CN103607231A - 高速移动环境下利用多天线的快速波束切换方法 - Google Patents

高速移动环境下利用多天线的快速波束切换方法 Download PDF

Info

Publication number
CN103607231A
CN103607231A CN201310618155.7A CN201310618155A CN103607231A CN 103607231 A CN103607231 A CN 103607231A CN 201310618155 A CN201310618155 A CN 201310618155A CN 103607231 A CN103607231 A CN 103607231A
Authority
CN
China
Prior art keywords
signal
antennas
noise ratio
speed mobile
many antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310618155.7A
Other languages
English (en)
Other versions
CN103607231B (zh
Inventor
孟银阔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201310618155.7A priority Critical patent/CN103607231B/zh
Publication of CN103607231A publication Critical patent/CN103607231A/zh
Application granted granted Critical
Publication of CN103607231B publication Critical patent/CN103607231B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明提供了一种高速移动环境下利用多天线的快速波束切换方法,包括:第一步骤:利用多天线构成扇区化天线;第二步骤:在360度的方向形成定向的波束,在通信中开始扇区化的扫描;第三步骤:当通过扫描而接收到的信号的信噪比高于预定信噪比时,停止扫描并使扇区化天线接收该信噪比高于预定信噪比的信号所对应的方位的信号,随后利用该信噪比高于预定信噪比的信号进行通信;第四步骤:当该方位的信号无法满足要求时返回第二步骤。

Description

高速移动环境下利用多天线的快速波束切换方法
技术领域
本发明涉及通信技术及多媒体应用技术领域,更具体地说,本发明涉及一种高速移动环境下利用多天线的快速波束切换方法。
背景技术
正交频分复用(OFDM)技术在传输过程中把一定带宽的信道划分为多个相互正交的子信道,从而把宽带问题变成了窄带问题,使多个码元在多个并行的子信道上并行的传输。在正交频分复用中子带之间的频谱允许有部分的重叠而不破坏相互间的正交性,因而具有更高的频谱利用率,这就使得OFDM成为了下一代无线通信中的核心技术。但是,要使用OFDM技术首先要保证子载波间的正交性,对子载波间正交性造成破坏的因素是频率的偏移,频率偏移会造成严重的子载波间的相互干扰,使OFDM的误码率性能大幅下降。因此,使用OFDM技术要首先解决频偏的问题。
无线通信中频率偏移主要有两个来源:1.)由收发信机之间的本振频率不完全一致造成的频率偏移。这类频率偏移对于一对收发信机来说是固定的,通过对比和估计就可以加以消除。2.)无线传输过程中电磁波入射到移动的用户或反射物而导致的多普勒频移。当无线传输的收发信机之间只有一条传播路径时,只可能存在一个多普勒频移,可以通过在接收端对该频偏加以估计并消除。
在高速移动环境下,无线传输的多径效应和高速移动所造成的多普勒频移相结合使得频偏的估计和信道的估计都变得十分困难。这种情况形成的原因是发射给同一用户的信号在无线传输的过程中分别经历了不同的传输路径,多径信号入射到高速移动的物体会具有不同的多普勒频移,此时的信道具有显著的频率选择性,同时还具有快时变的特性。对于这类信道的估计问题,目前已有大量的研究,针对具有单天线的接收机分别在时域或频域对信道建立了模型,并提出了相应的解决方法。一般地,对这类信道要先估计出频偏再加以补偿,消除了频偏的影响后再获得对信道的估计。对于单天线接收机来说,只能估计出一个频偏,如果有多个频偏存在时所估计出的频偏是多个频偏在接收机处的一个合成效果,该值会介于多个频偏之间,但和任何一个实际的频偏都不相符。因此,想用估计到的这个频偏去消除由多个频偏所带来的影响是不可能的,会给系统的误码率性能带来很大的影响,出现这种状况的根本原因是利用为处理单频偏而建立的模型已无法应对多频偏的问题。对于该问题目前已有的方法均无法从根本上解决多径和多个多普勒频移同时存在所造成的频率选择性衰落问题。
既然频率选择性衰落是由空域的多径传输造成的,那么由空域所产生的问题还是应该从空域入手才能使问题得到根本上的解决。在高速移动环境下,在用户周围分布的反射物相对较少,多径的数量会少一些,而且从相近的方向来的多径信号所具有的多普勒频移也会更相近一些,这就为从空域出发解决多径多频偏的问题提供了方便。当接收端设置了多天线后,可以利用多天线构成的扇区化天线来分离多路径的信号;此时多天线形成的扇区可以有效的分离来自于不同方向的多径信号,并能够随着接收端的高速移动及时的跟踪和改变扇区的对准方向以获得好的通信质量。
在高速无线通信系统中由于相干解调具有比较好的误码率性能而被广泛采用,但相干解调时需要在接收端获得信道的信息,这就要求对信道有准确的估计和跟踪。在参考文献[1]中,对于多普勒频移不很显著的情况,ICI被当作高斯噪声来处理,使用了接收天线的分集技术来改善系统的性能。而在参考文献[2]中,利用多径信道的时域及频域具有的相关性及带限性,对多普勒频移较小时的情况提出了一种鲁棒的信道估计算法,使信道的估计精度进一步提升。当移动的速度提高时,在一个OFDM符号内的无线信道变化已不能忽略,参考文献[3]中采用线性模型描述信道的时变性,为了减少运算量,在频域信道矩阵中只考虑存在ICI较大的相邻子载波,对残余能量较低的ICI给以了忽略。为应对多径快时变信道,有多种基于基展开模型的信道估计方法被提出,其中有参考文献[4-6]的复指数函数、参考文献[7-8]的多项式、参考文献[9]的椭圆函数,这些方法利用基函数对时变信道进行降阶逼近,从而把时变信道的估计问题转化为了参数估计问题。在参考文献[10]中,对各类基于基展开模型的信道估计方法进行了总结,给出了统一的线性均方误差估计(LMMSE)以及最小二乘估计(LS)。基于基展开模型的信道估计方法从时域拟合时变的信道,模型的阶数高低要和信道时变的快慢相适应。当需要估计的参数增多以及信道的相干时间变短时,要达到相同的估计精度就需要更多的导频信息,而且需要更高的计算复杂度。
对于高速移动环境下的信道估计的另一类方法是假设信道在频域服从高斯-马尔科夫过程(参考文献[11]),利用Kalman滤波器估计并跟踪多径快衰落信道(参考文献[12,13])。采用这类方法要频繁地插入训练序列,当信道变化加快时则难以跟踪信道的变化。与基于基展开模型的参数估计方法类似,这种基于频域AR模型并结合Kalman滤波的方法也需要在模型的阶数与估计的精度和频谱的利用率之间寻求一个折中。为了在不降低频谱利用率的情况下提高估计的精度,在参考文献[14,15]中提出了利用迭代对信道估计与检测方法,其中利用判决反馈的方式用检测符号代替部分的导频信息和训练序列。这类方法的研究重点是如何通过提高符号的判决精度来提高收敛速度,以及如何降低计算的复杂度。在目前的符号判决方法中,大多都是假设频域信道矩阵为块对角矩阵(参考文献[16,17]),这样做可以消除ICI中的大部分,而且不会使计算量增加过多。这种假设并不能完全消除ICI的影响,当移动速度较高时块对角矩阵的宽度会变大,使检测复杂度增加,迭代算法的计算量加大,无法适应高速移动的情况。
另外,在参考文献[18]中利用在OFDM符号中插入空子载波实现子载波间干扰的自消除,而在参考文献[19]中则是对发射的符号先进行预编码使频域的符号间具有了相关性,从而在接收端消除部分ICI的影响。这些方法的缺点是频谱利用率低,而且要求获得较多的已知信息,可应用在多普勒频移较小的场景,但无法应对高速移动下的多频偏问题。
国内对该问题展开研究的高校中有哈尔滨工程大学(参考文献[20])、西安电子科技大学(参考文献[21])等,所采取的方法也主要集中在以上介绍的方法。
以上介绍的方法从时域或频域出发的,以降低频谱利用率和增加接收机端的计算复杂度为代价获得了系统在低信噪比时的性能提升,但是却已经无法体现OFDM系统所具有的one-tap型均衡简单、易实现的优势。而且,当信噪比改善时,多普勒频移问题就成为了影响系统性能的主要因素,上述方法在理论模型的建立上并没有顾及到具有多个多普勒频偏的问题,系统的误码率会出现平台效应。
现有技术存在以下缺点:
(1)现有技术无法应对多频偏问题及保持信号的质量。在高速移动的环境下,现有的技术无法真正的解决多路径和多频偏问题,并且随着车辆的高速移动如何快速的跟踪有效的通信链路成了问题。多路径和多频偏问题使高速移动环境下的通信质量迅速下降,而现有的技术从时频域无法使问题得到根本性的解决。
(2)现有的技术需要复杂的计算快速跟踪性能差。现有的技术在高速移动环境下需要复杂的算法进行计算,以及通过对未来通信的方位的预测来实现对通信链路的跟踪,在应对多路径信号时对于跟踪的对象和跟踪的速度都成了问题。
参考文献列表
[1] Russell M,Stuber G L.Interchannel interference analysis of OFDM in amobile environment.IEEE 45th Vehicular Technology Conf.Chicago,USA,Jul1995.
[2] Li Y,Cimini L J,Sollenberger N R.Robust channel estimation for OFDMsystems with rapid dispersive fading channels.IEEE Trans Commun.vol.46,no.7,pp.902-915,Jul 1998.
[3] Jeon W G,Chang K H,Cao Y S.An equalization technique for orthogonalfrequency-division multiplexing systems in time-variant multipath channels.IEEETrans Commun.vol.47,no.1,pp.27-32,Jan 1999.
[4] Cirpan H A,Tsatsanis M K.Maximum likelihood blind channel estimation inthe presence of Doppler shifts.IEEE Trans.Signal Process.vol.47,no.6,pp.1559-1569,Jun 1999.
[5] Guillaud M,Slock D T M.Channel modeling and associated inter-carrierinterference equalization for OFDM systems with high Doppler spread.IEEE IntConf on Acoustics,Speech,and Signal Processing.Hong Kong,China,Apr 2003.
[6] Leus G.On the estimation of rapidly time-varying channels.12th EuropeanSignal Processing Conf.Vienna,Austria,Sep 2004.
[7] Borah D K,Hart B D.Frequency-selective fading channel estimation with apolynomial time-varying channel model.IEEE Trans Commun.vol.47,no.6,pp.862-873,Jun 1999.
[8] Tomasin S,Gorokhov A,Yang H,and et al.Iterative interferencecancellation and channel estimation for mobile OFDM.IEEE Trans WirelessCommun.vol.4,no.1,pp.238-245,Jan 2005.
[9] Zemen T, C F.Time-variant channel estimation usingdiscrete prolate spheroidal sequences.IEEE Trans Signal Process.vol.53,no.9,pp.3597-3607,Sep 2005.
[10] Tang Z,Cannizzaro R C,Leus G,and et al.Pilot-assisted time-varyingchannel estimation for OFDM systems.IEEE Trans Signal Processing.vol.55,no.5,pp.2226-2238,May 2007.
[11] Dong M,Tong L,Sadler B.Optimal insertion of pilot symbols fortransmissions over time-varying flat fading channels.IEEE Trans Signal Process.vol.52,no.5,pp.1403-1418,May 2004.
[12] Han K Y.Channel estimation for OFDM with fast fading channels bymodified Kalman filter.IEEE Trans Consumer Electronics.vol.50,no.2,pp.443-449,May 2004.
[13] Chen W,Zhang R.Kalman filter channel estimator for OFDM systems intime and frequency-selective fading environment.IEEE Int Conf on Acoustics,Speech,and Signal Processing,Montreal,Canada Canada,May 2004.
[14] Ancora A,Montalbano G,Dirk T M.Preconditioned iterative inter-carrierinterference cancellation forOFDM reception in rapidly varying channels,IEEE IntConf on Acoustics,Speech,and Signal Processing,Dallas,USA,Mar 2010.
[15] Hijazi H,Ros L.Polynomial estimation of time-varying multipath gainswith intercarrier interference mitigation in OFDM systems.IEEE Trans Veh Technol.vol.58,no.1,pp.140-151,Jan 2009.
[16] Schniter P.Low-complexity equalization of OFDM in doubly selectivechannels.IEEE Trans Signal Proces.vol.52,no.4,pp.1002-1011,Arp 2004.
[17] Muralidhar K,Hung L K,Liang Y C.Low-complexity equalizationmethods for OFDM systems in doubly selective channels,IEEE VehicularTechnology Conf,Marina Bay,Singapore,May 2008.
[18] Zhao Y,Ha G S.Intercarrier interference self-cancellation scheme forOFDM mobile communication systems.IEEE Tran Commun.vol.49,no.7,pp.1185-1191,Jul 2001.
[19] Zhang H,Li Y.Optimum frequency-domain partial response encoding inOFDM system.IEEE Trans Commun.vol.51,no.7,pp.1064-1068,July 2003.
[20] 任大孟,张曙.一种快变信道下OFDM系统的Kalman信道估计方法.哈尔滨工程大学学报,vol.28,no.11,pp.1268-1272,Nov2007.
[21] 郭漪,刘刚,葛建华.MIMO-OFDM系统中一种干扰抑制迭代信道估计算法.西安电子科技大学学报.vol.35,no.2,pp.196-200,Apr 2008.
发明内容
本发明所要解决的技术问题是针对现有技术中存在上述缺陷,提供一种能够在高速移动环境下利用多天线的快速波束切换方法。
为了实现上述技术目的,根据本发明,提供了一种高速移动环境下利用多天线的快速波束切换方法,其包括:第一步骤:利用多天线构成扇区化天线;第二步骤:在360度的方向形成定向的波束,在通信中开始扇区化的扫描;第三步骤:当通过扫描而接收到的信号的信噪比高于预定信噪比时,停止扫描并使扇区化天线接收该信噪比高于预定信噪比的信号所对应的方位的信号,随后利用该信噪比高于预定信噪比的信号进行通信;第四步骤:当该方位的信号无法满足要求时返回第二步骤。
优选地,构成扇区化天线的多天线被布成均匀圆阵。
优选地,利用该信噪比高于预定信噪比的信号进行的通信是采用正交频分复用技术的通信。
优选地,所述预定信噪比可设置。
优选地,多天线构成的扇区化天线只接收具有单一频偏的一条多径信号。
优选地,利用多天线构成的扇区化天线是利用六个至十二个天线构成的扇区化天线。
在本发明中,从问题本源出发,充分考虑了无线传输的空域多径特性,利用多天线从空域对无线多径信道建立数学模型,从空域区分多径信号,避免了多个多普勒频偏信号在接收端的叠加问题。这样以来,在接收端的信道估计和符号检测问题又成为了单径信道的传统问题,大大降低了处理的难度和复杂度,发挥出了OFDM应有的优势,也才能从根本上解决误码率的平台问题。
附图说明
结合附图,并通过参考下面的详细描述,将会更容易地对本发明有更完整的理解并且更容易地理解其伴随的优点和特征,其中:
图1示意性地示出了根据本发明优选实施例的高速移动环境下利用多天线的快速波束切换方法的流程图。
需要说明的是,附图用于说明本发明,而非限制本发明。注意,表示结构的附图可能并非按比例绘制。并且,附图中,相同或者类似的元件标有相同或者类似的标号。
具体实施方式
为了使本发明的内容更加清楚和易懂,下面结合具体实施例和附图对本发明的内容进行详细描述。
在高速移动的环境下,为了克服多路径多频偏的影响在高速移动车辆的接收端设置了多天线并构成了扇区化天线。扇区化天线可以完成对多路径信号的有效分离,但是不是每条路径的信号都能够满足通信的需求,在多条路径中需要通过切换来选择一条通信质量好的路径;同时,由于车辆的高速移动,有效的通信方位在发生变化时需要对通信的方位进行跟踪和切换,如果采用传统的手段则需要耗费较多的时间,而且算法的复杂度增加;而在本方案中利用多天线构成的扇区化天线是通过固定的电路来实现的,通过对来波方位扫描来获得可靠的通信方向,不需要复杂的计算和跟踪;根据通信的质量情况,当通信的质量不能满足要求时通过扇区的扫描获得新的路径方位,从而实现了对高速移动通信链路的快速获取,同时由于扇区是有一定宽度的,可以避免通信链路的频繁更换。
利用多天线结合空域的处理可以从空域把多径信号分离开,从而解决了多径衰落以及多频偏问题。在接收机端配置多天线后就使得接收机具备了空域处理的能力,但是要使空域处理能有效的分离多径信号,多天线必须对不同多径信号的来波方向形成波束,同时要对其他的方向形成零陷点以抑制干扰。
实际上,移动通信的载波频率已经足够高,以其波长衡量的话移动台处于绝对的远场区,到达移动台的多径信号都可看作是平面波。不同的路径信号也并不是一条线而应该是一束波,并且该波束有一定的宽度,只是波束内的电磁波具有相近的时延、衰落和频移特性。如果天线有足够的增益,实现可靠的通信只需要对其中的一条路径进行接收就可以了,并不需要把每条路径的信号都利用起来,即分别接收下来经处理后再合并,选择其中一条路径的信号有足够的信噪比就可以了。因此在多天线的波束成形中无须形成多个波束,只要形成一个波束就可以,这时的多天线其实上构成了扇区化天线。这时,通过适当的波束宽度可以对不同的路径和同源干扰形成有效的抑制,对该波束所对应的来波信号接收并对频偏和信道估计后就可以解调出所需要的信号。
在高速移动环境下,与高速移动终端的前进方向相比来波方向可以大致分为:从前方入射和从后方入射两种情形。从前方入射会有正频偏,从后方入射会有负频偏。从多频偏对通信的影响来看正、负频偏信号合成时对频偏估计造成困难会更大一些,而从相近方向来的信号其频偏性质接近影响要相对小一些。因此,对于高速移动终端的多径信号可以分为前向来波和后向来波,多天线的波束成形只要对准其中的一个方向即可。
另外,对于高速移动的情况,实现无线通信时对于波束的快速跟踪是一个相对困难的问题,如果通过算法对接收到的波束不断的调整和跟踪需要复杂的算法,而且要耗费较多的时间。但是如果是利用多天线所形成的扇区化天线的话,可以通过波束的快速切换始终对准信号强度最好的来波方向。在高速移动环境下,波束的切换与波束的跟踪相比会更加的简单高效。而且在高速移动环境下,对一个可用的波束不可能保持长时间的跟踪,在不同基站间的切换会非常的频繁。
多天线构成的扇区化天线及扇区的切换:考虑到波束对360度范围的一致性,天线阵应排布成均匀圆阵。此时,对于波束成形来说选择阵列中某一个方向的若干天线通过调整不同天线间的激励相位和幅度就可以使这些天线在该方向上形成具有一定增益的波束,同时对其他方向形成零陷点加以抑制。而通过对不同方位天线的选择,就实现了波束的切换功能,在切换过程中找到信号最好的一个来波方向进行接收和通信,就实现了对多径信号的分离作用。此时,接收到的波束内只可能有一个频偏,从而克服了多径多频偏对无线通信系统的影响。由于波束的成形和切换都是通过硬件电路来完成的,不需要复杂的算法,波束的成形和切换可以快速的完成,能够适应高速移动的应用环境。通过多天线构成的扇区化天线可以实现对多径信号的分离,同时可以通过扇区的快速切换在高速行进的过程中不断获得对通信链路的更新。
由于扇区化的天线有一定的波束宽度,在一次选择后可以使信号在扇区内可靠的通信的同时,不需要利用复杂的算法来获得新的路径方位以形成波束,只是当该扇区所对应的信号无法满足要求时才进行新的搜索,可以有效的避免不必要的频繁切换,使通信链路保持相对的稳定。
可以有以下考虑:
(1)利用多天线构成扇区化天线,通过扇区的切换可以实现对多路径信号的分离和选择。在高速移动环境下的多频偏问题利用现有的方法无法从根本上得到解决,而通过多天线构成的扇区化天线所形成的具有一定宽度的波束可以在空域把多径信号分离开,使接收端只收到了单路径信号,便于后续对频偏的估计和补偿。使用扇区化天线还可以从多路径信号中挑选符合通信质量要求的信号,可以使通信的质量得到保证。
(2)扇区化天线以固定的加权电路形成波束,避免了切换中的波束权值的复杂计算。多天线形成波束的过程中要经过对权值的计算过程,当需要快速切换时算法复杂;而在本方案中,多天线构成的扇区化天线的权值是利用电路实现的,在360度的方向可以形成等增益的波束,通过扫描来获得对可靠通信链路的搜索,避免了复杂算法的计算,同时由于电路可以实现高速度低延时,使波束能够快速切换。
(3)通过扇区的高速切换保持通信链路的质量。为了对多路径信号有效的分离,利用多天线构成的扇区化天线对某一条路径形成波束,当信号的质量满足要求时停止扫描,简化了搜索算法;同时,在高速移动环境对来波信号的跟踪是一个难题,但在使用了多天线构成的扇区化天线后,可以利用扇区的扫描来完成对信号的获取和跟踪,这相比于使用预测和跟踪的算法来说可以提高效率和节省资源,同时也能够保证通信链路的质量。
图1示意性地示出了根据本发明优选实施例的高速移动环境下利用多天线的快速波束切换方法的流程图。
如图1所示,根据本发明优选实施例的高速移动环境下利用多天线的快速波束切换方法包括:
第一步骤S1:利用多天线构成扇区化天线;优选地,构成扇区化天线的多天线被布成均匀圆阵;
第二步骤S2:在360度的方向形成定向的波束(例如,可通过硬件电路在360度的方向形成定向的波束),在通信中开始扇区化的扫描;
第三步骤S3:当通过扫描而接收到的信号的信噪比高于预定信噪比时,停止扫描并使扇区化天线接收该信噪比高于预定信噪比的信号所对应的方位的信号,随后利用该信噪比高于预定信噪比的信号进行通信(例如,采用正交频分复用技术的通信);即,当扫描到质量足够好的方位时即停止扫描并进行正常的通信;
第四步骤S4:当该方位的信号无法满足要求时返回第二步骤S2;由此开始新的扫描,寻找更好的方位以确保在高速移动的过程中通信的质量始终都能够得到保证。
虽然以采用正交频分复用技术的通信示出了本发明的具体示例,但是对于存在与采用正交频分复用技术的通信相同问题的其它通信方式,也可以应用本发明的方案。
优选地,用户可以设置所述预定信噪比。而且,在应用时,用户可以根据具体通信条件和通信设备对预定信噪比进行任意适当设置。
优选地,多天线构成的扇区化天线可以只接收具有单一频偏的一条多径信号。
例如,在具体实施例中,利用多天线构成的扇区化天线是利用三个天线构成的扇区化天线,此时扇区化天线结构最简单,可以有效简化结构。但是,在其它实施例中,例如利用多天线构成的扇区化天线是利用四个或者更多天线构成的扇区化天线。优选地,利用多天线构成的扇区化天线是利用六个至十二个天线构成的扇区化天线,此时可以实现结构和效果的最佳折中。
并且,实验表明,本发明优选实施例提供的上述方法尤其适用于移动速度超过60km/h(千米每小时)的对象(例如行驶的车辆上的乘客)的采用正交频分复用技术的通信;换言之,上述方法对移动速度超过60km/h的对象的正交频分复用通信的通信质量改善尤其显著。
在高速移动的环境下,由于无线通信的多径效应会在高速移动的车辆上形成多个频偏;为了有效的克服多路径信号对高速移动的车辆所造成的多频偏问题,可以采用多天线所构成的扇区化天线,而为了获得好的通信质量需要在不同的路径即来波方向间进行切换,在本发明中通过利用多天线形成的扇区的快速切换可以实现快速跟踪来波中信号最强的波束,同时还保证了所接收到的信号只有单频偏,从而在快速跟踪来波信号的同时也保证了使用OFDM技术时可以获得很好的性能。
因此,本发明至少具有以下优势:
(1)利用多天线构成了扇区化的天线,可以预先设定扇区的宽度以简化多天线形成扇区的求解过程。现有技术是通过算法估计并对来波方向进行跟踪的,当使用多天线时需要对估计出的方位形成波束并获得波束的权值向量,计算过程较为耗时。而本发明中利用多天线形成的扇区化天线则可以通过使用圆形阵列和固定的电路通过电路的切换对不同的方向形成等增益的波束,这样就避免了计算的过程有利于应对高速移动环境中的快速切换问题。
(2)通过扇区的快速扫描来完成对不同来波方位的切换,不需要长时间的跟踪和计算。对于高速移动环境下的多路径和多频偏问题,需要及时的更换新的一条路径,这时不同路径信号的方位差别较大,已不能使用传统的对路径的跟踪和预测的算法,需要彻底的寻找一条全新的路径。如果采用现有技术则要有相对较长的搜索过程,而在本方案中可以利用扇区化天线的扫描时间短、电路切换快速的优势,可以迅速的获得新的更好质量的通信路径进行通信,通过扇区的切换实现了对高质量通信路径的跟踪和切换,即保证了单一路径和单频偏又能够使通信的质量得以保证。
(3)由于扇区化具有一定的宽度,可以保证在获得来波方向的同时避免频繁的切换。由多天线构成的扇区化天线的波束有一定的宽度,当扫描到质量符合要求的信号时就可以停止扫描,这样以来只要信号的来波方向落在扇区的方位内就可以有效的通信,而不需要频繁的进行扫描,只是在该路径的信号不能满足通信的要求时才需要进行新的一论扫描以获得新的来波信号,避免了过多的更换信号对通信连续性的影响。
此外,需要说明的是,除非特别说明或者指出,否则说明书中的术语“第一”、“第二”、“第三”等描述仅仅用于区分说明书中的各个组件、元素、步骤等,而不是用于表示各个组件、元素、步骤之间的逻辑关系或者顺序关系等。
可以理解的是,虽然本发明已以较佳实施例披露如上,然而上述实施例并非用以限定本发明。对于任何熟悉本领域的技术人员而言,在不脱离本发明技术方案范围情况下,都可利用上述揭示的技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (6)

1.一种高速移动环境下利用多天线的快速波束切换方法,其特征在于包括:
第一步骤:利用多天线构成扇区化天线;
第二步骤:在360度的方向形成定向的波束,在通信中开始扇区化的扫描;
第三步骤:当通过扫描而接收到的信号的信噪比高于预定信噪比时,停止扫描并使扇区化天线接收该信噪比高于预定信噪比的信号所对应的方位的信号,随后利用该信噪比高于预定信噪比的信号进行通信;
第四步骤:当该方位的信号无法满足要求时返回第二步骤。
2.根据权利要求1所述的高速移动环境下利用多天线的快速波束切换方法,其特征在于,构成扇区化天线的多天线被布成均匀圆阵。
3.根据权利要求1或2所述的高速移动环境下利用多天线的快速波束切换方法,其特征在于,利用该信噪比高于预定信噪比的信号进行的通信是采用正交频分复用技术的通信。
4.根据权利要求1或2所述的高速移动环境下利用多天线的快速波束切换方法,其特征在于,所述预定信噪比可设置。
5.根据权利要求1或2所述的高速移动环境下利用多天线的快速波束切换方法,其特征在于,多天线构成的扇区化天线只接收具有单一频偏的一条多径信号。
6.根据权利要求1或2所述的高速移动环境下利用多天线的快速波束切换方法,其特征在于,利用多天线构成的扇区化天线是利用六个至十二个天线构成的扇区化天线。
CN201310618155.7A 2013-11-27 2013-11-27 高速移动环境下利用多天线的快速波束切换方法 Expired - Fee Related CN103607231B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310618155.7A CN103607231B (zh) 2013-11-27 2013-11-27 高速移动环境下利用多天线的快速波束切换方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310618155.7A CN103607231B (zh) 2013-11-27 2013-11-27 高速移动环境下利用多天线的快速波束切换方法

Publications (2)

Publication Number Publication Date
CN103607231A true CN103607231A (zh) 2014-02-26
CN103607231B CN103607231B (zh) 2017-03-01

Family

ID=50125433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310618155.7A Expired - Fee Related CN103607231B (zh) 2013-11-27 2013-11-27 高速移动环境下利用多天线的快速波束切换方法

Country Status (1)

Country Link
CN (1) CN103607231B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016106622A1 (zh) * 2014-12-31 2016-07-07 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
WO2018137451A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 一种波束切换方法及相关设备
CN109155658A (zh) * 2016-06-23 2019-01-04 英特尔公司 毫米波(mmwave)蜂窝系统中的极快联合基站(bs)和用户设备(ue)波束自适应
WO2019096040A1 (en) * 2017-11-15 2019-05-23 Jrd Communication (Shenzhen) Ltd Improvements in or relating to interference mitigation

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736117A (zh) * 2003-07-24 2006-02-15 摩托罗拉公司 用于在高速环境中进行无线通信的方法和装置
JP2008048338A (ja) * 2006-08-21 2008-02-28 Toshiba Corp 信号受信システム及び信号受信方法
CN101808341A (zh) * 2008-12-31 2010-08-18 英特尔公司 无线网络中用于波束精化的布置
CN101843125A (zh) * 2007-10-29 2010-09-22 高通股份有限公司 用于自配置网络关系的方法和装置
CN102326338A (zh) * 2009-02-23 2012-01-18 诺基亚公司 用于功能受限装置的波束成形训练
CN103199906A (zh) * 2013-03-14 2013-07-10 东南大学 毫米波高速通信系统波束扇区侦听的空间复用方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1736117A (zh) * 2003-07-24 2006-02-15 摩托罗拉公司 用于在高速环境中进行无线通信的方法和装置
JP2008048338A (ja) * 2006-08-21 2008-02-28 Toshiba Corp 信号受信システム及び信号受信方法
CN101843125A (zh) * 2007-10-29 2010-09-22 高通股份有限公司 用于自配置网络关系的方法和装置
CN101808341A (zh) * 2008-12-31 2010-08-18 英特尔公司 无线网络中用于波束精化的布置
CN102326338A (zh) * 2009-02-23 2012-01-18 诺基亚公司 用于功能受限装置的波束成形训练
CN103199906A (zh) * 2013-03-14 2013-07-10 东南大学 毫米波高速通信系统波束扇区侦听的空间复用方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016106622A1 (zh) * 2014-12-31 2016-07-07 深圳市大疆创新科技有限公司 移动物体及其天线自动对准方法、系统
US10516454B2 (en) 2014-12-31 2019-12-24 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
US10523293B2 (en) 2014-12-31 2019-12-31 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
US11057087B2 (en) 2014-12-31 2021-07-06 SZ DJI Technology Co., Ltd. Mobile object and antenna automatic alignment method and system thereof
CN109155658A (zh) * 2016-06-23 2019-01-04 英特尔公司 毫米波(mmwave)蜂窝系统中的极快联合基站(bs)和用户设备(ue)波束自适应
CN109155658B (zh) * 2016-06-23 2022-05-10 苹果公司 毫米波(mmwave)蜂窝系统中的极快联合基站(bs)和用户设备(ue)波束自适应
WO2018137451A1 (zh) * 2017-01-26 2018-08-02 华为技术有限公司 一种波束切换方法及相关设备
US10873382B2 (en) 2017-01-26 2020-12-22 Huawei Technologies Co., Ltd. Beam switching method and related device
US11336359B2 (en) 2017-01-26 2022-05-17 Huawei Technologies Co., Ltd. Beam switching method and related device
WO2019096040A1 (en) * 2017-11-15 2019-05-23 Jrd Communication (Shenzhen) Ltd Improvements in or relating to interference mitigation

Also Published As

Publication number Publication date
CN103607231B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
JP3849881B2 (ja) アンテナアレイのトランシーバアルゴリズム
EP2437448B1 (en) Method for Processing Received OFDM Data Symbols and OFDM Baseband Receiver
JP5351926B2 (ja) 無線通信装置
US8254434B2 (en) OFDM wireless mobile communication system and method for estimating SNR of channel thereof
EP1734670A2 (en) Apparatus and method for transmitting and receiving pilot signal using multiple antennas in a mobile communication system
WO2005024995A3 (en) Communication system and method for channel estimation and beamforming using a multi-element array antenna
EP0903018A1 (en) Method of and apparatus for interference rejection combining and downlink beamforming in a cellular radiocommunications system
WO2007108629A1 (en) Apparatus and method for canceling neighbor cell interference in broadband wireless communication system
CN109600327B (zh) 一种基于虚部干扰利用的信道估计方法
CN103607231A (zh) 高速移动环境下利用多天线的快速波束切换方法
KR20130028675A (ko) 잡음 비율 추정 메커니즘 및 그 동작 방법에 대한 모바일 통신 시스템
CN109600157B (zh) 一种基于信噪比估计的自适应正交恢复编码方法
WO2011143859A1 (zh) 一种解调方法及装置
Wu et al. Efficient decision-directed channel estimation for OFDM systems with transmit diversity
Chen et al. Transmission Protocol and Beamforming Design for RIS-Assisted Symbiotic Radio over OFDM Carriers
CN103607362B (zh) 利用多天线消除高速移动环境下多频偏的方法
Nakamura et al. A study on complexity reduction of zero-forcing ICI cannceller in mobile reception of OFDM
Seo et al. Maximum ratio combining for OFDM systems with cochannel interference
Taoka et al. Field experiments on MIMO multiplexing with peak frequency efficiency of 50 bit/second/Hz using MLD based signal detection for OFDM high-speed packet access
CN113890797B (zh) 一种基于短包通信传输过程的信道估计方法
CN103491031B (zh) 时域cir估计电路和估计方法
TWI411257B (zh) 正交頻分複用系統中通道估計的裝置及方法
Cheema et al. A low complexity fine timing offset and channel estimation algorithm for cooperative diversity OFDM system
KR101725664B1 (ko) Mimo 시스템 및 그것을 기반으로 하는 송신 신호 전력 제어 방법
CN104065607A (zh) 一种基于差分进化算法实现多址信道有效阶数估计的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170301

Termination date: 20191127

CF01 Termination of patent right due to non-payment of annual fee