CN103596448A - 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统 - Google Patents

调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统 Download PDF

Info

Publication number
CN103596448A
CN103596448A CN201280019572.3A CN201280019572A CN103596448A CN 103596448 A CN103596448 A CN 103596448A CN 201280019572 A CN201280019572 A CN 201280019572A CN 103596448 A CN103596448 A CN 103596448A
Authority
CN
China
Prior art keywords
feed
starch
ndf
cud
digestibility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201280019572.3A
Other languages
English (en)
Other versions
CN103596448B (zh
Inventor
D·C·威克利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forage Genetics International LLC
Original Assignee
Forage Genetics International LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forage Genetics International LLC filed Critical Forage Genetics International LLC
Priority to CN201610022269.9A priority Critical patent/CN105639112B/zh
Publication of CN103596448A publication Critical patent/CN103596448A/zh
Application granted granted Critical
Publication of CN103596448B publication Critical patent/CN103596448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/10Feeding-stuffs specially adapted for particular animals for ruminants
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Birds (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Physiology (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

测定饲料中瘤胃未消化纤维分数的系统和方法,通过从可利用的饲料来源中采样、分析采样样本以确定起始NDF值和经瘤胃消化后的终末NDF值,并根据其计算瘤胃未消化NDF分数;和利用瘤胃未消化NDF分数和分析样本的取食率计算饲料日粮。通过分析喂饲泌乳期反刍动物的日粮中的饲料组分,将所分析的结果与储存在存储器中的饲料配方相比较,该饲料配方用于控制瘤胃中纤维和淀粉消化的速度以及程度,并且基于比较结果重新配制饲料日粮,这些系统和方法降低了饲料成本或提高产乳量。纤维的消化速度可通过基于经分析饲料分数中瘤胃未消化NDF分数的测定值而得到控制。

Description

调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统
相关申请的交叉引用
本申请根据35USC§119(e),要求于2011年4月20日提交的申请号为61/477,467、标题为“调节动物饲料中瘤胃消化淀粉和纤维的方法和系统(Methods and Systems for Adjusting Ruminally Digestible Starch and Fiberin Animal Diets)”的美国临时申请的优先权,通过引用该临时申请的全部内容纳入本文。
技术领域
本发明涉及确定纤维和淀粉的动物饲料日粮的方法和系统,尤其是涉及通过控制瘤胃中纤维和淀粉的消化速度及程度,从而降低饲料成本或提高产乳动物的产乳量或效率。
发明概述
一种系统及方法,用于分析动物饲料中的饲料组分并将分析结果作为饲料配方计算的输入内容提供,该饲料配方计算重新配制饲料组分以达到瘤胃对淀粉和纤维组分的目标消化速度及消化程度,从而提高产乳量或效率和/或降低产乳成本。瘤胃消化速度和程度部分地受控于瘤胃中未消化草料中性洗涤纤维(ruminal undigested forage neutral detergent fiber,RUNDF),这种纤维在瘤胃中缠结成团从而减缓并限制了内容物自瘤胃中通过。
在一实施例中,通过测定饲料中瘤胃未消化纤维分数(fraction)从而降低饲料成本或提高产乳量或产乳效率的方法包括:从可利用的饲料来源中对一种或多种草料和谷物进行采样;分析所述一种或多种样本以确定起始NDF值以及经瘤胃消化后的终末NDF值;利用所述一个或多个分析样本中的起始和终末NDF值来计算瘤胃未消化NDF分数;和利用一个或多个分析样本的取食率和瘤胃未消化NDF分数并与配方目标相比较,从而计算饲料日粮。
在另一实施例中,用于改进和/或降低产乳成本的方法采用处理器分析饲料日粮的饲料组分;将分析结果与保存于中存储器的饲料配方目标相比较,其中该饲料配方用于控制瘤胃中纤维和淀粉的消化速度和程度;和所述方法随后根据比较结果来重新配制饲料日粮。
在另一实施例中,计算机执行的系统能改进和/或降低反刍动物的产乳成本。该系统为计算机处理器提供反刍动物饲料日粮中经分析饲料组分的测试结果。这种计算机处理器比较经分析的测试结果与保存于存储器中的饲料配方目标,其中该饲料配方用于控制瘤胃中纤维和淀粉的消化速度和程度。所述计算机处理器基于该比较结果重新配制饲料日粮,而重新配制的饲料日粮显示在通信偶联于处理器的显示屏上。
附图简述
图1显示了可能引起泌乳期乳牛生产的标准乳(fat corrected milk)产量变化的饮食成分。
图2A显示了泌乳期乳牛中草料NDFd含量和干物质采食量(dry matterintake)之间的关系。
图2B为一柱状图,显示了玉米青贮饲料样品的粗淀粉含量百分比的变化情况。
图2C的图表显示了泌乳期乳牛饮食淀粉含量对干物质采食量的影响。
图2D的图表显示了泌乳期乳牛饮食淀粉含量对干物质采食量的影响。
图2E的图表显示了饮食中的淀粉对标准乳的影响。
图3A是本发明方法的流程图,该方法通过调控瘤胃中淀粉和纤维的消化速度和程度,从而改进和/或降低产乳成本。
图3B显示了本发明饲料日粮计算器的截屏图,该计算器用于通过将高成本饲料组分替换为低成本饲料组分,从而降低饲料成本。
图3C显示了喂饲含相同量玉米青贮饲料的两种饲料日粮,其中,一种青贮饲料中淀粉含量增高(例如,第一个40%淀粉的青贮饲料或中间一列),其会降低干物质采食量以及乳脂。
图4-6的图表显示了按照本发明配制的淀粉及NDF饲料以提供支持所需产乳量、饲料采食、饲料效率以及消化率水平的RUNDF水平。
图7的表格显示了本发明中,可用于改进产乳量、消化率、和/或饲料效率的瘤胃NDF消化率。
图8显示了本发明饲料配方的成本计算,其采用了图3A的方法,旨在减少玉米粒的量(细磨玉米)从而降低饲料成本。
图9的表格阐释了泌乳期乳牛的产乳量以及与其相关的RUNDF分值。
图10的表格显示了干物质采食量以及与其相关的RUNDF分值。
详述
动物饮食成分的改变如饲料组分,包括草料(例如玉米青贮饲料、苜蓿干草、小麦秸秆等)、淀粉、蛋白质和副产品以及非饮食成分的改变能引起动物,例如包括反刍动物在内的家畜的产乳量、干物质采食量、乳成份产率、能量储存、消化率以及饲料效率的改变。例如,图1显示了导致产乳期乳牛标准乳产量变化的饮食成分,其中草料、淀粉、蛋白质及副食品在产乳期乳牛标准乳产量变化的影响中共占到约65%。若不加以控制,这种变化会危及到产乳量、乳成份产量以及干物质采食量和饲料效率。为了能够有效地、经济地饲养动物,例如包括反刍动物在内的家畜,应当测定并控制这些变化的源头,从而预知动物的(产能)表现。
此外,饲料组分中淀粉和纤维的水平及其消化率影响饲料的采食。随着中性洗涤纤维的消化率(NDFd)潜力降低,干物质采食潜力也降低。图2A显示了产乳期乳牛中草料NDFd含量和干物质采食潜力之间的关系。相反地,干物质采食潜力随量也随NDFd含量升高而升高。例如,NDF的体外消化率升高1个单位与干物质采食量增加0.37磅/天,以及每头奶牛4%标准乳的产率升高0.55磅/天相关。(Oba和Allen,1999)。对于更受饱胃限制(bulk fill limited)的高产奶牛,在产乳早期,可观察到更大的干物质采食量反应。而在较低产的奶牛中则不易被注意到。
通常,采用对粗淀粉及纤维的分析来调整饲料中的淀粉和纤维含量。对粗淀粉及纤维的分析一般不会考虑瘤胃中一定量的淀粉和纤维消化率,因此通常不会进行对纤维和淀粉的消化率分析。
然而,不考虑瘤胃淀粉消化信息,而仅采用粗淀粉推荐(量)来配制饲料,是一种无效的喂饲方法。这是因为胃淀粉消化可受许多因素的影响,如谷物来源(玉米、大麦、小麦、蜀黍等);含水量(干燥去皮的玉米与高水分的玉米);谷物加工(粗磨的与粉碎的);胚乳类型;饲料中的谷物水平(20%与30%淀粉);以及总饮食干物质采食量(低与高)。虽然有些分析方法采用体外测试来确定淀粉消化率,这些方法通常会测定总消化道消化(情况),而不是瘤胃的淀粉消化率,或者这种测试产生不一致的结果。
淀粉消化率分析
对瘤胃淀粉消化率分析,包括体外瘤胃淀粉消化率,公开于标题为“用于在反刍动物中提高产乳量的选择性淀粉喂饲”(“Selective Feeding of Starch toIncrease Milk Production In Ruminants,”)的美国专利7,550,172,其(与本发明)有着至少一位共同发明人大卫·威克利(David Weakley),其内容出于所有有用的目的通过引用而全文纳入。一实施例阐述了淀粉含量在玉米青贮饲料中是可以各不相同的,其中,自2007年10月到2010年6月采集了全美各地的玉米青贮饲料样品,其淀粉含量为12%-42%(图2B,CalibrateTM技术实验室,2010(CalibrateTMTechnology Lab,2010)),其体外瘤胃淀粉消化情况显示为淀粉69%-93%(CalibrateTM技术实验室,2010,格雷峰会,MO)(Grey Summit)。此外,该变化的分布情况还因混杂效应(hybrid effect)、生长条件以及采收管理(harvest management)等造成的差异而数年不同。瘤胃淀粉消化情况的这种变化可导致瘤胃丙酸产生的改变,而丙酸可通过“肝脏氧化理论”(HepaticOxidation Theory)(HOT:艾伦等,2009)所述机制影响产乳期乳牛的能量代谢以及DMI。该理论中说到的变化在朗维尤动物营养中心(LANC;格雷峰会,MO)(Longview Animal Nutrition Center)进行的研究概述中有所描述,该研究涵盖了4750例对早期和中期泌乳的乳牛研究(图2C)。考虑到产乳天数(DIM)和乳牛分组(cow parity),由这些数据测定了DMI和饮食淀粉百分比的关系。由图2C可见,无论是初产乳牛还是经产乳牛,在最初产乳期,DMI都不会受饮食淀粉水平影响。然而,自30到约180DIM,在两组中,喂饲25%与15%(淀粉)的饲料均会抑制采食量。
饮食淀粉水平和瘤胃消化率影响(生产)表现的另一例子可见于LANC进行的对产乳早期乳牛的研究。自产乳的第4周到12周,对3个处理组中的66头乳牛喂饲淀粉水平和瘤胃消化率不相同的饲料。在喂饲3个月相同饲料()后,将乳牛改为一组低(20%)淀粉饲料或两组高(28%)淀粉饲料组。高淀粉饲料或均是细磨玉米形式的补充淀粉或将50%替换为细磨蜀黍(其具有较低的瘤胃淀粉发酵率)。当第三处理组中的一半玉米替换为处理组4中的蜀黍时,DMI提高了1.0kg/d(2.2磅/天;P<0.01;图2D),而3.5%的标准乳(FCM)产量大幅提高了2.6kg/d(5.7磅/d;P<0.01;图2E)。Oba和Allen(2003)观察到,与干颗粒相比,在饲料中提供更易发酵形式的高湿度玉米,饲料采食量降低了8%,但仅对较高的淀粉饲料(如此)。这些研究支持了当将饲料中的干玉米替换成更多瘤胃可利用来源的淀粉,例如高湿度玉米或玉米青贮饲料后,DMI和产乳量有下降的趋势。另外,很显然,采用粗淀粉配方标准来控制瘤胃淀粉消化率变化的后果是不够的。还需要瘤胃淀粉消化率的配方标准。
纤维可消化性分析
即使采用了体外淀粉分析,纤维,例如NDFd以及瘤胃未消化草料NDF(RUNDF)的瘤胃消化率通常既未得以一致分析(采用体外分析或其他(方法)),也未将NDFd和/或RUNDF的瘤胃消化率用于配制饲料日粮。
然而,(研究)发现,瘤胃NDFd和RUNDF也能够影响饲料效率、消化率、采食量和产乳量。
关于饮食中NDF消化率和乳牛(产乳)表现之间关系的一份经常被引用的标准来自于Oba和Allen(1999)的数据总结。相关数据来自于13组文献报道的草料对比,其总结为:中性洗涤纤维(NDF)消化率(通过体外或原位测定)增加一个(1)百分比单位导致DMI增长0.37磅以及标准乳增长0.55磅。该作者进一步观察到这种关系局限于高产的动物,而这些动物则更可能因达到饱胃限制而表现出采食抑制。最近的文献报道了基于11份玉米青贮饲料对比而对这种关系作的进一步评估,显示了体外NDF消化率每增加一个(1)百分比单位导致DMI增长0.26磅以及4%标准乳增长0.47磅(IVNDFD;Oba和Allen,2005)。
然而,对于喂饲高IVNDFD草料造成的DMI增长导致消化道中饲料滞留时间减少,其代价是饲料消化率和潜在饲料效率降低。在一项研究中观察到了这种关系,该研究在含有40%玉米青贮加或不加3%小麦秸秆(见研究2,表9)的饲料中喂饲3种混合玉米青贮饲料。虽然加入小麦秸秆降低了配方饲料的能量密度,但在所有3组混合喂饲组中,均能在后续测试到干物质(DM)的体内消化率有3%(P<0.05)的增长(表1)。此外,含秸秆的饲料的NDF消化率也有提高(P<0.04,表1)。推测这两个观察结果的原因是加入秸秆增加了饲料在瘤胃中的滞留时间,而DMI未受明显影响。
这就提示了可能会有一个消化NDF的最佳量,在其之上则采食量受饱胃限制,在其之下则采食量能够上升,但其代价可能为消化率的下降以及随之而来的饲料效率下降。这与Mertens博士最近再论的NDF-能量摄入体系(2009)相一致,他认为,在饱胃限制和能量需求曲线相交的各产乳量水平可以有一种独特的饮食NDF方案。每个方案规定了最大程度提高饲料中DMI和NDF(以及草料)的NDF水平。Mertens(2010)还提到虽然可根据NDF消化率的差异微调最佳NDF水平,但改变粗NDF所获得的效果比改变NDF消化率的效果要大2-3倍。然而,也有争议认为,在实际情况中,当饮食NDF在高产的乳牛中达到最大摄入潜力时,NDF的消化率则变得更为重要。
例如,可对总消化道NDF消化率进行测定来用作配制饲料日粮,如下述。此外,下述的研究1显示了在反刍动物中,采用RUNDF作为乳牛生产能力的评估手段从而改进饲料和NDF消化率。
在瘤胃中,RUNDF团块(如未消化的纤维)的作用好比是瘤胃内容物的过滤器。在团块下,未消化的营养物质流体自瘤胃中转运出。正常的团块可选择性地将内容物保留在瘤胃中从而对消化率、饲料效率和产乳量有利。较小的团块使液体通过瘤胃的转运速度较快,导致了饲料效率较低(如较高的采食量)以及瘤胃消化率较低。较大的团块使液体通过瘤胃的转运速度较慢,从而使淀粉、纤维和其他饮食营养物质的瘤胃消化率较高。较大的团块还会由于纤维对瘤胃壁产生更大压力从而使反刍动物减少进食。然而,瘤胃消化率水平较高时,瘤胃内消化了过多的淀粉导致能量分布向体内脂肪堆积、干物质采食降低以及NDFd降低偏移,这些会造成产乳量的下降,甚至还可能由于丙酸或其他挥发性脂肪酸过量产生而可能出现酸中毒,从而使乳牛出现问题。因此,应该可能通过选择性控制饲料中以及接下来瘤胃中的瘤胃未消化NDF(RUNDF),以控制淀粉和其他饮食营养物质的瘤胃消化。
表1显示了与瘤胃已消化草料(如NDFd)百分比目标相比,RUNDF百分比目标对草料质量的改变的反应更大。
Figure BDA0000399170470000071
在以上例子中(平均、低和高可消化设定值),草料NDFd(以DM磅和百分比计)通常都不会变化到7磅(lbs)或14%干料采食量这样一个大范围。这是因为随着草料消化率提高(示为NDF百分比),NDF含量(干物质百分比)通常降低,那么这两者的叠加就不会产生很多变化。然而,RUNDF含量(以干物质的磅数和百分比计)会在6.9-9.6磅或13.9%-19.3%的范围内波动,因为随着草料未消化率增加(即,消化率下降),NDF含量(DM百分比)通常也如此,则二者的叠加效应就增强。
此外,与NDFd相比,RUNDF可提供关于干物质采食量和消化率变化的信息,就如下述研究1中以小麦秸秆的形式加入RUNDF后消化率的反应所证实的那样。在研究1中,RUNDF的目标区间是基于28小时的体外消化率测试和/或体内测试而定。当然,还可以采用其他方式测定瘤胃淀粉消化率和RUNDF。例如,瘤胃可消化的淀粉组分和RUNDF组分可基于其他体外测定方式(如48小时的体外消化率测试);在反刍动物中利用的十二指肠置管;原位测定瘤胃中多孔袋的瘤胃可消化淀粉以及NDF组分;通过分光光度法;通过红外反射光谱等等。目标可基于用作测定消化率的测试方法而依比例决定。
根据本文提供的实施方式,可调整饲料中的淀粉和/或纤维并将其喂饲于动物,以达到特定的效果,例如产乳量的提高和/或如通过节省饲料配方成本而降低产乳成本。产乳量的提高通常包括反刍动物达到正常或提高的干物质采食量水平。在一些实施例中,可基于所需的效果,例如提高消化率、提高饲料效率和/或降低干物质采食量来调整RUNDF。
提高产乳量或降低饲料成本的方法和计算机执行方法
图3A显示了通过调整瘤胃中淀粉和纤维的消化速度和程度来提高产乳量或降低饲料成本的方法100。方法100包括对从生产商的农场或生产商的可利用饲料来源的草料和谷物110(如纤维和淀粉来源)进行采样。为了分析,对这些样品在实验室中进行处理120,然后对样品进行分析130。分析结果同各饮食组分采食率一起作为输入值提供给饲料配方计算器(140)。利用饲料配方计算器的输出结果可以重新制定饲料日粮150。在喂饲了重新制定的饲料后,监测产乳量和干物质采食水平160。监测数据供于进行乳成份鉴定170。鉴于草料和谷物消化率的变化,对以上过程进行定期部分重复。
在操作110中,对可用于喂饲反刍动物的生产商的饲料供给中的草料和谷物来源进行采样。草料的例子可包括苜蓿青贮、玉米青贮、小麦青贮、高粱青贮、燕麦青贮、牧草青贮、黑麦草青贮、大麦青贮、黑小麦青贮、干牧草、苜蓿干草、燕麦干草、小麦干草、大麦干草、黑麦草干草、黑小麦干草、燕麦秸秆、小麦秸秆、大麦秸秆、整粒棉花籽、去壳棉花籽、甜菜粕或其任何组合。谷物来源的例子可包括玉米粒、玉米青贮、玉米黄浆饲料、玉米胚芽粉,玉米淀粉,玉米副产品,高粱粒,高粱青贮,高粱副产品,蜀黍,小麦粒,小麦青贮饲料,麦麸,红色小麦下脚料,小麦胚芽,小麦粉,粗麦粉,小麦副产品,大麦粒,大麦青贮,大麦副产品,燕麦粒,燕麦青贮,燕麦副产品,烘焙副产品,碎玉米饲料,豌豆,啤酒糟,酒糟,麦芽根,大米,米糠,米粉,大米副产品,谷物饲料,蔗糖,乳糖,葡萄糖,右旋糖,麦芽糖,木薯,马铃薯或其他含淀粉的块茎或其任何组合。
在操作120中,制备取样的草料和谷物来源以供分析。例如,如果要制备样品以供NIR分析,可采用NIR分析所需要的典型干燥和加工处理技术。在操作130中,分析经处理的样品。例如,可通过NIR分析、红外反射光谱法、分光光度法、其他快速检测方法、离体分析、十二指肠置管、原位检测(如采用瘤胃中多孔袋测定瘤胃消化率)以及体内分析中的一种或多种分析样品。
在一实施例中,操作130采用体外分析,采用化学或酶法分析各组分以测定起始NDF和/或淀粉值。另一组样品分别经6-7小时体外消化或28小时体外消化后,采用相同的方法测定残余NDF和淀粉,以便计算淀粉和NDF的体外瘤胃消化率。将体外残余量与初始量作比较,从而计算作为原始量的百分比的体外淀粉和NDF消化率。
根据分析130,能够确定瘤胃淀粉消化率和/或饲料成分中的纤维分数。在一些实施例中,为了饲料成分中的纤维分数而测定瘤胃未消化NDF分数。例如,瘤胃未消化NDF分数为瘤胃消化(如体外)后的剩余纤维分数或为基于相同或相关饲料成分的预定消化率数值而预计的剩余纤维分数。
在一些实施方式中,部分基于各值与体内消化率已知(通过动物实验测定)的内部标准组分的体外消化率之间的比较,消化率或与其相反的未消化值可转化为与淀粉和NDF的体内消化率具有线性关系的指示体系。例如,对于淀粉评级的GPN指示体系,GPN指数的范围是1-11,其中1代表了瘤胃消化率低或慢的淀粉来源(如玉米粉),11代表了瘤胃消化率高或快的淀粉来源(如玉米青贮饲料中的玉米)。用于纤维评级的FPN指示系统包括的指数范围是60-200,其中60代表了瘤胃消化率低或慢的NDF来源(如棉花籽壳粉),200代表了瘤胃消化率高或快的淀粉来源(如小麦青贮)。
在操作140中,部分或所有饮食组分的分析结果(如消化率的值、未消化分数、光谱结果或其他分析结果如原位测定,其被转换为淀粉百分比和/或纤维百分比、含水量以及某些情况下的GPN和/或FPN数值)与饮食组分和各饮食组分的采食速度作为饲料配方计算器的输入内容一起提供。例如,在图3B中,“玉米青贮饲料”和“玉米,细磨粉”包括了对淀粉和纤维百分比及GPN和FPN数字的分析输入。
利用饲料配方计算器,就各饲料组分而言,将饲料配方的干物质磅数乘以营养物质(干物质百分比)然后乘以瘤胃消化率或未消化分数。例如,对于纤维,干物质成分的磅数乘以NDF的百分率然后乘以瘤胃未消化NDF(NDF百分比)。对于除纤维以外的或作为纤维的备选方案的淀粉,干物质成分的磅数乘以淀粉的百分数然后乘以瘤胃淀粉消化率(淀粉百分比)。瘤胃消化率的数值可基于先前分析样本获得的关系而预测,或可直接通过体外测定得到。当使用纤维和淀粉时,各营养成份的贡献可加和,并通过瘤胃淀粉消化率的磅数和瘤胃未消化NDF消化率的磅数所表达。
在一些实施例中,在GPN结果基于线性比例而转化为以淀粉百分比表示的瘤胃淀粉消化率值,且FPN结果基于线性比例而转化为以NDF百分比表示的瘤胃NDF消化和未消化率后,配方计算器将所有成分(如所有采样的成分)的营养分数相加。
在操作150中,利用饲料配方计算器的输出结果重新配制饲料日粮。在一些实施例中,可将操作130的分析结果与瘤胃消化率信息和基于动物生产结果(如产乳量和干物质采食量)的目标水平相比较,以重新配制饲料日粮。经分析的输入结果可与瘤胃消化率信息进行比较,可包括瘤胃淀粉消化率信息和/或瘤胃纤维消化率信息,也包括RUNDF信息和/或总消化道NDF消化率。利用RUNDF信息,营养物质移动通过团块的速度和程度都能有所改进。总消化道NDF消化率可被用作补充的或备选的方法。在其它实施例中,可将瘤胃淀粉消化率磅数和/或瘤胃未消化NDF的总量与饮食目标相比较,然后根据饮食目标调节或重新配制饲料组分量,从而增加干物质采食、饲料效率、乳成份产量或其组合。例如,在图3B中,基于饲料输入内容(现有的),重新配制的饲料(计划的)提供了一个淀粉较低和NDF较高的推荐,但其饲料成本却降低了。在另一实施例中,可通过结合两种或多种具有不同瘤胃纤维消化率的饲料组分而在重新配制的饲料日粮中获得瘤胃可消化NDF或RUNDF的目标值。可通过纳入纤维碳水化合物、结构碳水化合物、可溶性碳水化合物,或可溶性纤维,草料NDF或其任何组合实现瘤胃可消化NDF或RUNDF目标值。
在操作160中,在向产乳期乳牛喂饲了重新配制的饲料后,监测产乳量及干物质采食水平。在操作170中,基于所测定的产乳量水平进行乳成份鉴定。该鉴定可包括,例如重新配制饲料日粮以提高乳产量和/或降低组织的能量堆积,和/或增加干物质采食量。若干物质采食量、(乳)成分产率或两者都未达到所需水平,则方法100可回到操作150以便重新配制。
由于草料和谷物的消化性能变化,可对这一过程进行部分的定期重复。由于草料和谷物组分的粒径改变,可对这一过程进行部分的定期重复,因为这种改变会影响提供给进行后续消化的瘤胃中微生物的表面积。该过程可每2-4周、1-2周、4周等进行重复,用于弥补饲料组分中可利用的淀粉和纤维的变化。比如说,制成的青贮草料来源(如青贮饲料)中的可利用淀粉量会随着时间而改变。图3C显示了其中喂饲了相同磅数的玉米青贮的两种饲料日粮,但其中一种青贮饲料的淀粉含量高(如40%淀粉的青贮,中间列),由于其瘤胃淀粉消化率高于所需而会造成干物质采食量以及乳脂的减少(如淀粉消化率目标百分数为108,意味着瘤胃消化率超过了目标约8%)。因此,为了弥补这些改变,需要周期性地跟踪饲料来源中淀粉含量和消化率的改变。
综上所述,方法100中部分或所有的操作可在一计算机中执行。例如,操作130中的样本分析可通过计算机处理分析装置进行,在操作140中可将其结果用作饲料配方计算器的输入值。饲料配方计算器的实现方式可以是软件和/或硬件,在操作150中,计算机处理器可基于已接受和分析的数据,执行接受和分析输入数据的指令并重新配制饲料日粮。
在某些实施例中,方法100可用于获取用于正常产乳量的目标采食量以及消化率。图4显示了根据本发明配制的淀粉和纤维饲料表,其提供的RUNDF水平满足了在正常饲料采食量、正常饲料效率和正常消化率下的正常产乳量。在图4中,瘤胃中正常大小的纤维团块促进淀粉组分的滞留并就此促进了淀粉的瘤胃消化,从而维持正常的产乳量。通常,正常产乳量可理解为泌乳期乳牛在产乳周期某一个特定节点的产乳量范围。该RUNDF的目标水平以及瘤胃淀粉消化率代表了可接受的饲料效率下最大程度提高能量摄取的干物质采食量和消化率的结合。例如,泌乳期3-12周的3.5%标准乳产量的正常水平预计在70-90磅。由于方法100所述的分析中,各组分的瘤胃消化率已知,可调控喂饲乳牛的组分比例以达到正常产乳量。
在方法100中,重新配制给乳牛的喂饲量可部分依据瘤胃中正常大小的团块而促进纤维和淀粉在瘤胃里维持正常时间的滞留。尽管瘤胃中的团块(由纤维组成,包括NDF、苜蓿干草、小麦秸秆等)最后会移出瘤胃并排出,但方法100顾及了乳牛的摄食速度,然后基于摄食速度计算出在给定时间的瘤胃中RUNDF和其他纤维组分的量。因此,方法100提供的纤维和淀粉推荐水平也可由瘤胃可消化淀粉和RUNDF水平表示。例如,为了使反刍动物生产正常量的乳液,正常量的瘤胃可消化淀粉可以是饲料中干物质的12-20wt%,而RUNDF水平可以是饲料中干物质的大约在8-13wt%。然而,推荐的淀粉和纤维量可以简单表示为饲料日粮中的纤维磅数和淀粉磅数,其中RUNDF水平作为纤维推荐量的一部分。采用方法100来提高RUNDF从而在相似产乳量和DMI下获得更高的饲料效率和消 化率
在一些实施方式中,方法100可用于提高RUNDF水平从而在相似产乳量和低干物质采食量下获得更高的饲料效率和消化率。图5显示了根据本发明配制的淀粉和纤维饲料图,其提供RUNDF水平以支持正常产乳量,同时饲料采食量低、消化率高以及后续的饲料效率高。在图5中,纤维团块更大,与图4中正常大小的团块相比,能促进淀粉组分在瘤胃中滞留更久。
例如,相对饲料的干物质而言,瘤胃可消化淀粉的正常量可为瘤胃可消化淀粉组分的12-20wt%,而相对于饲料的干物质而言,瘤胃未消化草料NDF的范围可约为瘤胃未消化草料NDF组分的8-13wt%。在图5的实施例中,相对饲料的干物质而言,瘤胃可消化的淀粉为瘤胃可消化淀粉组分的12-20wt%,而相对于饲料的干物质而言,瘤胃未消化草料NDF的范围可约为瘤胃未消化草料NDF组分的10-15wt%。
由于增加了瘤胃未消化草料NDF的量,反刍动物饲料中的淀粉组分在瘤胃中滞留的时间更长,瘤胃淀粉消化率增长,从而促进了丙酸的产生以及由此的产乳量。因此,在一些实施方式中,喂饲于动物的淀粉量可少于正常量,而RUNDF量或其百分比增加造成瘤胃中淀粉消化率增加,进而促进正常产乳量。如上所述,由于方法100顾及到了乳牛的摄食速度,图5的实施例中,可根据摄食速度,提高在给定时间的瘤胃中RUNDF和其他纤维组分的量。相比淀粉水平,这种增高的纤维水平也可以表示为RUNDF水平,也可将RUNDF水平考虑为纤维和淀粉饲料量中纤维推荐量的一部分。
如果需要节省成本,图5的实施方式是可用的。例如,在某些市场中,玉米粒是昂贵的饲料组分。减少饲料中的玉米粒,将玉米粒替换成瘤胃消化率更高、费用更低的淀粉来源,仍能将产乳量维持在正常水平,由此可以通过降低泌乳期乳牛饲料开销来达到利润更高的牛乳生产作业。
如果生产商身边可利用的资源(如玉米粒等饲料组分)有限,图5的实施方式也是有用的。例如,生产商所处的区域可能会影响一些特定资源的获得。在美国西南部地区,玉米粒不那么易得或很难生长。利用方法100,看评估可获得的资源以确定在低淀粉水平下达到正常产乳量的淀粉和纤维量。图5中的喂饲系统将在下文中的研究2中描述。
采用方法100来降低RUNDF以获得较高干物质采食量和高产乳量
在一些实施方式中,可采用方法100来降低RUNDF以获得更高的干物质采食量和更高产率的产乳量。图6显示了根据本发明配制的淀粉和纤维饲料,其提供的RUNDF水平支持高产乳量,同时饲料采食量高、消化率低。这种实施方式能收获更高产率的产乳量,但其饲料成本更高,饲料效率更低。
在图6中,纤维团块更小,能够促进高淀粉及其他营养成分在相对较快的速度下自瘤胃中转移。例如,相较于瘤胃可消化淀粉的正常量(饲料中干物质的12wt%-20wt%)以及瘤胃未消化草料的正常量(饲料中干物质的8wt%-13wt%),在图6的实施例中,相对于饲料中的干物质,瘤胃消化淀粉成分可为瘤胃可消化淀粉组分的10-18wt%,而相对于饲料中的干物质,草料RUNNDF的其范围可约为瘤胃未消化草料NDF组分的6-11wt%。草料RUNDF量的减少可导致淀粉和其他营养物质从瘤胃中更快地转移通过,还能增加饲料采食量并提供饲料中更多用于提高产乳量的淀粉和其他营养物质。
如上所述,由于方法100考虑了乳牛的摄食速度,在图6的实施例中,可根据摄食速度,降低给定时间的瘤胃中RUNDF和其他纤维组分的量。相比于淀粉水平,这种降低的纤维水平也可以表示为RUNDF水平,也可将RUNDF水平考虑为纤维和淀粉饲料水平或量中纤维推荐量的一部分。
如果生产商有大量的含淀粉的饲料组分可用和/或有大量的含纤维的组分可用,图6的实施方式是有用的。此外,生产商可以高产乳量为目标,其会引起饲料成本增加。例如,某些情况下,市场中饲料需求低(如价格低)和/或牛乳价格高(如每磅标准乳给生产商的付费增加)。图6中的喂饲系统将在下文中的研究3中描述。
此外,图4-6中的喂饲系统将在下文中的研究1中描述。
采用方法100在将产乳量维持在所需水平的同时降低饲料成本
在另一实施方式中,方法100利用饲料组分的成本信息在将产乳量维持在所需水平的同时降低饲料成本。随附的发明人大卫·维可莱的文献标题为“采用淀粉和NDF消化率数据提高乳业饲料中的青贮水平(Increasing Silage Levels inDairy Diets Using Starch and NDF Digestibility Data)”,在标题为“一种优化高玉米青贮饲料的方法(A Method for Optimizing High Corn Silage Diets)”的章节中公开了在饲料中增加青贮以降低饲料成本。图3B显示了根据本发明将高成本组分替换成低成本组分从而降低饲料成本而采用的饲料日粮计算器的屏幕截屏。在这一实施例中,上述任意饲料系统都能与图4-6联用以改进产乳量,同时自起始饲料日粮起降低饲料成本。图8显示了采用方法100的饲料配方的成本计算,其目标为降低玉米粒用量(细磨玉米)从而降低成本。图3C,右栏,显示了采用方法100的饲料配方成本计算,其目标为瘤胃淀粉消化率(如,瘤胃淀粉消化率的目标百分比是100,表明完成了需要的瘤胃消化率)以及成本的降低。在一些实施方式中,生产商和/或营养师会要求将反刍动物饲料中的所有玉米粒均替换成其他饲料组分如青贮。在这种情况下,饲料日粮计算器中玉米粒组分作为输入值删除,饲料日粮计算器可利用草料、副产品、蛋白质补充等来重新配制喂饲给瘤胃的饲料。在另一实施例中,生产商或营养师可能已经达到了正常的产乳量目标,并需要降低饲料费用同时维持正常产乳量。在这种情况下,饲料日粮计算器可推荐相同或相似的淀粉和纤维的量,但推荐不同的、更廉价的饲料组分(如推荐玉米青贮饲料而非玉米粒)。
图7显示了可根据本发明利用瘤胃NDF消化率来改进产乳量和/或饲料效率。根据图7的最左端,当动物的饲料中瘤胃未消化NDF的量不足,无法形成足够的瘤胃团块,通过速度快于消化速度,则造成消化不良和低饲料效率。根据图7的中间部分,NDF在瘤胃中形成的团块使得淀粉和纤维组分在瘤胃中消化从而提高产乳量。过渡区代表了可接受的饲料效率下的饲料消化率和摄食率的结合从而最大程度提高能量摄取。过渡区内和到过渡区最左端的区域可作为改进产乳量(如达到正常和/或高产乳量)的目标。根据图7的右边部分,NDF在瘤胃内形成过大的团块,引起了过度饱胃(作用),降低了通过速度并导致干物质采食量的下降,但消化率和饲料效率却增加了。以上图4-6的实施例提供了淀粉和纤维组分的饲料日粮,其目标为过渡区和图表的左侧,以便改进产乳量。
实施例
许多方法可调控反刍动物饲料中的淀粉和纤维,从而调整这些组分在瘤胃中的消化速度和程度以实现各种不同的结果。下述所有方法的实施各自可与上述方法100联用。
在第一个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而改进反刍动物的产乳量和/或乳成份。在这个第一实施例中,相对于饲料中干物质的量,所选择的瘤胃可消化淀粉的比例可约为瘤胃可消化淀粉组分的12-20wt%,相对于饲料中干物质的量,所选择的瘤胃未消化草料NDF的比例可约为瘤胃未消化草料NDF组分的8-13wt%。
在第二个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而提高反刍动物的干物质采食和能量摄入。在这个第二实施例中,为了提高干物质采食和能量摄入,相对于饲料中干物质的量,所选择的瘤胃可消化淀粉的比例可约为瘤胃可消化淀粉组分的10-18wt%,相对于饲料中干物质的量,所选择的瘤胃未消化草料NDF的比例可约为瘤胃未消化草料NDF组分的6-11wt%。
在第三个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而提高反刍动物的饲料效率和饲料消化率。在这个第三实施例中,相对于饲料中干物质的量,所选择的瘤胃可消化淀粉的比例可约为瘤胃可消化淀粉组分的12-20wt%,相对于饲料中干物质的量,所选择的瘤胃未消化草料NDF的比例可约为瘤胃未消化草料NDF组分中的10-15wt%。
在第四个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而提高反刍动物的饲料能量密度。在这个第四实施例中,提高饲料能量密度可通过以下方式进行:将低能量密度成分(如高纤维副产品(比如大豆壳、玉米黄浆饲料、甜菜粕、或其他高纤维副产品、苜蓿干草和小麦秸秆)替换成高能量密度成分(如淀粉颗粒(如蜀黍、大麦、小麦或其他淀粉颗粒)、玉米粒和油脂),同时相对于饲料中干物质的量,维持所选择的瘤胃可消化淀粉的比例约为瘤胃可消化淀粉组分的14-22wt%,相对于饲料中干物质的量,维持所选择的瘤胃未消化草料NDF的比例约为瘤胃未消化草料NDF组分的8-13wt%。
在第五个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而降低反刍动物的饲料成本。在这个第五实施例中,降低饲料成本可通过以下方式进行:将高成本成分(淀粉和纤维组分均是)替换成低成本成分(如青贮),同时相对于饲料中干物质的量,维持所选择的瘤胃可消化淀粉的比例约为瘤胃可消化淀粉组分的12-20wt%,相对于饲料中干物质的量,维持所选择的瘤胃未消化草料NDF的比例约为瘤胃未消化草料NDF组分的8-13wt%。
在第六个实施例中,可通过同时调整饲料中瘤胃可消化淀粉以及瘤胃未消化草料中性洗涤纤维(NDF)组分相对于饲料中干物质的量,并将调整的饲料喂饲于反刍动物,从而选择反刍动物饲料中含有的成分和用量。在这个第六实施例中,为了选择饲料中含有的配料和用量,可通过将购买的成分(淀粉和纤维组分均是)替换成本地种植的成分,同时相对于饲料中干物质的量维持所选择的瘤胃可消化淀粉的比例约为瘤胃可消化淀粉组分的12-20wt%,相对于饲料中干物质的量维持所选择的瘤胃未消化草料NDF的比例约为瘤胃未消化草料NDF组分的10-18wt%。
以上六个实施例各自还可包括分析反刍动物乳液中的乳脂含量和乳蛋白含量,若乳脂含量高而乳蛋白含量低则可增加瘤胃可消化淀粉组分的量。或者,可分析反刍动物乳液中的乳脂含量以及乳蛋白含量,若乳脂含量低而乳蛋白含量高则可减少瘤胃可消化淀粉的量。或者,可体外测定瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)的消化率。或者,可基于预设的消化率数值选择瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)。或者,可通过在反刍动物中进行十二指肠置管以测定瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)的瘤胃消化率。或者,可通过原位测定瘤胃中多孔袋的瘤胃可消化淀粉组分来测定瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)的瘤胃消化率。或者,可通过分光光度法测定瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)的瘤胃消化率。或者,可通过红外反射光谱法测定瘤胃可消化淀粉组分以及瘤胃可消化草料NDF组分(或其残余的未消化草料NDF组分)的瘤胃消化率。
所述饲料中的瘤胃可消化淀粉组分可来自玉米粒、玉米青贮、玉米黄浆饲料、玉米胚芽粉、玉米淀粉、玉米副产品、高粱粒、高粱青贮、高粱副产品、蜀黍、小麦粒、小麦青贮、麦麸、低等小麦、小麦胚芽、小麦胚芽、小麦粉、小麦麸、小麦副产品、大麦粒、大麦青贮、大麦副产品、燕麦粒、燕麦青贮、燕麦副产品、烘焙副产品、玉米饲料,豌豆,啤酒糟,酒糟,麦芽根,大米,米糠,米粉,大米副产品,谷物饲料,蔗糖,乳糖,葡萄糖,右旋糖,麦芽糖,木薯,马铃薯或其他含淀粉的块茎或其任何组合。
所述饲料中瘤胃未消化草料NDF组分可来自苜蓿青贮、玉米青贮、小麦青贮、高粱青贮、燕麦青贮、牧草青贮、黑麦草青贮、大麦青贮、黑小麦青贮、干牧草、苜蓿干草、燕麦干草、小麦秸秆、大麦干草、黑麦草干草、黑小麦秸秆、燕麦秸秆、小麦秸秆、大麦秸秆、整粒棉花籽、去壳棉花籽、甜菜粕或其任何组合
瘤胃可消化淀粉组分以及瘤胃未消化草料NDF组分的所选择比例可通过结合瘤胃消化率不同的淀粉和草料NDF成分而获得。例如,可加工瘤胃可消化淀粉组分以及瘤胃未消化草料NDF组分以实现所选择的水平。处理方法包括研磨、槌打、蒸汽压片、蒸汽碾压、挤制加工和/或对淀粉和/或NDF组分进行化学或物理处理以调整瘤胃消化率,或任何其他已知的处理方法。化学或物理处理所述淀粉或纤维组分包括(但不限于)醛处理、酸或碱处理、碱性过氧化氢处理、加热处理、树脂处理、粘合或涂覆处理。
此外,瘤胃可消化淀粉组分的比例可通过包括非纤维碳酸化合物、非结构性碳水化合物、可溶性碳水化合物、或可溶性纤维或其任何组合来实现。或者,瘤胃未消化草料NDF组分的比例可通过包括含纤维碳水化合物、结构性碳水化合物、不溶性碳水化合物、或不溶性纤维或其任何组合来实现。
研究
研究1:以下研究测定了产乳高峰后的乳牛中六种不同水平的瘤胃未消化草料NDF(RUNDF)(通过改变苜蓿干草和小麦秸秆的比例)对总消化道消化率、能量平衡、氮平衡和乳成分产率的影响,所述乳牛消耗含有10%玉米青贮、11.3%可代谢蛋白以及23%淀粉的45%草料饲料。
随着在饲养程序中对泌乳期乳牛采用高纤维消化率草料的兴趣日益提高,就需要关于不同水平的可消化NDF如何对营养物质消化率、乳成分产率以及代谢产生影响的更多信息。假设瘤胃中不同量的瘤胃未消化草料NDF残余会影响瘤胃营养物质的运输速度以及后续的消化率。这进而会分别影响生产表现或饲料效率或二者都会影响。由于瘤胃淀粉和纤维的消化率之间通常存在着互相影响,淀粉水平可改变采食量或饲料效率的最佳未消化草料NDF目标。
通过改变含有23%淀粉和10%玉米青贮的饲料中苜蓿干草和小麦秸秆的水平或比例,将所研究的饲料配制成六种不同的瘤胃未消化草料NDF(RUNDF)水平。这六种不同RUNDF值计算自各草料类型的NDF平均表列值以及28小时体外NDF消化率测定值。
材料和方法:将24头荷兰乳牛采在大型动物代谢单位(LAMU)的总聚集区进行2、3周的饲养周期并给予6种处理。在进入LAMU之前对乳牛进行称重。每种处理设4头奶牛,且每组中至少有三头经产动物,饲养两段时期(两头乳牛/处理组/周期)。在研究开始时,乳牛的DIM在100-250之间。在两段时期里,乳牛都会在分配到处理组之前根据产量和等同性进行隔离(blocked)。在这两段饲养期作平衡处理。
下面的表2-4提供了研究1中饲料中的组成清单,表5提供了研究1的结果。
Figure BDA0000399170470000191
Figure BDA0000399170470000192
Figure BDA0000399170470000201
Figure BDA0000399170470000202
PR>F若<.20(1)TRT(2)线性(3)二次方(4)立方(5)偏离立方
在同一行的平均值后未添加采用LSD方法得出的共同的差异标识(P<.05)
讨论:在饲料中增加的小麦秸秆含量与3.5%标准乳产量(P<0.3)、以及乳脂百分比(P<0.6)、乳脂产量(P<0.1)和以可代谢能量百分比(P<0.6)表示的牛乳能量呈二次方关系,利用含有3-9%小麦秸秆的饲料获得最大产量。随着饲料中的小麦秸秆水平增加,由体重百分比(P<.02)表示的DM采食呈线性降低,干物质(DM;P<0.4)、有机物质(OM;P<.06)、蛋白氮(N;P<.01)、可消化能量(DE;P<.01)、可代谢能量(ME;P<.01)、以及脂肪消化(P<.01)的消化率则呈线性增加。在饲料中小麦秸秆的含量增加与NDF(P<.01)和半纤维素(P<.01)的消化率呈二次方关系,利用含有6-12%小麦秸秆的饲料出现更高水平。
总结:这些结果表明通过提高小麦秸秆水平从而在乳牛的饲料中提高配制的瘤胃未消化草料NDF(RUNDF)水平,能够提高能量输出营养物质的消化率和饲料的能量密度,同时减少饲料的采食。估计这是由于延长了营养输出物质在瘤胃中的停留时间并使其更充分地消化。这对产乳表现测定产生了二次方效应,其中利用含有3-9%小麦秸秆的饲料出现了最大产量,这与约为11.5-14.8%的DM采食的配制RUNDF水平相关。二次方相关性的原因是营养素消化率的增高和饲料采食的下降之间可能存在竞争关系,例如饲料中的RUNDF水平随着小麦秸秆的含量上升而上升。虽然饲料中的小麦秸秆含量和总消化道NDF消化率(NDF百分比)之间也存在着二次方效应,但当未消化的NDF分数由DM采食百分比表示,其结果值(DM的百分含量)非常相近(21-22%DM采食),证明了相较于瘤胃未消化NDF(RUNDF),总消化道未消化NDF在乳牛表现测定中是个较差的指标。因此,乳牛饲料中配制的瘤胃未消化NDF看来有一定范围,其中存在摄入和消化率的最佳结合以支持高水平的动物生产。
研究2:本研究测定了产乳高峰后的乳牛中玉米青贮饲料混合物(Croplan6818、6100或6831)和小麦秸秆水平(0%或3%)对总消化道消化率、能量平衡、氮平衡和乳成分产率的影响,所述乳牛消耗了可代谢能量、淀粉和可代谢蛋白相等量的饲料。
随着泌乳期乳牛的饲养程序中玉米青贮饲料含量的提高,就需要关于不同青贮混合物如何对营养素消化率以及对不同中性洗涤纤维(NDF)消化率的饲料代谢产生影响的更多信息。NDF的体外消化率的增长一个单位对应于每头乳牛干物质采食(DMI)增长0.37磅/天以及4%标准乳产率增长0.55磅/天(Oba和Allen,1999)。随着DM摄入增加而提高的胃肠道转运速度,可造成转运速度大于消化速度,并导致饲料消化率的抑制以及饲料效率的下降。通过向饲料中加入小麦秸秆以调控瘤胃未消化草料纤维的量从而调控饲料转运速率,需要提供测定瘤胃未消化草料量以及总饲料消化率之间关系的方法。
玉米青贮饲料含有纤维和淀粉。来自玉米青贮中玉米的瘤胃淀粉消化率通常大于来自干去皮玉米中的玉米。还需要知晓关于青贮干燥速率对玉米青贮饲料里玉米的淀粉消化率的影响的更多信息。
本研究对饲料中的3种玉米青贮混合物,即6818(低NDF消化率,NDFd)、6100(高NDFd)和6831(低速干燥作物)进行了评估,这些饲料配制成具有相似的ME(1.31.mcal/lb DM)、MP(12.3%)、CP(17.5%)以及淀粉(25%),但NDFd不同。同样地,将所有三种混合物在两种饲料秸秆水平(0%与3%)进行喂饲。其结果有助于改善饲料中的瘤胃未消化NDF(RUNDF)的最佳量,高于该量时,则饲料消化率和饲料效率潜力提高,低于该量时,则DM摄入潜力增加。
材料与方法:研究2的材料和方法与研究1中的相同。
以下的表6-8提供了研究2中饲料组成的清单,表9提供了研究2的结果。
Figure BDA0000399170470000231
Figure BDA0000399170470000232
PR>F若<.20(1)小麦秸秆(2)CSHYB(3)小麦秸秆*CSHYB
在同一行的平均值后未添加采用LSD方法得出的共同的差异标识(P<.05)
讨论:当将3%的苜蓿干草替换为3%的小麦秸秆,干物质(DM;P<.05)、有机物质(OM;P<.06)、蛋白氮(N;P<.01)以及中心洗涤纤维(NDF;P<.04)的消化率增加了。当将3%的苜蓿干草替换为3%的小麦秸秆,饲料中可消化能量(DE)含量增加(P<.10)。玉米青贮混合饲料的NDF消化率是不同的(P<0.03),蛋白氮的消化率也有着不同的趋势(P<.20)。以上变化对DM采食量或标准乳(FCM)产量并没有显著的影响,但3%秸秆饲料的残留能量(retained energy)却有上升的趋势。
结论:虽然加入小麦秸秆降低了饲料中的配制饲料能量密度,但这些结果显示对瘤胃未消化纤维物质的后续效应增加了饲料中主要成分(DM、OM和DE)以及营养素(NDF和蛋白氮)的消化率。增加的已消化营养素的供给看来分配至身体储备,而非增加产乳量。这些观察结果可能是由于加入了秸秆以后,饲料在瘤胃中的滞留时间延长以使其消化更完全,即使DMI并未受到显著影响。这就提示了瘤胃未消化NDF(RUNDF)可能存在最佳量,高于该量,采食量受饱胃所限,而消化率和饲料效率则被最大化,低于这个量则会增加采食量,但可能付出的代价是消化率的下降并导致了饲料效率的下降。
研究3:本研究测定了玉米青贮混合饲料(Croplan6631、7505或BMR)以及小麦秸秆水平(0或4%)对产乳高峰后乳牛的总消化道消化率、能量平衡、氮平衡以及乳成分产率的影响,所述乳牛消耗可代谢能量、淀粉以及可代谢蛋白相等的饲料。相比于研究2,研究3提供了关于青贮NDF消化率对饲料采食量以及可消化能量含量影响的更多信息。
本研究评估了饲料中3种玉米青贮混合物:6631(两用)、7505(两用)以及褐色中脉玉米青贮(BMR;美科根(Mycogen),NDFd更高),这些饲料配制成可代谢能量(ME;1.31mcal/lb DM)、可代谢蛋白(MP;11.4%)和淀粉(25%)相似。所有三种混合饲料在两种饲料小麦秸秆水平(0%对比4%)下进行喂饲,以改变未消化草料NDF水平。其结果有助于改善饲料中的最佳未消化草料NDF目标,高于该量时,则饲料消化率和饲料效率潜力提高,低于该量时,则DM摄入潜力增加。
材料与方法:研究3的材料和方法与研究1中的相同。
以下的表10-12提供了研究3中饲料中的组成清单,表13提供了研究3的结果。
Figure BDA0000399170470000241
Figure BDA0000399170470000251
Figure BDA0000399170470000253
?PR>F若<.20(1)小麦秸秆(2)青贮(3)小麦秸秆*青贮
在同一行的平均值后未添加采用LSD方法得出的共同的差异标识(P<.05)
讨论:当将4%的苜蓿干草替换为4%的小麦秸秆,含BMR青贮饲料中的乳脂百分比从2.32%提高到3.12%(P<0.01)。DM采食量受青贮混合饲料(P<0.03)的影响,用含BMR青贮的饲料趋于最高。氮(N)沉积受小麦秸秆含量(P<0.01)以及青贮混合物(P<0.04)的共同影响,且含高秸秆饲料可改善氮沉积。
总结:虽然含有BMR青贮的饲料提高了DM的采食(估计是由于体外NDF消化率更高),但乳脂的百分比及产率通过加入低NDF消化率的小麦秸秆而大幅提高。此外,在所有的饲料中,加入小麦秸秆增加了蛋白氮沉积。这就提示了高草料NDF消化率(通过喂饲BMR青贮)并不一定导致更高的乳脂合成,促进乳脂产率最大化的饲料中看来有最佳未消化草料NDF水平。
实地研究1:在本研究中,根据方法100对10个畜群进行了草料采集以及分析研究。例如,测量样品中的NDF以及28小鼠的体外NDFd(采用体内瘤胃NDF消化率已知的内标将其转换成FPN)。日粮未进行调整。但跟踪饲料配方的RUNDF评分并与DM摄入和产乳反应差异进行比较。如图9所述,其结果显示当RUNDF评分范围约为100-105时,产乳量最高。此外,如图10所述,在RUNDF低于100时对采食量并未显示出有饱胃限制,而干物质采食也未表现出增加。因此,当产乳平均值低于90磅(牛乳)且RUNDF评分低于110时,降低RUNDF评分可能并不增加DMI。然而,RUNDF评分低于100时,由于消化率的增加,RUNDF评分的提高会导致牛乳的增加。这适用于当动物的能量摄入大于乳液需求时,超过预期增重也可以佐证。
本文提供的诸多实施方式可用于提高干物质采食以及产乳量、提高饲料效率和消化率,同时维持或提高产乳量,提高饲料的草料的水平(如相比于玉米粒),并能安全地提高饲料能量。
本文提供的诸多实施方式能使乳品生产商获利,即,需要通过将高成本成分(如玉米粒)替换成低成本成分(如青贮),但同时又不影响产乳量(如维持所需的产乳水平)从而节省配料成本的时候。这也能使生产商了解产乳成本中的饲料成本比例和并进行更好的经济评估。
这些实施例还可用于管理饲料库存。例如,淀粉资源有限的乳品生产商可通过将饲料调整为将低淀粉摄入和大RUNDF团块的组合而获益,同时不会对产乳量产生不利影响。在另一实施例中,如果饲料组分易得,本文提供的方法可使生产商获益,因为可以通过调整淀粉和纤维摄入而避免丙酸产生过度导致的瘤胃酸中毒。
本文提高实施方式也有利于作物计划种植,因为基于所计算的值可以进行混合饲料选择、收获及饲料储存管理调整。这还能帮助生产商有效地管理他们的饲料库存。
调整饲料中淀粉和纤维含量的方法施用于许多不同种类的动物,因此本发明方法并不限于反刍动物。例如,可将本发明方法配制的饲料喂饲禽类,如鸡、火鸡和鸭。禽类增重和玉米GNP评分之间呈现的正相关性能改善禽类的每日平均增重,并能更快地供应市场,从而节省饲料。
在本发明中,所公开的方法可作为一组设备可读的指令和软件执行。此外,应理解,本发明公开的方法中,步骤的具体次序或层次是作为抽样方法的举例。在另一实施方式中,本方法步骤的具体次序或层次可重新排序,但仍维持在所公开主题的范围内。附随的方法权利要求代表了在示例性次序中多步骤的元素,而并非表示限于所述的具体次序或层次。
本发明可作为计算机程序产品或软件提供,可包括数据存储单元,如非暂时性机器可读介质,其上存储有可用于编程计算机系统(或其他电子设备)的指令,用于执行本发明方法。非暂时性机器可读介质包括任何用于存储机器(如计算机)可读形式(如软件、应用程序)信息的机构。非暂时性机器可读介质的表现形式可以为(但不限于)磁性存储介质(如软盘、录影带等);光存储介质(如CD-ROM);磁-光存储介质;只读存储器(ROM);随机存取存储器(RAM)等。因此,本发明方法还可利用通信偶联于其他计算机系统,和/或到通信偶联于计算机网络的计算机来执行,其具有处理单元、存储器单元、通信单元以及通信连接。处理单元读取并执行存储单元中存储的命令,并将输出值以传送信息或传送输出的形式提供给通信偶联的显示器。
可以相信,本发明及其许多伴随的优点可通过前述得以理解,很显然,可对诸组分的形式、构成和布置作出各种改变而不脱离所公开的主题或损害其实质性优点。所描述的形式仅用于解释,而权利要求应涵盖并包括这些变化。
虽然本发明通过多个参考实施例进行描述,应理解,这些实施例是作为例子,而本发明的范围不应受限于此,对本发明进行的改变、修饰、补充以及改进都是可行的。更普遍地说,依照本发明的实施方式通过上下文或特定实施例进行描述。本发明各种实施例或通过不同术语描述的实施例功能部分可各自独立或联合成整体。这些及其他改变、修改、补充以及改进均应落入权利要求的公开范围内。

Claims (19)

1.一种测定饲料中瘤胃未消化纤维分数以便降低饲料成本或提高产乳量或产乳效率的方法,所述方法包括:
从可利用的饲料来源中对一种或多种草料和谷物进行采样;
分析一个或多个所述采样样本以确定起始NDF值以及经瘤胃消化后的终末NDF值;
利用一个或多个所述采样样本的起始和终末NDF值来计算瘤胃未消化NDF分数;和
利用瘤胃未消化NDF分数以及一个或多个所分析样本的取食率并与配方目标相比较,从而计算饲料日粮。
2.如权利要求1所述的方法,其特征在于,经计算的瘤胃未消化NDF分数包括一指示值。
3.如权利要求2所述的方法,其特征在于,所述指示值是基于将所述瘤胃未消化NDF分数与一指示系统相比较而确定的,所述指示系统与一组先前分析的草料和谷物的已知NDF体内消化率值具有线性关系。
4.如权利要求3所述的方法,其特征在于,当瘤胃NDF消化率低则所述指示值是一较低的数值,而瘤胃NDF消化率高则所述指示值是一较高的数值。
5.如权利要求1所述的方法,其特征在于,分析采样样本包括利用一个或多个快速测试,包括体外分析和体内分析。
6.如权利要求1所述的方法,还包括:
分析一个或多个所述采样样本,用于确定起始淀粉值以及经瘤胃消化后的终末淀粉值;
采用所述一个或多个经分析样本的起始和终末淀粉值,来计算瘤胃淀粉消化率;和
利用所述一个或多个经分析样本中的瘤胃消化率来计算饲料日粮。
7.如权利要求6所述的方法,其特征在于,经计算的瘤胃淀粉消化率包括一指示值。
8.如权利要求7所述的方法,其特征在于,所述指示值是基于将经瘤胃消化的淀粉分数与一指示系统相比较而确定的,所述指示系统与一组先前分析的草料和谷物的已知淀粉体内消化率值具有线性关系。
9.如权利要求8所述的方法,其特征在于,当瘤胃淀粉消化率低则所述指示值是一较低的数值,而瘤胃淀粉消化率高则所述指示值是一较高的数值。
10.降低反刍动物的饲料成本或提高反刍动物的产乳量的方法,包括:
分析饲料日粮中的饲料组分;
将分析的结果与计算机存储器中储存的饲料配方目标相比较,该饲料配方用于控制反刍动物瘤胃中纤维和淀粉的消化率和消化程度;和
基于比较结果,利用处理器重新配制饲料日粮。
11.如权利要求10所述的方法,其特征在于,所述重新配制的饲料日粮包括纤维组分,所述的纤维组分基于目标为瘤胃的瘤胃未消化草料NDF的量而计算。
12.如权利要求10所述的方法,其特征在于,所述重新配制的饲料日粮包括基于提高反刍动物产乳量而计算的纤维组分和淀粉组分。
13.如权利要求10所述的方法,其特征在于,所述重新配制的饲料包括基于节省成本而计算的纤维组分和淀粉组分。
14.如权利要求10所述的方法,其特征在于,所述重新配制的饲料日粮包括为提高干物质采食和能量摄入而计算的纤维组分和淀粉组分。
15.如权利要求10所述的方法,其特征在于,所述重新配制的饲料日粮包括基于提高消化率和饲料效率而计算的纤维组分和淀粉组分。
16.如权利要求10所述的方法,其特征在于,所述重新配制的饲料日粮包括基于提高饲料的能量密度而计算的纤维组分和淀粉组分。
17.用于降低反刍动物的饲料成本或提高反刍动物的产乳量的计算机执行系统,包括:
将对反刍动物饲料日粮的饲料组分分析的测试结果提供给计算机处理器;
利用计算机处理器将经分析的测试结果与储存在存储器中饲料配方目标相比较,该饲料配方用于控制瘤胃中纤维和淀粉的消化速度和消化程度;和
根据比较结果,利用计算机处理器重新配制饲料日粮;和
将经重新配制的饲料日粮提供给与处理器通信偶联的显示器。
18.如权利要求17所述的系统,还包括在喂饲重新配制的饲料后分析乳成分。
19.如权利要求18所述的系统,还包括基于乳成分分析重新配制饲料日粮。
CN201280019572.3A 2011-04-20 2012-04-20 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统 Active CN103596448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610022269.9A CN105639112B (zh) 2011-04-20 2012-04-20 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161477457P 2011-04-20 2011-04-20
US61/477,457 2011-04-20
PCT/US2012/034528 WO2012145679A2 (en) 2011-04-20 2012-04-20 Methods and systems for adjusting ruminally digestible starch and fiber in animal diets

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610022269.9A Division CN105639112B (zh) 2011-04-20 2012-04-20 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统

Publications (2)

Publication Number Publication Date
CN103596448A true CN103596448A (zh) 2014-02-19
CN103596448B CN103596448B (zh) 2016-02-03

Family

ID=47042189

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280019572.3A Active CN103596448B (zh) 2011-04-20 2012-04-20 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统

Country Status (3)

Country Link
CN (1) CN103596448B (zh)
CA (1) CA2833586C (zh)
WO (1) WO2012145679A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106036073A (zh) * 2016-07-27 2016-10-26 山东农业大学 一种专用于泌乳奶牛的饲料及其制备方法
CN106234780A (zh) * 2016-07-27 2016-12-21 山东农业大学 一种专用饲料及其制备方法
CN109757431A (zh) * 2019-02-01 2019-05-17 中国农业科学院饲料研究所 一种以日粮中碳水化合物组成为指标配制犊牛全混合日粮的方法
CN113923982A (zh) * 2019-05-29 2022-01-11 纽崔克Ip资产有限公司 配制动物饲料组合物的系统和方法
CN114554838A (zh) * 2019-10-11 2022-05-27 匡图里有限公司 控制动物日常饲料的方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140273048A1 (en) * 2013-03-15 2014-09-18 Alltech, Inc. Systems and methods for analyzing animal feed
US10537122B2 (en) * 2013-12-17 2020-01-21 Alltech, Inc. Systems and methods for adjusting animal feed
US20170091403A1 (en) * 2014-05-15 2017-03-30 Globalvetlink, L.C. System And Method For Predicting Effectiveness of Animal Treatments
CN110150466A (zh) * 2018-03-28 2019-08-23 云南省畜牧兽医科学院 一种用全株大麦替换麸皮的妊娠期母猪日粮

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008053A (en) * 1995-08-10 1999-12-28 Rhone-Poulenc Nutrition Animale Measurement of feed digestibility in ruminants
US20050000457A1 (en) * 2003-06-20 2005-01-06 Syngenta Participations Ag Method for the development of ruminant feed formulations
US20090092715A1 (en) * 2006-07-27 2009-04-09 Beck James F System for real-time characterization of ruminant feed rations
US20090272889A1 (en) * 2008-03-17 2009-11-05 David Kenneth Combs Method for measuring fiber digestibility

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1233098A (en) 1985-01-23 1988-02-23 James E. Nocek Method for quantitating non-structural carbohydrates in feedstuffs
US4615891A (en) 1985-01-23 1986-10-07 Agway Inc. Method of formulating dairy cow rations based on carbohydrate regulation
SE527130C2 (sv) 2004-01-13 2005-12-27 Delaval Holding Ab Anordning och förfarande för utfodring av djur
US7550172B2 (en) 2004-02-27 2009-06-23 Purina Mills, Llc Selective feeding of starch to increase milk production in ruminants
US20080215167A1 (en) 2006-07-27 2008-09-04 Beck James F Feed delivery system for enhancing ruminant animal nutrition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008053A (en) * 1995-08-10 1999-12-28 Rhone-Poulenc Nutrition Animale Measurement of feed digestibility in ruminants
US20050000457A1 (en) * 2003-06-20 2005-01-06 Syngenta Participations Ag Method for the development of ruminant feed formulations
US20090092715A1 (en) * 2006-07-27 2009-04-09 Beck James F System for real-time characterization of ruminant feed rations
US20090272889A1 (en) * 2008-03-17 2009-11-05 David Kenneth Combs Method for measuring fiber digestibility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106036073A (zh) * 2016-07-27 2016-10-26 山东农业大学 一种专用于泌乳奶牛的饲料及其制备方法
CN106234780A (zh) * 2016-07-27 2016-12-21 山东农业大学 一种专用饲料及其制备方法
CN109757431A (zh) * 2019-02-01 2019-05-17 中国农业科学院饲料研究所 一种以日粮中碳水化合物组成为指标配制犊牛全混合日粮的方法
CN109757431B (zh) * 2019-02-01 2021-08-06 中国农业科学院饲料研究所 一种以日粮中碳水化合物组成为指标配制犊牛全混合日粮的方法
CN113923982A (zh) * 2019-05-29 2022-01-11 纽崔克Ip资产有限公司 配制动物饲料组合物的系统和方法
CN113923982B (zh) * 2019-05-29 2024-03-29 纽崔克Ip资产有限公司 配制动物饲料组合物的系统和方法
CN114554838A (zh) * 2019-10-11 2022-05-27 匡图里有限公司 控制动物日常饲料的方法和系统
CN114554838B (zh) * 2019-10-11 2024-03-22 匡图里有限公司 控制动物日常饲料的方法和系统

Also Published As

Publication number Publication date
CA2833586A1 (en) 2012-10-26
CN103596448B (zh) 2016-02-03
WO2012145679A2 (en) 2012-10-26
CA2833586C (en) 2019-01-08
WO2012145679A3 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
CN103596448B (zh) 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统
CN105639112B (zh) 调节动物饲料中瘤胃可消化淀粉和纤维的方法和系统
Mertens et al. Digestibility and intake
Sniffen et al. Microbial growth and flow as influenced by dietary manipulations
Huhtanen et al. Evaluation of concentrate factors affecting silage intake of dairy cows: a development of the relative total diet intake index
EP2053927A1 (en) Method and feed for enhancing ruminant animal nutrition
Patton et al. Defining ruminal and total-tract starch degradation for adult dairy cattle using in vivo data
US20140274886A1 (en) Methods and systems for adjusting rumen undegraded protein in animal diets
Collar et al. Harvest stage effects on yield and quality of winter forage
Noblet Comparative interests and limits of metabolizable energy and net energy for evaluating poultry and pig feeds
De Smet et al. Investigation of dry matter degradation and acidotic effect of some feedstuffs by means of in sacco and in vitro incubations
Negrão et al. Fractionation of carbohydrates and protein and rumen degradation kinetic parameters of Brachiaria grass silage enriched with rice bran
Emile et al. Genetic variations in the digestibility in sheep of selected whole-crop cereals used as silages
Martin-Rosset et al. Routine methods for predicting the net energy and protein values of concentrates for horses in the UFC and MADC systems
Stokes Balancing carbohydrates for optimal rumen function and animal health
Nouala et al. Horticultural residues as ruminant feed in peri-urban area of The Gambia
Marques et al. Rumen parameters and intake in goats fed cassava chips and alfalfa
Herrick Should we care about NDF digestibility in DDGS?
Åkerlind et al. Evaluation of NorFor's prediction of neutral detergent fibre digestibility in dairy cows.
Knapp Strategies for diet formulation with high corn prices
Schroeder Quality Forage: Interpreting Composition and Determining Market Value
STEG et al. Institute for Livestock Feeding and Nutrition Research, Lelystad, The Netherlands
Owens Maximizing nutritional value of corn silage: starch vs. NDF digestibility.
Volden 4.1 Definition of roughage and concentrates
Ferreira et al. Fracción de carbohidratos y proteínas en ensilajes de hierba con residuos deshidratados añadidos de cervecería.

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant