CN103626149B - 碳纤维、碳纤维制造用催化剂和碳纤维的评价方法 - Google Patents

碳纤维、碳纤维制造用催化剂和碳纤维的评价方法 Download PDF

Info

Publication number
CN103626149B
CN103626149B CN201310373844.6A CN201310373844A CN103626149B CN 103626149 B CN103626149 B CN 103626149B CN 201310373844 A CN201310373844 A CN 201310373844A CN 103626149 B CN103626149 B CN 103626149B
Authority
CN
China
Prior art keywords
carbon fiber
quality
catalyst
metal
mole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310373844.6A
Other languages
English (en)
Other versions
CN103626149A (zh
Inventor
山本竜之
山田祐辅
中村武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Publication of CN103626149A publication Critical patent/CN103626149A/zh
Application granted granted Critical
Publication of CN103626149B publication Critical patent/CN103626149B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/847Vanadium, niobium or tantalum or polonium
    • B01J23/8472Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/881Molybdenum and iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • D01F9/1273Alkenes, alkynes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Textile Engineering (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Inorganic Fibers (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种碳纤维、碳纤维制造用催化剂和碳纤维的评价方法。本发明的课题在于,在不进行高温热处理的条件下提供一种析出于电池、电容器等电化学设备的电极而可能引起短路(short)等的金属离子的溶出量少的碳纤维。其解决方法是:一种碳纤维,其包含催化剂金属和金属氧化物载体,所述催化剂金属由Fe和选自由Mo和V组成的组中的至少一种组成,所述碳纤维利用拉曼分光测定得到的R值(ID/IG)为0.5~2.0、催化剂金属的电化学性金属溶出量为0.01质量%以下。

Description

碳纤维、碳纤维制造用催化剂和碳纤维的评价方法
技术领域
本发明涉及碳纤维、碳纤维制造用催化剂和碳纤维的评价方法。更详细而言,涉及通过负载催化剂而合成且源自催化剂金属的金属溶出量低的碳纤维和用于制造该碳纤维的催化剂、以及对添加至电池或电容器的电极内时的碳纤维的金属溶出量进行评价的方法。
背景技术
作为碳纤维的制造方法,有化学气相沉积法(使烃等在催化剂金属上进行热解而形成碳纤维的方法)以及物理气相沉积法(利用电弧、激光等使石墨升华、并在冷却过程中形成碳纤维的方法)。
化学气相沉积法比较容易进行反应器的批量放大,因此是适于大量合成的方法。
化学气相沉积法大致可以分为两种方法。一种方法(浮游催化法)是:在苯等烃中溶解成为催化剂的金属化合物、硫等助催化剂,以氢气作为载气供于加热至1000℃以上的反应场所,在该场所中进行催化剂生成和碳纤维的生长。另一种方法(负载催化法)是:向加热至500~700℃的反应场所投入预先制备的负载催化剂(载体上负载有催化剂金属或前体的催化剂),供给乙烯等烃与氢气、氮气等的混合气体,使其反应。
浮游催化法由于在1000℃以上的高温区域下反应,因此不仅进行在催化剂金属上的烃的分解,而且还进行烃的自分解反应。热解碳在以催化剂金属为起点而生长的碳纤维上沉积、在纤维的粗度方向上也生长。利用该方法得到的碳纤维被结晶性低的热解碳覆盖,因此导电性较低。因而,在利用浮游催化法合成后,在非活性气体气氛下以2600℃以上的温度进行热处理,从而石墨化。通过该热处理进行晶体的再排列、石墨晶体生长,纤维的导电性提高。另外,通过热处理,催化剂金属蒸发,能够得到杂质少的碳纤维。
另一方面,负载催化法在500~800℃下反应,因此烃的自分解反应受到抑制。能够得到以催化剂金属为起点而生长的细碳纤维。该碳纤维具有较高的结晶性,导电性较高。因此,不需要进行对利用浮游催化法得到的碳纤维施加的那样用于石墨化的热处理。利用负载催化法合成的碳纤维不经由用于石墨化的热处理,因此碳纤维中残留有百分数数量级的催化剂金属。
现有技术文献
专利文献
专利文献1:日本特开2002-308610号公报
专利文献2:日本专利第4197729号公报
专利文献3:日本特开2010-1173号公报
专利文献4:国际公开公报WO2006/50903
发明内容
发明要解决的问题
碳纤维主要用作用于对树脂等赋予导电性、导热性的填充剂。对于该用途而言,不会发生产物中包含的催化剂金属对树脂复合体的强度等物性产生不良影响的程度的问题。
利用浮游催化法而合成且进行了石墨化处理的碳纤维被用作电容器或电池的电极中的导电用助剂。另一方面,利用负载催化法合成且未经过高温热处理的碳纤维的制造成本低,但在作为导电助剂而添加至电化学设备中时,发生如下现象:在重复充电放电的过程中,残留催化剂金属发生离子化,金属析出。析出至电极上的金属生长至贯穿隔膜的程度时,正极和负极之间会短路。
专利文献1中记载了一种碳纳米管的精制方法,其特征在于,将碳纳米管浸渍在至少包含硫酸的酸性溶液中、从而去除金属。即使实施专利文献1中记载的酸洗后的热处理、即以低于600℃的温度实施热处理,碳纳米管表面也会残留硫酸根离子。将该碳纳米管添加至电池的正极时,存在因硫酸根离子的影响而导致正极活性物质发生腐蚀的可能。另外,由于酸洗涤而导致工序增加,因此生产成本也变高。
专利文献2中公开了一种由Fe、Mo以及V形成的碳纤维制造用催化剂。并公开了:通过该催化剂,能够得到杂质水平低、导热性优异、导电性优异的碳纤维。
专利文献3中公开了一种碳纳米纤维,其含有:Fe、Co、选自由Ti、V、Cr和Mn组成的组中的至少一种元素、以及选自由W和Mo组成的组中的至少一种元素。并公开了:能够得到杂质少、在树脂等中的填充性和分散性优异、赋予导电性、导热性的效果高的碳纳米纤维。
然而,专利文献2、3中关于降低电化学性金属溶出量并没有公开。
专利文献4中公开了一种负载催化剂,其是通过使由Mn和Co和Mo的组合、Mn和Co的组合形成的催化剂金属成分与Al、Mg等载体金属成分发生共沉淀而得到的。然而,即使将使用专利文献4中具体记载的催化剂而得到的碳纳米管用作电极的导电助剂,其赋予导电性的效果也不充分。进而,关于降低电化学性金属溶出量也没有公开。
本发明的目的在于,在不进行高温热处理的条件下提供一种析出于电池的电极而可能引起短路(short)等的金属离子溶出量少的碳纤维。
用于解决问题的方案
(1)一种碳纤维,其包含催化剂金属以及载体,所述催化剂金属由Fe和选自由Mo和V组成的组中的至少一种组成,所述碳纤维利用拉曼分光测定得到的R值(ID/IG)为0.5~2.0、催化剂金属的电化学性金属溶出量为0.01质量%以下。
(2)根据(1)所述的碳纤维,其中,载体含有金属氧化物。
(3)根据(1)或(2)所述的碳纤维,其中,利用X射线衍射得到的晶面间距C0为0.680~0.695nm。
(4)根据(1)~(3)中任一项所述的碳纤维,其中,{Fe质量/(Fe质量+载体质量)}×100(质量%)为5质量%以上且30质量%以下。
(5)根据(1)~(4)中任一项所述的碳纤维,其中,相对于Fe的Mo为0.1摩尔%以上且不足5摩尔%。
(6)根据(1)~(5)中任一项所述的碳纤维,其中,相对于Fe的V为0.1摩尔%以上且20摩尔%以下。
(7)根据(1)~(6)中任一项所述的碳纤维,其中,相对于Fe的V为0.1摩尔%以上且5摩尔%以下。
(8)根据(1)~(5)中任一项所述的碳纤维,其中,催化剂金属仅包含Fe和Mo。
(9)根据(1)~(8)中任一项所述的碳纤维,其中,碳纤维形成聚集体,该聚集体中的碳纤维未在固定方向取向。
(10)根据(9)所述的碳纤维,其中,聚集体的利用激光衍射粒度测定得到的体积基准累积粒度分布中的50%粒径(D50)为3μm以上且20μm以下。
(11)一种复合材料,其含有(1)~(10)中任一项所述的碳纤维。
(12)根据(11)所述的复合材料,其中,复合材料为电极材料。
(13)一种电化学设备,其含有(1)~(10)中任一项所述的碳纤维。
(14)一种碳纤维制造用催化剂,其包含催化剂金属以及载体,所述催化剂金属由Fe和选自由Mo和V组成的组中的至少一种组成,相对于Fe的Mo的比例为0.1摩尔%以上且不足5摩尔%。
(15)根据(14)所述的碳纤维制造用催化剂,其中,相对于Fe的V的比例为0.1摩尔%以上且20摩尔%以下。
(16)一种金属溶出量评价方法,其为评价电池或电容器的电极内所添加的碳纤维的金属溶出量的方法,其包括如下工序:(a)对由包含碳纤维/PTFE复合电极的工作电极、隔膜、电解液以及包含Li金属箔的对电极构成的评价用电池单元施加电压的工序;(b)碳纤维/PTFE复合电极中包含的金属因施加电压而以金属离子的形式溶出到该电解液中,在该对电极上被还原而以金属的形式析出的工序;(c)对该析出了的金属进行回收的工序;(d)对该回收了的金属进行定量的工序。
发明的效果
本发明的碳纤维由于电化学性地溶出的金属量少,因此能够添加至电池、电容器、混合动力电容器等电化学设备中来使用。另外,通过采用本发明的金属溶出量评价方法,能够预先评价对电池、电容器等电化学设备的影响度。
附图说明
图1是刚合成之后的碳纤维聚集体的扫描电子显微镜照片的一例(倍率为200倍)。
图2是将刚合成之后的碳纤维聚集体粉碎后的扫描电子显微镜照片的一例(倍率为200倍)。
图3是将刚合成之后的碳纤维聚集体粉碎后的扫描电子显微镜照片的一例(倍率为20000倍)。
具体实施方式
以下,对本发明进行详细说明。
本发明中,所合成的碳纤维在不经由用于石墨化的高温热处理的条件下使用。
对未进行用于石墨化的热处理的碳纤维的拉曼分光进行测定时,1360cm-1附近具有吸收的所谓D峰与1580cm-1附近具有吸收的所谓G峰的峰强度比R值(ID/IG)为0.5~2.0。需要说明的是,进行了用于石墨化的热处理的碳纤维的R值通常为0.1~0.4左右。
基于学振法(炭素、No.36、25-34页、1963年)对未进行用于石墨化的热处理的碳纤维实施X射线衍射测定时,利用X射线衍射得到的晶面间距C0为0.680~0.695nm。需要说明的是,进行了用于石墨化的的热处理的碳纤维的C0值通常不足0.680nm。
对本发明中的碳纤维的制造方法没有特别限定,优选利用气相法来合成,更优选利用负载催化法来合成。负载催化法是使用在载体上负载催化剂金属而成的催化剂,使碳源在气相中反应来制造碳纤维的方法。作为载体,可列举出氧化铝、氧化镁、二氧化硅二氧化钛、碳酸钙等。载体优选为粉粒状。对负载方法没有特别限定,例如可以通过使包含催化剂金属元素的化合物的溶液浸渗到载体来进行负载。也可以通过使包含催化剂金属元素的化合物和包含构成载体的元素的化合物的溶液共沉淀来进行负载,还可以利用其它公知的负载方法来进行。
作为碳源,可列举出甲烷、乙烯、乙炔等。反应可以在流动层、移动层、固定层等反应容器内进行。反应容器内的温度优选设定为500℃~800℃。为了将碳源供给至反应容器,可以使用载气。作为载气,可列举出氢气、氮气、氩气等。反应时间优选为5~120分钟。
碳纤维的纤维直径通常为5nm以上且500nm以下,优选为7nm以上且200nm以下。纤维直径不足5nm时,存在纤维难以解体而分散为一根一根的倾向。
碳纤维的长径比优选为100以上且1000以下。长径比小时,存在纤维彼此的缠绕程度变弱、难以形成有效的导电网络的倾向。长径比大时,存在纤维彼此的缠绕程度变强、难以分散的倾向。
碳纤维的BET比表面积优选为10m2/g以上且300m2/g以下,更优选为100m2/g以上且280m2/g以下,进一步优选为200m2/g以上且270m2/g以下。
本发明的优选实施方式中的碳纤维含有Fe以及选自由Mo和V组成的组中的至少一种催化剂金属。
催化剂金属的组合优选将Fe和Mo、Fe和V等两种金属组合使用,进一步优选为Fe、Mo、V这三种的组合。
相对于Fe的Mo的比率优选为0.1摩尔%以上且不足5摩尔%,更优选为0.3摩尔%以上且3摩尔%以下、特别优选为0.5摩尔%以上且2摩尔%以下。
相对于Fe的V的比率优选为0.1摩尔%以上且20摩尔%以下,更优选为0.3摩尔%以上且5摩尔%以下,特别优选为0.5摩尔%以上且3摩尔%以下。
催化剂中的Fe负载量相对于载体与Fe质量之和通常为5质量%以上且30质量%以下、优选为10质量%以上且25质量%以下、更优选为12质量%以上且20质量%以下。负载量大于30质量%时,生产成本变高,并且将催化剂作为导电助剂而添加到锂离子电池的正极中时,残留催化剂金属发生离子化而在负极上析出的倾向变大。另外,负载量不足5质量%时,碳纤维的生成量变小,生产成本变高。
对催化剂金属用的前体没有特别限定,可以采用例如催化剂金属的硝酸盐、硫酸盐、碳酸盐等无机盐类、醋酸盐等有机盐、乙酰丙酮络合物等有机络合物、有机金属化合物等含有催化剂金属的化合物。从反应性的观点考虑,优选为硝酸盐、乙酰丙酮络合物等。
载体只要是在气相反应温度区域内稳定的载体即可,通常可以使用无机氧化物、无机碳酸盐。可列举出例如氧化铝、氧化锆、二氧化钛、氧化镁、碳酸钙、氢氧化钙、氧化钙、氧化锶、氧化钡、氧化锌、碳酸锶、碳酸钡、二氧化硅、硅藻土、沸石等。这些之中,从降低杂质含量的观点考虑,优选为氧化铝、氧化镁、二氧化钛、碳酸钙、氢氧化钙或氧化钙,特别优选为氧化铝。载体优选为粉粒状。
对催化剂的制备方法没有特别限定,特别优选的是,通过使包含催化剂金属元素的液体浸渗到载体而得到催化剂的浸渗法来制造。
作为具体例子,可列举出将催化剂金属前体化合物溶解或分散在溶剂中,使其溶液或分散液浸渗到粉粒状载体,接着进行干燥的方法。
包含催化剂金属元素的液体可以是包含液态的催化剂金属元素的有机化合物,也可以是将包含催化剂金属元素的化合物溶解或分散在有机溶剂或水中而成的液体。作为此处使用的有机溶剂,可列举出苯、甲苯、二甲苯等芳香族烃;己烷、环己烷等饱和烃;甲醇、乙醇等醇类;二乙醚、二甲醚、甲乙醚、呋喃、二苯并呋喃、四氢呋喃等醚类;甲醛、乙醛、丙醛、丙烯醛、苯甲醛等醛类;四氯化碳、氯仿、三氯乙烯、氯乙烷等卤代烃等。
为了改善催化剂金属元素的分散性等,也可以向包含催化剂金属元素的液体中添加分散剂、表面活性剂(优选为阳离子性表面活性剂、阴离子性表面活性剂)。包含催化剂金属元素的液体中的催化剂金属元素浓度可以根据溶剂和催化剂金属种类而适当选择。包含载体和要混合的催化剂金属元素的液体的量优选与所使用的载体的吸液量相当。
包含催化剂金属元素的液体与载体充分混合后的干燥通常在70~150℃下进行。干燥也可以使用真空干燥。
对碳纤维的制造中使用的碳源(含碳化合物)没有特别限定。作为含碳化合物,除了CCl4、CHCl3、CH2Cl2、CH3Cl、CO、CO2、CS2等之外,还可以使用所有有机化合物。作为有用性特别高的化合物,可列举出CO、CO2、脂肪族烃和芳香族烃。另外,还可以使用包含氮、磷、氧、硫、氟、氯、溴、碘等元素的碳化合物。
作为优选的含碳化合物的具体例子,有CO、CO2等无机气体;甲烷、乙烷、丙烷、丁烷、戊烷、己烷、庚烷、辛烷等链烷烃类;乙烯、丙烯、丁二烯等链烯烃类;乙炔等炔烃类;苯、甲苯、二甲苯、苯乙烯等单环式芳香族烃;茚、萘、蒽、菲等具有稠合环的多环式化合物;环丙烷、环戊烷、环己烷等环烷烃类;环戊烯、环己烯、环戊二烯、二环戊二烯等环烯烃类;类固醇等具有稠合环的脂环式烃化合物等。进而,也可以使用这些烃中包含氧、氮、硫、磷、卤素等的衍生物,例如,甲醇、乙醇、丙醇、丁醇等含氧化合物;甲硫醇、甲乙硫醚、二甲基硫酮等含硫脂肪族化合物;苯硫醇、苯硫醚等含硫芳香族化合物;吡啶、喹啉、苯并噻吩、噻吩等含硫或含氮杂环式化合物;氯仿、四氯化碳、氯乙烷、三氯乙烯等卤代烃;或者天然气、汽油、灯油、重油、木镏油、煤油、松节油、樟脑油、松根油、齿轮油、汽缸油等。这些也可以以两种以上的混合物的形式使用。
这些之中,作为优选的含碳化合物,可列举出CO、甲烷、乙烷、丙烷、丁烷、乙烯、丙烯、丁二烯、甲醇、乙醇、丙醇、丁醇、乙炔、苯、甲苯、二甲苯以及它们的混合物,作为特别优选的含碳化合物,可列举出乙烯、丙烯以及乙醇。
碳纤维的制造方法中,除了这些含碳化合物之外,推荐使用载气。作为载气,可以使用氢气、氮气、二氧化碳气体、氦气、氩气、氪气或它们的混合气体。但是,空气等含有氧分子(即分子状态的氧:O2)的气体会使催化剂劣化,因此不适合。催化剂金属前体化合物有时处于氧化状态,此时作为载气优选使用含有还原性氢气的气体。因此,作为载气为优选含有1vol(体积)%以上、进一步优选含有30vol%以上、最优选含有85vol%以上的氢气的气体,例如为100vol%氢气、用氮气稀释氢气而成的气体。
含碳化合物优选将在常温下为液体或固体的化合物加热而使其气化后、以含碳气体的形式导入。这些含碳气体的供给量因使用的催化剂、含碳化合物、反应条件而异,不能一概而论,但通常优选的范围是(含碳气体流量)/(载气流量+含碳气体流量)为10~90vol%,进一步优选为30~70vol%。含碳化合物为乙烯时,特别优选为30~90vol%的范围。
使催化剂与含碳化合物接触的温度因使用的含碳化合物等而异,通常为400~1100℃,优选为500~800℃。
本发明的优选实施方式中的碳纤维的电化学性金属溶出量为0.01质量%以下。更优选为0.005质量%以下、特别优选为0.002质量%以下。
为了减小聚集体的尺寸,可以对本发明中的碳纤维进行粉碎处理。作为粉碎方法,可列举出干式粉碎法和湿式粉碎法。作为干式粉碎用的机器,可列举出利用了媒介的冲击力和剪切力的球磨机;锤磨机等利用了冲击力的粉碎机;利用了被粉碎物彼此的冲击的喷射式粉碎机等。作为湿式粉碎用的机器,可列举出利用了媒介的剪切力的球磨机等。本发明的优选实施方式中的碳纤维形成聚集体,该聚集体中的碳纤维未在固定方向取向。
聚集体的利用激光衍射粒度测定得到的体积基准累积粒度分布中的50%粒径(D50)优选为3μm以上且20μm以下,更优选为5μm以上~10μm以下。测定机器可以采用通常使用的机器,例如可以使用日机装株式会社制造的MicrotrackHRA。
实施例
以下,对本发明示出代表例,进一步具体地进行说明。需要说明的是,这些代表例仅是用于说明的单纯例示,本发明不限定于这些代表例。
<碳纤维/PTFE复合电极的制作>
称量碳纤维1.6g(W1)、聚四氟乙烯(PTFE)0.4g并置于玛瑙乳钵中,使用研杵将粉体均匀地混合。进而,强烈混合以使PTFE伸展,得到橡胶状的碳纤维/PTFE复合物。
将所得到的复合物切成规定尺寸(20mm×20mm×0.5mmt),使用油压式单螺杆加压机以15MPa的压力压接于熔接有铝极耳(tablead)的铝网(尺寸20mm×20mm×0.03mmt),制成碳纤维/PTFE复合电极。
<评价电池单元的制作>
电池单元的制作、电池单元的解体以及对电极在乙醇中的溶解在露点为-80℃以下的干燥氩气气氛中实施。以碳纤维/PTFE复合电极作为工作电极,夹设两块隔膜而与压接有铜网的锂金属箔(25mm×25mm×0.05mmt)(对电极)层叠。将层叠体插入到用铝层压材料制作而成的袋,将极耳部分热封而制作双极式电池单元。向上述双极电池单元中注入电解液,进行真空密封,从而制成试验电池单元。
<金属溶出试验方法>
将恒电位仪/恒电流仪(BiologicScienceInstruments制)连接于评价用电池单元,对工作电极施加相对于参比电极为4.3V的电压。其后,保持该状态至电流值充分衰减(24小时)。碳纤维/PTFE复合电极中包含的金属因施加电压而以离子的形式溶出至电解液中,并在作为对电极的锂金属箔上被还原而以金属的形式析出。
<金属溶出量的评价方法>
试验结束后,分解试验电池单元,取出对电极和与对电极接触的隔膜,测定对电极的重量(W3)。在非活性气体气氛中将对电极溶于乙醇。从对电极的乙醇溶液中加热去除乙醇,残渣用浓硝酸全部溶解。附着于隔膜的析出金属用硝酸洗掉。利用ICP发射光谱分析装置(SIINanoTechnologyInc制Vista-PRO)对该溶解液进行分析,对液体中包含的Fe、Mo和V分别进行定量(W2、W2’、W2’’)。另外,作为参照,将未使用的锂金属溶于乙醇,加热去除乙醇。将残渣用硝酸溶解,利用ICP发射光谱分析装置进行分析,对液体中包含的Fe、Mo和V分别进行定量(Wr、Wr’、Wr’’)。由式(1)、(2)以及(3)算出溶出、析出的Fe、Mo和V的溶出量[质量%]。
Fe溶出量[质量%]
={(W2/W1)-(Wr/W3)}×100式(1)
Mo溶出量[质量%]
={(W2’/W1)-(Wr’/W3)}×100式(2)
V溶出量[质量%]
={(W2’’/W1)-(Wr’’/W3)}×100式(3)
将Fe、Mo和V的溶出量的总量定义为电化学性金属溶出量。
<增重>
增重用所得到的碳纤维的质量相对于所使用的催化剂的质量之比(碳纤维的质量/催化剂的质量)来表示。
<碳纤维聚集体的粒度分布测定>
将所称量的试样0.007g置于装有20ml纯水的烧杯中,滴加0.2gTriton稀释液(100倍纯水稀释)。将前述烧杯用超声波分散机处理5分钟后,向烧杯中添加纯水30ml,再次用超声波分散机处理3分钟。利用日机装株式会社制MicrotrackHRA测定粒度分布。
实施例1(Fe-Mo(1)-V(3)/氧化铝)
将硝酸铁(III)九水合物1.81质量份添加至水1.41质量份中并使其溶解,接着添加七钼酸六铵0.008质量份以及偏钒酸铵0.016质量份并使其溶解,从而得到溶液A。
将该溶液A滴加至氧化铝(NipponAerosilCo.,Ltd.制)1质量份中并混合。混合后,以100℃真空干燥4小时。干燥后,用乳钵粉碎而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo、相对于Fe为3摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。
将所称量的催化剂载置于石英舟上,并将该石英舟放入石英制反应管中,进行密闭。反应管内用氮气进行置换,边流通氮气边用60分钟将反应器从室温升温至680℃。边流通氮气边以680℃保持30分钟。
在维持680℃的温度的条件下,将氮气切换成氢气(250体积份)与乙烯(250体积份)的混合气体A并在反应器中流通,进行15分钟的气相生长。将混合气体A切换为氮气,反应器内用氮气置换,冷却至室温。打开反应器而取出石英舟。得到以催化剂作为核而生长的碳纤维。所得到的碳纤维形成图1所示那样的聚集体。聚集体的体积基准累积粒度分布的50%粒径D50为50~600μm。碳纤维的评价结果示于表1。测定碳纤维的拉曼分光时,1360cm-1附近具有吸收的所谓D峰和1580cm-1附近具有吸收的所谓G峰的峰强度比R值(ID/IG)为1.20。利用X射线衍射得到的晶面间距C0为0.690nm。
实施例2(Fe-Mo(1)-V(20)/氧化铝)
将偏钒酸铵(关东化学株式会社制)0.105质量份添加至甲醇(关东化学株式会社制)0.95质量份中并使其溶解,接着,添加硝酸铁(III)九水合物(关东化学株式会社制)1.81质量份以及七钼酸六铵(纯正化学株式会社制)0.008质量份并使其溶解,从而得到溶液A。
将该溶液A滴加至氧化铝(NipponAerosilCo.,Ltd.制)1质量份中并混合。混合后,以100℃真空干燥4小时。干燥后,用乳钵粉碎而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo、相对于Fe为20摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。
将所称量的催化剂载置于石英舟上,并将该石英舟放入石英制反应管中,进行密闭。反应管内用氮气进行置换,边流通氮气边用60分钟将反应器从室温升温至680℃。边流通氮气边以680℃保持30分钟。
在维持680℃的温度的条件下,将氮气切换成氢气(250体积份)与乙烯(250体积份)的混合气体A并在反应器中流通,进行15分钟的气相生长。将混合气体A切换为氮气,反应器内用氮气置换,冷却至室温。打开反应器而取出石英舟。得到以催化剂作为核而生长的碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.23,利用X射线衍射得到的晶面间距C0为0.690nm。
实施例3(Fe-Mo(1)/氧化铝)
除了不使用偏钒酸铵以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。
使用该催化剂与实施例1同样操作而得到碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.20,利用X射线衍射得到的晶面间距C0为0.690nm。
实施例4(Fe-V(20)/氧化铝)
除了不使用七钼酸六铵以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为20摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。使用该催化剂与实施例2同样操作而得到碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.30,利用X射线衍射得到的晶面间距C0为0.690nm。
实施例5(Fe-Mo(1)/氧化铝)
将硝酸铁(III)九水合物0.99质量份添加至水1.91质量份中并使其溶解,接着添加七钼酸六铵0.004质量份并使其溶解,除此以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo,{Fe质量/(Fe质量+载体质量)}×100(质量%)为12质量%。使用该催化剂与实施例1同样操作而得到碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.20,利用X射线衍射得到的晶面间距C0为0.690nm。
实施例6(Fe-Mo(3)-V(3)/氧化铝)
将硝酸铁(III)九水合物1.28质量份添加至水1.73质量份中并使其溶解,接着添加七钼酸六铵0.017质量份以及偏钒酸铵0.011质量份并使其溶解,除此以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为3摩尔%的Mo、相对于Fe为3摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为15质量%。使用该催化剂与实施例1同样操作而得到碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.20,利用X射线衍射得到的晶面间距C0为0.690nm。
实施例7(Fe-Mo(1)/氧化铝)
将硝酸铁(III)九水合物2.41质量份添加至水1.06质量份中并使其溶解,接着添加七钼酸六铵0.011质量份并使其溶解,除此以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo,{Fe质量/(Fe质量+载体质量)}×100(质量%)为25质量%。使用该催化剂与实施例1同样操作而得到碳纤维。所得到的碳纤维形成实施例1那样的聚集体。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.20,利用X射线衍射得到的晶面间距C0为0.690nm。
比较例1(Fe-Mo(10)-V(10)/氧化铝)
将七钼酸六铵变更为0.079质量份,并将偏钒酸铵变更为0.052质量份,除此以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为10摩尔%的Mo、相对于Fe为10摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。使用该催化剂与实施例1同样操作而得到碳纤维。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.55,利用X射线衍射得到的晶面间距C0为0.691nm。
比较例2(Fe-Mo(1)-V(40)/氧化铝)
除了将偏钒酸铵变更为0.210质量份以外,与实施例2同样操作而得到催化剂。该催化剂包含相对于Fe为1摩尔%的Mo、相对于Fe为40摩尔%的V,{Fe质量/(Fe质量+载体质量)}×100(质量%)为20质量%。使用该催化剂与实施例2同样操作而得到碳纤维。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.50,利用X射线衍射得到的晶面间距C0为0.691nm。
比较例3(Fe-Mo(10)/氧化铝)
将硝酸铁(III)九水合物1.28质量份添加至水1.72质量份中并使其溶解,接着添加七钼酸六铵0.056质量份并使其溶解,除此以外,与实施例1同样操作而得到催化剂。该催化剂包含相对于Fe为10摩尔%的Mo,{Fe质量/(Fe质量+载体质量)}×100(质量%)为15质量%。使用该催化剂与实施例1同样操作而得到碳纤维。碳纤维的评价结果示于表1。关于所得到的碳纤维,利用拉曼分光测定得到的R值(ID/IG)为1.55,利用X射线衍射得到的晶面间距C0为0.691nm。
[表1]
如表1所示,利用相对于Fe添加了0.1摩尔%以上且不足5摩尔%的Mo和/或相对于Fe添加了0.1摩尔%以上且20摩尔%以下的V的催化剂(实施例1~7)而得到的碳纤维与利用相对于Fe的Mo和/或V不在该范围内的催化剂(比较例1~3)而得到的碳纤维相比,电化学性金属溶出量变小。
实施例8
使用SEISHINENTERPRISECo.,Ltd.制造的喷射式粉碎机STJ-200,在推动喷嘴(pushernozzle)压力为0.64MPa、滑动喷嘴(glidingnozzle)压力为0.60MPa的条件下,对实施例1中得到的碳纤维的聚集体进行粉碎。经粉碎的碳纤维形成图2所示那样的聚集体。聚集体的体积基准累积粒度分布的50%粒径D50为6μm。
使用粉碎处理后的该碳纤维实施金属溶出试验的结果,金属溶出量为0.0036质量%,未观察到金属溶出量存在较大变化。

Claims (13)

1.一种碳纤维,其包含催化剂金属以及载体,
该催化剂金属由Fe和选自由Mo和V组成的组中的至少一种组成,相对于Fe的Mo为0.1摩尔%以上且不足5摩尔%,
所述碳纤维利用拉曼分光测定得到的R值即ID/IG为0.5~2.0、催化剂金属的电化学性金属溶出量为0.01质量%以下。
2.根据权利要求1所述的碳纤维,其中,载体含有金属氧化物。
3.根据权利要求1所述的碳纤维,其中,利用X射线衍射得到的晶面间距C0为0.680~0.695nm。
4.根据权利要求1所述的碳纤维,其中,{Fe质量/(Fe质量+载体质量)}×100(质量%)为5质量%以上且30质量%以下。
5.根据权利要求1所述的碳纤维,其中,相对于Fe的V为0.1摩尔%以上且20摩尔%以下。
6.根据权利要求1所述的碳纤维,其中,相对于Fe的V为0.1摩尔%以上且5摩尔%以下。
7.根据权利要求1所述的碳纤维,其中,催化剂金属仅包含Fe和Mo。
8.根据权利要求1~7中任一项所述的碳纤维,其中,碳纤维形成聚集体,该聚集体中的碳纤维未在固定方向取向。
9.根据权利要求8所述的碳纤维,其中,聚集体的利用激光衍射粒度测定得到的体积基准累积粒度分布中的50%粒径即D50为3μm以上且20μm以下。
10.一种复合材料,其含有权利要求1~7中任一项所述的碳纤维。
11.根据权利要求10所述的复合材料,其中,复合材料为电极材料。
12.一种电化学设备,其含有权利要求1~7中任一项所述的碳纤维。
13.一种金属溶出量评价方法,其为评价电池或电容器的电极内所添加的权利要求1~7中任一项所述的碳纤维的金属溶出量的方法,其包括如下工序:(a)对由包含碳纤维/PTFE复合电极的工作电极、隔膜、电解液以及包含Li金属箔的对电极构成的评价用电池单元施加电压的工序;(b)碳纤维/聚四氟乙烯复合电极中包含的金属因施加电压而以金属离子的形式溶出到该电解液中,在该对电极上被还原而以金属的形式析出的工序;(c)对该析出了的金属进行回收的工序;(d)对该回收了的金属进行定量的工序。
CN201310373844.6A 2012-08-24 2013-08-23 碳纤维、碳纤维制造用催化剂和碳纤维的评价方法 Expired - Fee Related CN103626149B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012185815 2012-08-24
JP2012-185815 2012-08-24

Publications (2)

Publication Number Publication Date
CN103626149A CN103626149A (zh) 2014-03-12
CN103626149B true CN103626149B (zh) 2016-05-18

Family

ID=49035354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310373844.6A Expired - Fee Related CN103626149B (zh) 2012-08-24 2013-08-23 碳纤维、碳纤维制造用催化剂和碳纤维的评价方法

Country Status (6)

Country Link
US (1) US9114992B2 (zh)
EP (1) EP2700740A3 (zh)
JP (1) JP5551817B2 (zh)
KR (1) KR101521452B1 (zh)
CN (1) CN103626149B (zh)
TW (1) TW201422863A (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10629326B2 (en) * 2014-08-07 2020-04-21 Denka Company Limited Conductive polymer material and molded article using same
US10714746B2 (en) * 2014-08-11 2020-07-14 Denka Company Limited Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP6810042B2 (ja) * 2015-08-17 2021-01-06 デンカ株式会社 カーボンナノファイバー複合体の製造方法、カーボンナノファイバー複合体、残留触媒の除去方法、導電性樹脂組成物、及び分散液、インク又は塗料
US20180297850A1 (en) * 2016-01-07 2018-10-18 William Marsh Rice University Facile preparation of carbon nanotube hybrid materials by catalyst solutions
KR102450747B1 (ko) * 2018-07-27 2022-10-06 주식회사 엘지화학 탄소나노튜브의 제조방법
US11982624B2 (en) 2020-10-26 2024-05-14 Battelle Savannah River Alliance, Llc Carbon fiber classification using raman spectroscopy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842621A (zh) * 2003-08-26 2006-10-04 昭和电工株式会社 卷曲碳纤维及其制备方法
CN1965114A (zh) * 2004-06-08 2007-05-16 昭和电工株式会社 气相生长的碳纤维、其制备方法和包含该碳纤维的复合材料
CN101563487A (zh) * 2006-12-21 2009-10-21 昭和电工株式会社 碳纤维和碳纤维制造用催化剂

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662413B2 (ja) * 1988-04-12 1997-10-15 昭和電工株式会社 気相成長炭素繊維の製造方法
RU94046136A (ru) * 1992-05-22 1996-09-27 Хайперион Каталайзис Интернэшнл Способ изготовления фибриллообразующего катализатора, катализатор для получения углеродных фибрилл /варианты/. способ получения углеродных фибрилл /варианты/, углеродный фибриллярный материал, носитель для катализатора, углеродная фибрилла
US5997832A (en) * 1997-03-07 1999-12-07 President And Fellows Of Harvard College Preparation of carbide nanorods
AU1603300A (en) * 1998-11-03 2000-05-22 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
JP2002308610A (ja) 2001-04-06 2002-10-23 Sony Corp カーボンナノチューブの精製方法
JP4964372B2 (ja) * 2001-07-17 2012-06-27 独立行政法人産業技術総合研究所 炭素材料の製造方法
AU2002357360A1 (en) * 2001-12-28 2003-07-24 The Penn State Research Foundation Method for low temperature synthesis of single wall carbon nanotubes
KR100540639B1 (ko) * 2003-10-06 2006-01-10 주식회사 카본나노텍 탄소나노선재 제조용 촉매의 제조방법과 탄소나노선재제조용 촉매
DE102004054959A1 (de) 2004-11-13 2006-05-18 Bayer Technology Services Gmbh Katalysator zur Herstellung von Kohlenstoffnanoröhrchen durch Zersetzung von gas-förmigen Kohlenverbindungen an einem heterogenen Katalysator
US7485600B2 (en) * 2004-11-17 2009-02-03 Honda Motor Co., Ltd. Catalyst for synthesis of carbon single-walled nanotubes
JP2006298684A (ja) * 2005-04-19 2006-11-02 Sony Corp 炭素系一次元材料およびその合成方法ならびに炭素系一次元材料合成用触媒およびその合成方法ならびに電子素子およびその製造方法
CN101911229A (zh) * 2008-01-17 2010-12-08 昭和电工株式会社 双电层电容器
JP5649269B2 (ja) 2008-06-18 2015-01-07 昭和電工株式会社 カーボンナノファイバー、その製造方法及び用途
JP5420982B2 (ja) * 2008-06-18 2014-02-19 昭和電工株式会社 炭素繊維及び炭素繊維製造用触媒
JP2010077007A (ja) * 2008-08-26 2010-04-08 Hiroki Ago カーボンナノチューブ形成用基材及び該基材に配向成長したカーボンナノチューブ並びにこれらの製造方法
JP2010173889A (ja) * 2009-01-29 2010-08-12 Showa Denko Kk カーボンナノチューブの製造装置、およびカーボンナノチューブの製造方法
KR100976174B1 (ko) * 2009-02-13 2010-08-16 금호석유화학 주식회사 얇은 다중벽 탄소나노튜브 제조용 촉매조성물 및 이의 제조방법
JPWO2012081249A1 (ja) * 2010-12-15 2014-05-22 昭和電工株式会社 炭素繊維の製造方法
JP5497110B2 (ja) * 2012-07-03 2014-05-21 昭和電工株式会社 複合炭素繊維の製造方法
KR101303061B1 (ko) * 2012-09-25 2013-09-03 금호석유화학 주식회사 다중벽 탄소나노튜브 제조용 촉매조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1842621A (zh) * 2003-08-26 2006-10-04 昭和电工株式会社 卷曲碳纤维及其制备方法
CN1965114A (zh) * 2004-06-08 2007-05-16 昭和电工株式会社 气相生长的碳纤维、其制备方法和包含该碳纤维的复合材料
CN101563487A (zh) * 2006-12-21 2009-10-21 昭和电工株式会社 碳纤维和碳纤维制造用催化剂

Also Published As

Publication number Publication date
US9114992B2 (en) 2015-08-25
US20140054179A1 (en) 2014-02-27
JP2014058439A (ja) 2014-04-03
TW201422863A (zh) 2014-06-16
KR20140026296A (ko) 2014-03-05
CN103626149A (zh) 2014-03-12
JP5551817B2 (ja) 2014-07-16
EP2700740A2 (en) 2014-02-26
EP2700740A3 (en) 2014-03-19
KR101521452B1 (ko) 2015-05-19

Similar Documents

Publication Publication Date Title
CN103626149B (zh) 碳纤维、碳纤维制造用催化剂和碳纤维的评价方法
Zhao et al. Eutectic synthesis of high‐entropy metal phosphides for electrocatalytic water splitting
US11801494B2 (en) Method for preparing single-atom catalyst supported on carbon support
Yang et al. Self-templated growth of vertically aligned 2H-1T MoS2 for efficient electrocatalytic hydrogen evolution
Park et al. One‐pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium‐ion batteries
Hoekstra et al. Base metal catalyzed graphitization of cellulose: A combined Raman spectroscopy, temperature-dependent X-ray diffraction and high-resolution transmission electron microscopy study
Zhang et al. Unconventional pore and defect generation in molybdenum disulfide: application in high‐rate lithium‐ion batteries and the hydrogen evolution reaction
Xu et al. Single-step synthesis of PtRu/N-doped graphene for methanol electrocatalytic oxidation
Xu et al. Electrospun Conformal Li4Ti5O12/C Fibers for High‐Rate Lithium‐Ion Batteries
Xiong et al. Facile single-step ammonia heat-treatment and quenching process for the synthesis of improved Pt/N-graphene catalysts
Sambathkumar et al. Solvothermal synthesis of Bi 2 S 3 nanoparticles for active photocatalytic and energy storage device applications
US20150093322A1 (en) Method for purifying multi-walled carbon nanotubes
Wu et al. Heterostructural composite of few‐layered MoS2/hexagonal MoO2 particles/graphene as anode material for highly reversible lithium/sodium storage
Lian et al. Co9S8 nanoparticles scaffolded within carbon-nanoparticles-decorated carbon spheres as anodes for lithium and sodium storage
Sun et al. Hierarchical SnS2/carbon nanotube@ reduced graphene oxide composite as an anode for ultra-stable sodium-ion batteries
Jin et al. Amorphous Transition Metal Sulfides Anchored on Amorphous Carbon‐Coated Multiwalled Carbon Nanotubes for Enhanced Lithium‐Ion Storage
Wang et al. Preparation and electrochemical performance of ultra-short carbon nanotubes
Li et al. Selectivity catalytic transfer hydrogenation of biomass-based furfural to cyclopentanone
JP2007012450A (ja) 電気化学素子の電極に用いる活物質の製造法。
Benitez et al. Porous Cr2O3@ C composite derived from metal organic framework in efficient semi-liquid lithium-sulfur battery
Shi et al. Hydrothermal Synthesis of ZnWO4 Hierarchical Hexangular Microstars for Enhanced Lithium‐Storage Properties
US20130337335A1 (en) Negative electrode material for a secondary battery and method for manufacturing same
Jin et al. Solvothermal Synthesis of Yolk–Shell CeVO4/C Microspheres as a High‐Performance Anode for Lithium‐Ion Batteries
Li et al. Flower‐like Nitrogen‐co‐doped MoS2@ RGO composites with excellent stability for supercapacitors
Skoda et al. Vanadium metal-organic frameworks derived VOx/Carbon nano-sheets and paperclip-like VOx/nitrogen-doped carbon nanocomposites for sodium-ion battery electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160518

Termination date: 20210823