CN103605234A - Quantum dot color filter and liquid crystal display device - Google Patents

Quantum dot color filter and liquid crystal display device Download PDF

Info

Publication number
CN103605234A
CN103605234A CN201310629355.2A CN201310629355A CN103605234A CN 103605234 A CN103605234 A CN 103605234A CN 201310629355 A CN201310629355 A CN 201310629355A CN 103605234 A CN103605234 A CN 103605234A
Authority
CN
China
Prior art keywords
msub
msup
quantum dot
mrow
prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310629355.2A
Other languages
Chinese (zh)
Inventor
谢相伟
孙贤文
濮怡莹
付东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TCL Corp
Original Assignee
TCL Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TCL Corp filed Critical TCL Corp
Priority to CN201310629355.2A priority Critical patent/CN103605234A/en
Publication of CN103605234A publication Critical patent/CN103605234A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Abstract

The invention discloses a quantum dot color filter and a liquid crystal display device. The quantum dot color filter comprises a glass substrate, a quantum dot conversion layer, a protective layer and a conducting layer, the glass substrate, the quantum dot conversion layer, the protective layer and the conducting layer are arranged upwards in sequence, and black matrixes used for separating different areas of the quantum dot conversion layer are arranged in the quantum dot conversion layer. The glass substrate, the quantum dot conversion layer, the protective layer and a conducting film are arranged in sequence, the black matrixes are used for separating the different areas of the quantum dot conversion layer, the efficiency of light with different colors is maximized through the materials of the quantum dot conversion layer, and the use ratio of a light source and white light expression are improved.

Description

Quantum dot color filter and liquid crystal display device
Technical Field
The invention relates to the field of liquid crystal display, in particular to a quantum dot color filter and a liquid crystal display device.
Background
Quantum dots (Quantum dots), also known as nanocrystals, are nanoparticles composed of group II-VI or group III-V elements with semiconductor nanostructures that confine excitons in three spatial directions. The particle size of the quantum dot is generally between 1-10 nm, and because electrons and holes are limited by quanta, a continuous energy band structure is changed into a discrete energy level structure with molecular characteristics, and the quantum dot can emit fluorescence after being excited.
The quantum dots have unique photoelectric characteristics, and because the size of the crystal grains is small enough, the energy levels of a valence electron band and a conduction band are in a discontinuous state, the quantum dots are mainly characterized in that the energy level gap is changed along with the size of the crystal grains, and the larger the crystal grains are, the smaller the energy gap is; the smaller the grains, the larger the energy gap. That is, the smaller the quantum dot, the shorter the wavelength of the stimulated light, and the larger the quantum dot, the longer the wavelength of the stimulated light.
Therefore, the quantum dots can generate high-purity light with different colors, and can be applied to the field of display, the color gamut can reach 100%, and the quantum dots have the characteristic of high color gamut; and the color adjustment is very flexible, and different colors can be realized by changing the size of the quantum dot material.
In the prior art, quantum dots are mainly applied to a liquid crystal display as a part of a backlight module, for example, quantum dot particles are packaged in a single lamp tube and arranged on one side of a blue light LED, and the quantum dot particles are irradiated by the blue light LED to emit light; the other scheme is that quantum dot particles are packaged in a membrane material and placed on the light-emitting surface of the light guide plate, and the quantum dot film is irradiated by the LED to emit light.
However, in the liquid crystal display device using quantum dots in the prior art, the efficiency cannot be maximized, the utilization rate of the light source needs to be improved, and the white light performance is still insufficient.
Accordingly, the prior art is yet to be improved and developed.
Disclosure of Invention
In view of the above-mentioned deficiencies of the prior art, it is an object of the present invention to provide a quantum dot color filter and a liquid crystal display device, which can maximize the efficiency of different colors of light, and improve the utilization rate of light source and white light performance.
The technical scheme of the invention is as follows:
the quantum dot color filter comprises a glass substrate, a quantum dot conversion layer, a protective layer and a conductive layer which are sequentially arranged upwards, wherein a black matrix used for separating different areas of the quantum dot conversion layer is arranged in the quantum dot conversion layer.
The quantum dot color filter is characterized in that the material of the quantum dot conversion layer is composed of II-VI or III-V group elements.
The quantum dot color filter is characterized in that the quantum dot conversion layer comprises a red quantum dot conversion layer, a green quantum dot conversion layer and a blue light-transmitting area.
The quantum dot color filter has a red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd a blue light-transmitting regionArea ABSatisfies the following conditions: 0.4 < AR/AG< 1 and 0.1 < AB/AG<0.9。
The quantum dot color filter has a red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions: a is more than 0.5R/AG< 0.6 and 0.7 < AB/AG<0.8。
The quantum dot color filter is characterized in that the numeric range of white light color coordinates (X, Y) synthesized by the quantum dot conversion layer is as follows: x is more than 0.25 and less than 0.35; meanwhile, the value range of Y is more than 0.24 and less than 0.35.
The quantum dot color filter has a red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <msup> <mi>R</mi> <mrow> <mo>&prime;</mo> <mo>*</mo> </mrow> </msup> </msub> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>1.0000</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>4.5907</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0.0601</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> wherein,
bR′=1-rR′-gR′;bG′=1-rG′-gG′;bB′=1-RB′-gB′
(rR′,gR′)、(rG′,gG′)、(rB′,gB′) The chromaticity coordinates of R ', G' and B 'are respectively, and the R', G 'and B' are respectively the spectrums of newly stimulated three primary colors of red, green and blue after the three primary colors transmit through the quantum dot color filter.
A liquid crystal display device, wherein it comprises the quantum dot color filter as described above.
The liquid crystal display device comprises a liquid crystal display unit and a backlight unit, wherein the liquid crystal display unit is arranged above the backlight unit, the backlight unit comprises a reflector, a light source device and a light guide assembly, and the liquid crystal display unit comprises a lower polarizer, a liquid crystal box, a quantum dot color filter, an upper polarizer and an anti-glare layer which are sequentially arranged.
In the liquid crystal display device, the light source device is a side-emitting type or a direct type.
Has the advantages that: according to the invention, the glass substrate, the quantum dot conversion layer, the protective layer and the conductive film are sequentially arranged, the black matrix is used for separating different areas of the quantum dot conversion layer, the quantum dot conversion layer material is used for realizing the maximization of the efficiency of light with different colors, and the utilization rate of a light source and the white light performance are improved.
Drawings
FIG. 1 is a schematic structural diagram of a quantum dot color filter according to a preferred embodiment of the invention.
Fig. 2 is a schematic structural diagram of a quantum dot conversion layer in a quantum dot color filter in embodiment 1 of the invention.
Fig. 3 is a schematic structural diagram of a quantum dot conversion layer in the quantum dot color filter of embodiment 2 of the present invention.
FIG. 4 is a schematic diagram of a process for preparing a quantum dot color filter according to the present invention.
FIG. 5 is a schematic structural diagram of a liquid crystal display device according to a preferred embodiment of the invention.
Detailed Description
The present invention provides a quantum dot color filter and a liquid crystal display device, and the present invention will be described in further detail below in order to make the objects, technical solutions, and effects of the present invention clearer and clearer. It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Referring to fig. 1, fig. 1 is a schematic structural diagram of a quantum dot color filter according to a preferred embodiment of the present invention, as shown in the figure, it includes: a glass substrate 100, a quantum dot conversion layer 101, a protective layer 102, and a conductive film 103, which are disposed in this order upward.
The glass substrate 100 is used as a carrier of a color filter, and alkali-free glass, preferably alkali-free glass with high light transmittance, can be used.
The protective layer 102 may be made of epoxy resin or acrylic resin, and has the main functions of increasing surface flatness, isolating liquid crystal, and preventing the quantum dot conversion layer material from being contaminated.
The conductive film 103 is preferably an ITO conductive film, which generally requires low resistance and low stress, and is used as an electrode material of a color filter.
As shown in fig. 1, the quantum dot conversion layer 101 includes a plurality of red quantum dot conversion layers 201, a plurality of green quantum dot conversion layers 301, and a plurality of blue light-transmitting regions 401, each of which is partitioned by a black matrix 501. The black matrix 501 may be a metal film or a resin type black film, and is mainly used to reduce light interference of adjacent pixels and avoid light leakage.
Referring to fig. 4, fig. 4 is a schematic diagram of a process for manufacturing a quantum dot color filter, where the specific structure of the quantum dot color filter obtained by the final manufacturing process is as follows: the glass substrate 100 is arranged on the bottom layer, the black matrix 5011 and the partition walls 5012 arranged on the black matrix 5011 are arranged above the glass substrate 100 at intervals, the black matrix 5011 and the partition walls 5012 form the black matrix 501, a red quantum dot conversion layer, a green quantum dot conversion layer or a blue light transmission region is arranged between the adjacent black matrices 501, and meanwhile, in the preparation process, the red, green and blue inks of the quantum dots are uniformly added in two parts and respectively subjected to UV or thermal curing treatment, so that the corresponding red quantum dot conversion layer, green quantum dot conversion layer and blue light transmission region can be divided into an upper layer and a lower layer, the lower layer is formed by first UV or thermal curing forming, and the upper layer is formed by second UV or thermal curing forming. The portion between the adjacent black matrixes 5011 is narrow and the portion between the adjacent partition walls 5012 is wide, and the areas of the red quantum dot conversion layer, the green quantum dot conversion layer, and the blue light-transmitting region referred to in the present invention each refer to the area of the wide portion, i.e., the area of the portion between the adjacent partition walls 5012. A protective layer 102 is provided over the partition wall 5012, and an ITO conductive layer 103 is provided over the protective layer 102, thereby forming a color filter as described above. It should be noted that the area ratios of the red quantum dot conversion layer, the green quantum dot conversion layer, and the blue light-transmitting region shown in the drawings are merely illustrative and do not represent actual ratio requirements in the present invention.
The color filter is arranged in the liquid crystal display device, the light source device emits light, and after the light passes through the color filter, the light wave with a small range of wave bands to be passed can be accurately selected, and other wave bands which are not desired to be passed are reflected, so that human eyes can receive saturated color light.
The material (quantum dot material) of the quantum dot conversion layer 101 may be composed of elements of different groups in this embodiment. Specifically, the material of the quantum dot conversion layer 101 may be composed of ii-vi or iii-v group elements, and forms a quantum dot confinement effect. For example, the quantum dot material may be selected from groups II-VI, but is not limited to: CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, HgS, HgSe, HgTe; or may be selected from group iii-v, but is not limited to GaN, GaP, GaAs, ALN, AlP, AlAs, InN, InP, InAS, GaNP, the core and shell of the quantum dot material being composed according to the elements previously described.
Another important characteristic of the invention is that the area A of the red quantum dot conversion layer is controlledRGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBThe white light source solves the problem of white light color coordinate drift caused by different luminous efficiencies of quantum dot materials, and achieves excellent white light performance by setting a reasonable area ratio.
The red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <msup> <mi>R</mi> <mrow> <mo>&prime;</mo> <mo>*</mo> </mrow> </msup> </msub> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>1.0000</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>4.5907</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0.0601</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> wherein,
bR′=1-rR′-gR′;bG′=1-rG′-gG′;bB′=1-rB′-gB′
(rR′,gR′)、(rG′,gG′)、(rB′,gB′) The chromaticity coordinates of R ', G' and B 'are respectively, and the R', G 'and B' are respectively the spectrums of newly stimulated three primary colors of red, green and blue after the three primary colors transmit through the quantum dot color filter.
The calculation process is as follows:
in the CIE1931 standard colorimetric observer (CIE-RGB) table, primary reference color stimuli employ monochromatic radiations of the three primary colors red (R), green (G), blue (B) with wavelengths of 700nm, 546.1nm, 435.8nm, respectively, using a luminance ratio of 1.0000: 4.5907: 0.0601, can match out isoenergetic white light (E light source, color temperature 5500K). In the invention, the spectra of newly stimulated three primary colors of red, green and blue (abbreviated as R ', G' and B 'respectively) after the three primary colors of red, green and blue transmit through the quantum dot color filter are R' (λ), G '(λ) and B' (λ), and the area ratio of the three primary colors of the quantum dot color filter is adjusted to be A in order to mix the isoenergetic white lightR:AG:AB
AR:AG:ABThe derivation process of (1) is as follows:
according to the basic principle of colorimetryThe rg chromaticity coordinates (R) of R ', G ', B ' can be obtainedR′,gR′)、(rG′,gG′)、(rB′,gB′) Comprises the following steps:
<math> <mrow> <msub> <mi>r</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>g</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>R</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>r</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>g</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>G</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>r</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>g</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> <mrow> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>r</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>g</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> <mo>+</mo> <msup> <mrow> <mo>&Integral;</mo> <mi>B</mi> </mrow> <mo>&prime;</mo> </msup> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>b</mi> <mo>&OverBar;</mo> </mover> <mi></mi> <mrow> <mo>(</mo> <mi>&lambda;</mi> <mo>)</mo> </mrow> <mi>d&lambda;</mi> </mrow> </mfrac> <mo>;</mo> </mrow> </math>
wherein
Figure BDA0000426143640000071
The color matching function can be found in the CIE1931 standard observer color matching table.
The equivalent R, G, B brightness after mixing is:
R=rR′*AR+rG′*AG+rB′*AB
G=gR′*AR+gG′*AG+gB′*AB;
B=bR′*AR+bG′*AG+bB′*AB′
bR′=1-rR′-gR′;bG′=1-rG′-gG′;bB′=1-rB′-gB′
since the luminance ratio of R, G, B is 1.0000: 4.5907: 0.0601, yielding:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <msup> <mi>R</mi> <mrow> <mo>&prime;</mo> <mo>*</mo> </mrow> </msup> </msub> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>1.0000</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>4.5907</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0.0601</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
from this linear system of equations (1), A can be solvedR、AG、AB。
If R ', G ' and B ' are strictly monochromatic lights, the brightness values are respectively KR′、KG′、KB′Respectively, wavelength is λR、λG、λBThen, the linear equation set (1) is:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>A</mi> <mi>R</mi> </msub> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>1.0000</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mi>R</mi> </msub> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>4.5907</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>A</mi> <mi>R</mi> </msub> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0601</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
a in the above linear equation system (2)R、AG、ABA is used as a1、a2、a3、b1、b2、b3、c1、c2、c3The abbreviation is:
A R a 1 + A G a 2 + A B a 3 = 1.0000 A R b 1 + A G b 2 + A B b 3 = 4.5907 A R c 1 + A G c 1 + A B c 1 = 0.0601 ;
then A can be obtainedR、AG、ABComprises the following steps:
A R = ( c 3 - 0.0601 a 3 ) ( b 2 c 3 - b 3 c 2 ) - ( 4.5907 c 3 - 0.0601 b 3 ) ( a 2 c 3 - a 3 c 2 ) ( a 1 c 3 - a 3 c 1 ) ( b 2 c 3 - b 3 c 2 ) - ( a 2 c 3 - a 3 c 2 ) ( b 1 c 3 - b 3 c 1 ) ;
A G = ( c 3 - 0.0601 a 3 ) ( b 1 c 3 - b 3 c 1 ) - ( 4.5907 c 3 - 0.0601 b 3 ) ( a 1 c 3 - a 3 c 1 ) ( a 2 c 3 - a 3 c 2 ) ( b 1 c 3 - b 3 c 1 ) - ( a 1 c 3 - a 3 c 1 ) ( b 2 c 3 - b 3 c 2 ) ;
A b = ( c 2 - 0.0601 a 2 ) ( b 1 c 2 - b 2 c 1 ) - ( 4.5907 c 2 - 0.0601 b 2 ) ( a 1 c 2 - a 2 c 1 ) ( a 3 c 2 - a 2 c 3 ) ( b 1 c 2 - b 2 c 1 ) - ( a 1 c 2 - a 2 c 1 ) ( b 3 c 2 - b 2 c 3 ) ;
wherein, <math> <mrow> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>a</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open='(' close=')'> <mtable> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>r</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>g</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>K</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>&lambda;</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
for example, assume that R ', G ', B ' are strictly monochromatic lights with respective wavelengths λR′、λG′、λB′446nm, 529nm, 628nm, R ', C ' conversion efficiency is 80%, B ' conversion efficiency is 100%, and luminance is: kR′=0.8、KG′=0.8、KB' =1, look up CIE1931 standard observer colour matching table:
R′)=1.0000、r(λG′)=-0.496、r(λB′)=-0.033;
g(λR′)=0、g(λG′)=1.489、g(λB′)=0.003;
b(λR′)=0、b(λG′)=0.007、b(λB′)=1.029;
substituting into formula (2) to obtain AR=3.1630、AG=3.8538、AB=0.0374;
To obtain AR:AG:AB=1:1.21840.0118, and the mixture ratio is shown in figure 2.
Preferably, the conversion layer area A of the red quantum dotsRGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions: 0.4 < AR/AG< 1 and 0.1 < AB/AGLess than 0.9, i.e. satisfying 0.4 < A simultaneouslyR/AG< 1 and 0.1 < AB/AG<0.9。
More preferably, the area ratio satisfies: a is more than 0.5R/AG< 0.6 and 0.7 < AB/AGIs less than 0.8. At the above area ratio, excellent white light expression is achieved. Meanwhile, the efficiency maximization of light with different colors can be realized, and the utilization rate of a light source is greatly improved. Experiments prove that a more preferable specific proportion is as follows: a. theR/AG=0.55 and aB/AG= 0.75; the white light is most reasonable under the area proportion, the white light performance is most excellent, and meanwhile, the luminous efficiency is highest.
The arrangement of the sub-pixels of the quantum dot conversion layer in the present invention may be the arrangement shown in fig. 2, that is, three sub-pixels are sequentially arranged in a row: r, G, B, it may be G, R, B or R, B, G, or the arrangement shown in fig. 3, i.e. two sub-pixels are arranged in a row to form a group of pixel units, and two rows of pixel units are formed with another group of pixel units, i.e. G, R is arranged above, B, G is arranged below, G, B is arranged above, and R, G is arranged below in fig. 2, or it may be arranged according to other existing arrangement, for example, the upper and lower groups of pixel units in fig. 2 are arranged in a staggered manner, or rotated, inverted, or inverted, etc., which only needs aR、AG、ABThe proportion is satisfied.
The value range of the white light color coordinate synthesized by the quantum dot conversion layer is as follows: x is less than 0.35 and greater than 0.25; the value range of Y is that Y is less than 0.35 and more than 0.24.
The glass substrate in this embodiment may be alkali-free glass, and preferably alkali-free glass having high light transmittance.
The black matrix can be a metal film or a resin type black film, and is mainly used for reducing light interference of adjacent pixels and avoiding the light leakage phenomenon.
The protective layer can be made of epoxy resin or acrylic resin polymer materials, and has the main functions of increasing surface flatness, isolating liquid crystal and preventing the quantum dot conversion layer materials from being polluted. The conductive layer is preferably an ITO conductive layer.
The quantum dot color filter described in this embodiment can be manufactured by photolithography, printing, inkjet printing, and other methods, and the present invention provides a method for manufacturing a quantum dot color filter by inkjet printing, specifically, as shown in fig. 4, the method includes the steps of:
s1, coating the black matrix 5011 and the partition walls 5012 on the glass substrate 100 (the black matrix and the partition walls form a black matrix);
s2, forming the processed partition wall 5012 by photolithography (exposure, development, baking) and the like;
s3, performing plasma surface treatment on the glass substrate 100 and the partition 5012;
s4, ink-jet printing of quantum dot red, green and blue inks;
s5, UV or heat curing and forming;
s6, ink-jet printing of quantum dot red, green and blue inks;
s7, UV or heat curing and forming;
s8, spraying a protective layer 102;
s9, an ITO conductive film is provided on the protective layer 102 to form an ITO conductive layer 103.
Based on the quantum dot color filter, the invention also provides a liquid crystal display device which comprises the quantum dot color filter.
The liquid crystal display device includes a liquid crystal panel unit and a backlight unit, the liquid crystal panel unit is disposed above the backlight unit, as shown in fig. 5, the backlight unit includes a reflector 1000, a light source device 1002 and a light guide assembly 1001, and the liquid crystal panel unit includes a lower polarizer 2000, a liquid crystal cell 2001, a quantum dot color filter 2002, an upper polarizer 2003 and an anti-glare layer 2004, which are sequentially disposed.
Further, the light source device is of a side-emitting type or a direct type. The direct type is that the light source device 1002 is disposed on the entire rear surface of the liquid crystal panel, the light guide member 1001 is disposed in front of the light source device 1002, and the light reflection plate 1000 is disposed behind the light source device 1002; the side-emission type is that the light source device 1002 is disposed on a side surface of the light guide unit 1001, and the light reflection plate 1000 is disposed below the light guide unit 1001, as shown in fig. 5.
The light reflecting plate 1000 is disposed below the light guide assembly 1001, and mainly functions to reflect light emitted from the light source device 1002 to the light guide assembly 1001, thereby improving light emitting efficiency and preventing light loss. The material of the light reflecting plate 1000 may be polyethylene or polyethylene terephthalate resin.
The light guide assembly 1001 mainly comprises a light guide plate, a diffusion plate and a brightening membrane, wherein the light guide plate and the diffusion plate are used for uniformly transmitting light emitted by a light source to the side of the liquid crystal panel, and the light guide plate and the diffusion plate can be made of acrylic acid, acrylic, polycarbonate, polystyrene or polypropylene and the like; the brightness enhancement film is composed of at least one prism sheet, and has the main function of guiding the light emitted by the diffusion plate to increase the luminous efficiency. The material of the incremental membrane may be a poly-terephthalic plastic, such as polyethylene terephthalate and polybutylene terephthalate.
The light source device 1002 may be an LED light source, such as a blue LED or a white LED, or a cold cathode fluorescent lamp, such as a blue cold cathode fluorescent lamp or a white cold cathode fluorescent lamp. In the embodiment, the LED blue light emitting diode with the wavelength of 440-460 nm is preferably adopted.
It is to be understood that the invention is not limited to the examples described above, but that modifications and variations may be effected thereto by those of ordinary skill in the art in light of the foregoing description, and that all such modifications and variations are intended to be within the scope of the invention as defined by the appended claims.

Claims (10)

1. The quantum dot color filter is characterized by comprising a glass substrate, a quantum dot conversion layer, a protective layer and a conductive layer which are sequentially arranged upwards, wherein a black matrix used for separating different areas of the quantum dot conversion layer is arranged in the quantum dot conversion layer.
2. The quantum dot color filter of claim 1, wherein the material of the quantum dot conversion layer consists of a group ii-vi or iii-v element.
3. The quantum dot color filter of claim 1, wherein the quantum dot conversion layer comprises a red quantum dot conversion layer, a green quantum dot conversion layer, and a blue transmissive region.
4. The quantum dot color filter of claim 3, wherein the red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions: 0.4 < AR/AG< 1 and 0.1 < AB/AG<0.9。
5. The quantum dot color filter of claim 4, wherein the red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions: a is more than 0.5R/AG< 0.6 and 0.7 < AB/AG<0.8。
6. The quantum dot color filter of claim 1, wherein the white light color coordinates (X, Y) synthesized by the quantum dot conversion layer have a value range of: x is more than 0.25 and less than 0.35; meanwhile, the value range of Y is more than 0.24 and less than 0.35.
7. The quantum dot color filter of claim 3, wherein the red quantum dot conversion layer area ARGreen quantum dot conversion layer area aGAnd area A of blue light-transmitting regionBSatisfies the following conditions:
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <msup> <mi>R</mi> <mrow> <mo>&prime;</mo> <mo>*</mo> </mrow> </msup> </msub> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>r</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>1.0000</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>4.5907</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <msup> <mi>R</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>R</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>G</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>G</mi> </msub> <mo>+</mo> <msub> <mi>b</mi> <msup> <mi>B</mi> <mo>&prime;</mo> </msup> </msub> <mo>*</mo> <msub> <mi>A</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>0.0601</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math> wherein,
bR′=1-rR′-gR′;bG′=1-rG′-gG′;bB′=1-rB′-gB′
(rR′,gR′)、(rG′,gG′)、(rB′,gB′) The chromaticity coordinates of R ', G' and B 'are respectively, and the R', G 'and B' are respectively the spectrums of newly stimulated three primary colors of red, green and blue after the three primary colors transmit through the quantum dot color filter.
8. A liquid crystal display device comprising the quantum dot color filter according to any one of claims 1 to 7.
9. The lcd device of claim 8, wherein the lcd device comprises an lcd unit and a backlight unit, the lcd unit is disposed above the backlight unit, the backlight unit comprises a reflector, a light source device and a light guide assembly, and the lcd unit comprises a lower polarizer, a liquid crystal cell, a quantum dot color filter, an upper polarizer and an anti-glare layer, which are sequentially disposed.
10. The liquid crystal display device according to claim 9, wherein the light source device is a side-emission type or a direct-illumination type.
CN201310629355.2A 2013-11-29 2013-11-29 Quantum dot color filter and liquid crystal display device Pending CN103605234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310629355.2A CN103605234A (en) 2013-11-29 2013-11-29 Quantum dot color filter and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310629355.2A CN103605234A (en) 2013-11-29 2013-11-29 Quantum dot color filter and liquid crystal display device

Publications (1)

Publication Number Publication Date
CN103605234A true CN103605234A (en) 2014-02-26

Family

ID=50123474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310629355.2A Pending CN103605234A (en) 2013-11-29 2013-11-29 Quantum dot color filter and liquid crystal display device

Country Status (1)

Country Link
CN (1) CN103605234A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104049410A (en) * 2014-06-17 2014-09-17 福州大学 Antireflection film for quantum dot enhancement film (QDEF) and preparation method of antireflection film
CN104793284A (en) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 Light guiding plate, backlight module and liquid crystal display
CN104868026A (en) * 2015-05-22 2015-08-26 深圳市华星光电技术有限公司 Quantum-dot light-emitting component
CN105093671A (en) * 2014-05-09 2015-11-25 Lg电子株式会社 Apparatus of light source for display and apparatus of display using the same
CN105093372A (en) * 2014-05-13 2015-11-25 Jsr株式会社 Color filter, display device, red pixel, and green pixel
CN105259696A (en) * 2015-11-16 2016-01-20 深圳市华星光电技术有限公司 Manufacturing method for color filter substrate
CN105259694A (en) * 2015-11-13 2016-01-20 深圳市华星光电技术有限公司 Production method of color filter plate and color filter plate
CN105353555A (en) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 Manufacturing method of quantum dot color film substrate
CN106094316A (en) * 2015-04-30 2016-11-09 三星显示有限公司 Liquid crystal indicator
CN106292058A (en) * 2015-06-23 2017-01-04 三星电子株式会社 Display module and use the display device of this display module
CN107448780A (en) * 2017-08-04 2017-12-08 苏州恒久光电科技股份有限公司 A kind of quantum dot LED light emission device and preparation method thereof
CN107861181A (en) * 2017-12-04 2018-03-30 福州大学 A kind of quantum dot color filter and preparation method thereof
CN108153056A (en) * 2018-01-12 2018-06-12 安徽芯瑞达科技股份有限公司 A kind of high colour gamut down straight aphototropism mode set and preparation method thereof
WO2018176519A1 (en) * 2017-03-28 2018-10-04 深圳市华星光电技术有限公司 Liquid crystal display device
WO2019042151A1 (en) * 2017-08-30 2019-03-07 京东方科技集团股份有限公司 Colour film sheet and fabricating method therefor, colour film substrate, and display apparatus
CN109932770A (en) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 A kind of quantum dot color filter
CN110568658A (en) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 Quantum dot pixel photoluminescence liquid crystal display module and manufacturing method thereof
CN110568659A (en) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 Quantum dot pixel photoluminescence liquid crystal display module and manufacturing method thereof
CN110579828A (en) * 2019-08-08 2019-12-17 深圳市华星光电技术有限公司 metal dot color filter, manufacturing method thereof and liquid crystal display device
WO2020024839A1 (en) * 2018-07-31 2020-02-06 深圳Tcl新技术有限公司 Three-color quantum dot led display screen, and manufacturing method for same
CN111833723A (en) * 2019-04-19 2020-10-27 云谷(固安)科技有限公司 Display panel, display device and manufacturing method of quantum dot color filter
CN111909295A (en) * 2020-07-01 2020-11-10 北京大学深圳研究生院 Preparation method and application of photosensitization material
CN112327538A (en) * 2020-11-05 2021-02-05 北海惠科光电技术有限公司 Display panel and display device
WO2021237530A1 (en) * 2020-05-27 2021-12-02 重庆康佳光电技术研究院有限公司 Display device and preparation method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
郁道银,谈恒英: "《工程光学》", 31 January 2000 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105093671A (en) * 2014-05-09 2015-11-25 Lg电子株式会社 Apparatus of light source for display and apparatus of display using the same
CN105093372A (en) * 2014-05-13 2015-11-25 Jsr株式会社 Color filter, display device, red pixel, and green pixel
CN104049410A (en) * 2014-06-17 2014-09-17 福州大学 Antireflection film for quantum dot enhancement film (QDEF) and preparation method of antireflection film
CN106094316A (en) * 2015-04-30 2016-11-09 三星显示有限公司 Liquid crystal indicator
CN104793284A (en) * 2015-04-30 2015-07-22 武汉华星光电技术有限公司 Light guiding plate, backlight module and liquid crystal display
US9893308B2 (en) 2015-05-22 2018-02-13 Shenzhen China Star Optoelectronics Technology Co., Ltd. Quantum dot lighting devices
CN104868026A (en) * 2015-05-22 2015-08-26 深圳市华星光电技术有限公司 Quantum-dot light-emitting component
CN106292058A (en) * 2015-06-23 2017-01-04 三星电子株式会社 Display module and use the display device of this display module
WO2017080025A1 (en) * 2015-11-13 2017-05-18 深圳市华星光电技术有限公司 Method for manufacturing color filter and color filter
CN105259694A (en) * 2015-11-13 2016-01-20 深圳市华星光电技术有限公司 Production method of color filter plate and color filter plate
CN105259694B (en) * 2015-11-13 2019-01-15 深圳市华星光电技术有限公司 The production method and colored filter of colored filter
CN105259696A (en) * 2015-11-16 2016-01-20 深圳市华星光电技术有限公司 Manufacturing method for color filter substrate
CN105353555A (en) * 2015-12-08 2016-02-24 深圳市华星光电技术有限公司 Manufacturing method of quantum dot color film substrate
WO2017096710A1 (en) * 2015-12-08 2017-06-15 深圳市华星光电技术有限公司 Method for manufacturing quantum-dot color film substrate
CN105353555B (en) * 2015-12-08 2018-08-14 深圳市华星光电技术有限公司 The production method of quantum dot color membrane substrates
WO2018176519A1 (en) * 2017-03-28 2018-10-04 深圳市华星光电技术有限公司 Liquid crystal display device
CN107448780A (en) * 2017-08-04 2017-12-08 苏州恒久光电科技股份有限公司 A kind of quantum dot LED light emission device and preparation method thereof
WO2019042151A1 (en) * 2017-08-30 2019-03-07 京东方科技集团股份有限公司 Colour film sheet and fabricating method therefor, colour film substrate, and display apparatus
US11635555B2 (en) 2017-08-30 2023-04-25 Boe Technology Group Co., Ltd. Colour film sheet and fabricating method therefor, colour film substrate, and display apparatus
CN107861181A (en) * 2017-12-04 2018-03-30 福州大学 A kind of quantum dot color filter and preparation method thereof
CN109932770A (en) * 2017-12-18 2019-06-25 Tcl集团股份有限公司 A kind of quantum dot color filter
CN108153056A (en) * 2018-01-12 2018-06-12 安徽芯瑞达科技股份有限公司 A kind of high colour gamut down straight aphototropism mode set and preparation method thereof
CN110568658A (en) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 Quantum dot pixel photoluminescence liquid crystal display module and manufacturing method thereof
CN110568659A (en) * 2018-06-06 2019-12-13 深圳Tcl新技术有限公司 Quantum dot pixel photoluminescence liquid crystal display module and manufacturing method thereof
WO2020024839A1 (en) * 2018-07-31 2020-02-06 深圳Tcl新技术有限公司 Three-color quantum dot led display screen, and manufacturing method for same
CN111833723A (en) * 2019-04-19 2020-10-27 云谷(固安)科技有限公司 Display panel, display device and manufacturing method of quantum dot color filter
CN110579828A (en) * 2019-08-08 2019-12-17 深圳市华星光电技术有限公司 metal dot color filter, manufacturing method thereof and liquid crystal display device
WO2021237530A1 (en) * 2020-05-27 2021-12-02 重庆康佳光电技术研究院有限公司 Display device and preparation method therefor
CN111909295A (en) * 2020-07-01 2020-11-10 北京大学深圳研究生院 Preparation method and application of photosensitization material
CN111909295B (en) * 2020-07-01 2022-07-26 北京大学深圳研究生院 Preparation method and application of photosensitization material
CN112327538A (en) * 2020-11-05 2021-02-05 北海惠科光电技术有限公司 Display panel and display device

Similar Documents

Publication Publication Date Title
CN103605234A (en) Quantum dot color filter and liquid crystal display device
TWI597546B (en) Photoluminescence color display
US9897855B2 (en) Display panel and display apparatus
CN202521397U (en) Backlight module
CN104145210B (en) Photo-luminescence color display
US9823510B2 (en) Quantum dot color film substrate, manufacturing method thereof and LCD apparatus
US20170229429A1 (en) Display device and fabricating method
EP3620834A1 (en) Light conversion film for use in backlight module, backlight module, and display device
US20160341874A1 (en) Backlight module and liquid crystal display including same
US20140168575A1 (en) Liquid crystal display
KR102430426B1 (en) Color liquid crystal display and display backlight
CN104503137A (en) Backlight module and liquid crystal display with same
CN104155803A (en) Backlight module and liquid crystal display device
CN102810288B (en) Backlight assembly and the display device including this backlight assembly
CN106501994A (en) A kind of quantum dot light emitting device, backlight module and display device
CN111710774B (en) Color film substrate, display panel and display device
CN112259533B (en) White balance implementation method based on quantum dot color conversion
CN105446009A (en) Array substrate and preparation method thereof, and display device
CN109426034A (en) Liquid crystal display device
KR102298922B1 (en) Liquid crystal display device
CN108897170B (en) Color conversion film and liquid crystal module comprising same
JP2004245996A (en) Color correcting filter, back light unit, and liquid crystal display device
TWI726849B (en) Optical film, light-emitting device having the optical film, and display having the light-emitting device
KR102063985B1 (en) Flat Panel Display Device
CN104503130B (en) A kind of color membrane substrates, display panel and display device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140226

RJ01 Rejection of invention patent application after publication