)C(F)=NC(OCC(O)=O)=C1Cl MEFQWPUMEMWTJP-UHFFFAOYSA-N 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- -1 porphyrin compound Chemical class 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
数据集 | 样本个数 | 相关系数 | 均方根误差 |
建模集 | 10 | 0.8542 | 0.0053 |
预测集 | 5 | 0.8467 | 0.0056 |
数据集 | 样本个数 | 相关系数 | 均方根误差 |
建模集 | 10 | 0.5472 | 0.0082 |
预测集 | 5 | 0.5245 | 0.0096 |
数据集 | 样本个数 | 相关系数 | 均方根误差 |
建模集 | 100 | 0.5048 | 0.0096 |
预测集 | 50 | 0.4967 | 0.0099 |
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310562404.5A CN103630498B (zh) | 2013-11-12 | 2013-11-12 | 基于高光谱成像技术的脐橙表面农药残留量的检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310562404.5A CN103630498B (zh) | 2013-11-12 | 2013-11-12 | 基于高光谱成像技术的脐橙表面农药残留量的检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103630498A true CN103630498A (zh) | 2014-03-12 |
CN103630498B CN103630498B (zh) | 2015-09-16 |
Family
ID=50211774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310562404.5A Expired - Fee Related CN103630498B (zh) | 2013-11-12 | 2013-11-12 | 基于高光谱成像技术的脐橙表面农药残留量的检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103630498B (zh) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104931470A (zh) * | 2015-06-02 | 2015-09-23 | 江苏大学 | 一种基于荧光高光谱技术的农药残留检测装置及检测方法 |
CN105300895A (zh) * | 2015-11-05 | 2016-02-03 | 浙江大学 | 一种利用特征点切线夹角预警马铃薯发芽缺陷的方法 |
CN105424622A (zh) * | 2015-11-05 | 2016-03-23 | 浙江大学 | 一种利用特征三角形面积预警马铃薯发芽的方法 |
CN105954202A (zh) * | 2016-04-22 | 2016-09-21 | 浙江大学 | 一种柑橘溃疡病高光谱模型传递的方法 |
CN108872091A (zh) * | 2018-03-20 | 2018-11-23 | 浙江理工大学 | 一种基于高光谱成像的蔬菜农药残留浓度的检测方法 |
CN110579533A (zh) * | 2018-05-21 | 2019-12-17 | 珠海格力电器股份有限公司 | 一种目标对象安全性检测方法和设备 |
CN111289446A (zh) * | 2020-03-30 | 2020-06-16 | 天津工业大学 | 一种复杂溶液成分浓度的检测方法及系统 |
CN112586654A (zh) * | 2020-11-18 | 2021-04-02 | 海南威尔检测技术有限公司 | 农产品农药残留速检和无害化处理方法 |
CN113740276A (zh) * | 2021-09-02 | 2021-12-03 | 福州大学 | 基于多光谱探测系统果蔬农残可视化实时检测方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403689A (zh) * | 2008-11-20 | 2009-04-08 | 北京航空航天大学 | 一种植物叶片生理指标无损检测方法 |
WO2011054040A1 (en) * | 2009-11-03 | 2011-05-12 | Commonwealth Scientific And Industrial Research Organisation | System and method for integration of spectral and 3-dimensional imaging data |
CN102313699A (zh) * | 2011-05-26 | 2012-01-11 | 北京农业信息技术研究中心 | 作物冠层叶片的全氮含量估算方法 |
CN102609963A (zh) * | 2012-01-18 | 2012-07-25 | 中国人民解放军61517部队 | 高光谱图像的模拟方法 |
US20120250025A1 (en) * | 2009-09-04 | 2012-10-04 | Moshe Danny S | Grading of agricultural products via hyper spectral imaging and analysis |
CN103278460A (zh) * | 2013-05-30 | 2013-09-04 | 华南农业大学 | 一种柑橘树红蜘蛛虫害胁迫情况测试分析方法 |
-
2013
- 2013-11-12 CN CN201310562404.5A patent/CN103630498B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101403689A (zh) * | 2008-11-20 | 2009-04-08 | 北京航空航天大学 | 一种植物叶片生理指标无损检测方法 |
US20120250025A1 (en) * | 2009-09-04 | 2012-10-04 | Moshe Danny S | Grading of agricultural products via hyper spectral imaging and analysis |
WO2011054040A1 (en) * | 2009-11-03 | 2011-05-12 | Commonwealth Scientific And Industrial Research Organisation | System and method for integration of spectral and 3-dimensional imaging data |
CN102313699A (zh) * | 2011-05-26 | 2012-01-11 | 北京农业信息技术研究中心 | 作物冠层叶片的全氮含量估算方法 |
CN102609963A (zh) * | 2012-01-18 | 2012-07-25 | 中国人民解放军61517部队 | 高光谱图像的模拟方法 |
CN103278460A (zh) * | 2013-05-30 | 2013-09-04 | 华南农业大学 | 一种柑橘树红蜘蛛虫害胁迫情况测试分析方法 |
Non-Patent Citations (2)
Title |
---|
刘燕德等: "高光谱成像技术在农产品检测中的应用", 《食品与机械》 * |
索少增等: "高光谱图像技术检测梨表面农药残留试验研究", 《北京工商大学学报》 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104931470B (zh) * | 2015-06-02 | 2018-04-03 | 江苏大学 | 一种基于荧光高光谱技术的农药残留检测装置及检测方法 |
CN104931470A (zh) * | 2015-06-02 | 2015-09-23 | 江苏大学 | 一种基于荧光高光谱技术的农药残留检测装置及检测方法 |
CN105300895A (zh) * | 2015-11-05 | 2016-02-03 | 浙江大学 | 一种利用特征点切线夹角预警马铃薯发芽缺陷的方法 |
CN105424622A (zh) * | 2015-11-05 | 2016-03-23 | 浙江大学 | 一种利用特征三角形面积预警马铃薯发芽的方法 |
CN105300895B (zh) * | 2015-11-05 | 2017-12-26 | 浙江大学 | 一种利用特征点切线夹角预警马铃薯发芽缺陷的方法 |
CN105424622B (zh) * | 2015-11-05 | 2018-01-30 | 浙江大学 | 一种利用特征三角形面积预警马铃薯发芽的方法 |
CN105954202A (zh) * | 2016-04-22 | 2016-09-21 | 浙江大学 | 一种柑橘溃疡病高光谱模型传递的方法 |
CN108872091A (zh) * | 2018-03-20 | 2018-11-23 | 浙江理工大学 | 一种基于高光谱成像的蔬菜农药残留浓度的检测方法 |
CN110579533A (zh) * | 2018-05-21 | 2019-12-17 | 珠海格力电器股份有限公司 | 一种目标对象安全性检测方法和设备 |
CN110579533B (zh) * | 2018-05-21 | 2020-12-04 | 珠海格力电器股份有限公司 | 一种目标对象安全性检测方法和设备 |
CN111289446A (zh) * | 2020-03-30 | 2020-06-16 | 天津工业大学 | 一种复杂溶液成分浓度的检测方法及系统 |
CN112586654A (zh) * | 2020-11-18 | 2021-04-02 | 海南威尔检测技术有限公司 | 农产品农药残留速检和无害化处理方法 |
CN113740276A (zh) * | 2021-09-02 | 2021-12-03 | 福州大学 | 基于多光谱探测系统果蔬农残可视化实时检测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103630498B (zh) | 2015-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103630498A (zh) | 基于高光谱成像技术的脐橙表面农药残留量的检测方法 | |
CN103674838B (zh) | 一种基于高光谱成像技术的鱼脂肪含量分布检测方法 | |
Wu et al. | Detection of apple defect using laser-induced light backscattering imaging and convolutional neural network | |
He et al. | Recent progress of nondestructive techniques for fruits damage inspection: a review | |
Xia et al. | Recent advances in emerging techniques for non-destructive detection of seed viability: A review | |
Hussain et al. | Innovative nondestructive imaging techniques for ripening and maturity of fruits–a review of recent applications | |
Qin et al. | Line-scan hyperspectral imaging techniques for food safety and quality applications | |
Wu et al. | Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet | |
Abdullah et al. | The applications of computer vision system and tomographic radar imaging for assessing physical properties of food | |
Xiong et al. | Applications of hyperspectral imaging in chicken meat safety and quality detection and evaluation: A review | |
CN108663339A (zh) | 基于光谱和图像信息融合的霉变玉米在线检测方法 | |
CN103900972B (zh) | 基于多特征融合的肉类新鲜度高光谱图像可视化检测 | |
CN103674864A (zh) | 一种基于高光谱成像技术的鱼水分含量分布检测方法 | |
Akter et al. | A comprehensive review of external quality measurements of fruits and vegetables using nondestructive sensing technologies | |
CN101776597A (zh) | 一种畜肉细菌总数无损检测方法 | |
CN106706546A (zh) | 一种基于红外和拉曼光谱数据的人工智能学习物质分析方法 | |
Wang et al. | The early, rapid, and non-destructive detection of citrus Huanglongbing (HLB) based on microscopic confocal Raman | |
Beghi et al. | Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy | |
Yu et al. | Rapid and visual measurement of fat content in peanuts by using the hyperspectral imaging technique with chemometrics | |
Li et al. | Rapid detection and visualization of mechanical bruises on “Nanfeng” mandarin using the hyperspectral imaging combined with ICA_LSQ method | |
Hu et al. | Research on nondestructive detection of pine nut quality based on terahertz imaging | |
Ma et al. | “Raman plus X” dual‐modal spectroscopy technology for food analysis: A review | |
CN102181514A (zh) | 快速无损伤检测冷却肉菌落总数的方法 | |
Peng et al. | Defects recognition of pine nuts using hyperspectral imaging and deep learning approaches | |
Hu et al. | Integration of optical property mapping and machine learning for real-time classification of early bruises of apples |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20140312 Assignee: YONGKANG VALID TECHNOLOGY CO.,LTD. Assignor: Zhejiang University Contract record no.: 2018330000030 Denomination of invention: Method for detecting pesticide residue on surface of navel orange based on hyperspectral imaging technology Granted publication date: 20150916 License type: Common License Record date: 20180328 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20150916 |
|
CF01 | Termination of patent right due to non-payment of annual fee |