CN103592166A - 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法 - Google Patents

原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法 Download PDF

Info

Publication number
CN103592166A
CN103592166A CN201310565171.4A CN201310565171A CN103592166A CN 103592166 A CN103592166 A CN 103592166A CN 201310565171 A CN201310565171 A CN 201310565171A CN 103592166 A CN103592166 A CN 103592166A
Authority
CN
China
Prior art keywords
ion
free state
water
silane
sediment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310565171.4A
Other languages
English (en)
Other versions
CN103592166B (zh
Inventor
范洪涛
阎峰
孙挺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN201310565171.4A priority Critical patent/CN103592166B/zh
Publication of CN103592166A publication Critical patent/CN103592166A/zh
Application granted granted Critical
Publication of CN103592166B publication Critical patent/CN103592166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)

Abstract

原位定量采集水、沉积物、土壤环境中游离态Cd(

Description

原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法
技术领域
本发明涉及一种金属离子的环境监测方法,特别是涉及一种原位定量采集水、沉积物、土壤环境中游离态Cd(                                               
Figure 2013105651714100002DEST_PATH_IMAGE001
)离子的方法。
背景技术
重金属污染是对环境污染最严重和对人类危害最大的污染。重金属离子种类繁多、处理难度大、化学性质稳定、不容易被微生物降解,通过生物链富集,对动植物的毒性作用大。因此,对环境中重金属离子的监测具有重要意义。
镉是一种严重危害人类健康的重金属元素,镉离子被人体吸收后,在体内形成镉蛋白,选择性的蓄积在肾、肝,其中肾脏可以寄售进入人体内近1/3的镉,是镉中毒的“靶器官”。其他脏器如脾、胰、甲状腺和毛发等也有一定量的蓄积,镉在体内可与含羟基、氨基、硫基的蛋白质分子结合,使许多酶系统受到抑制,影响肝、肾器官中的酶系统的功能的正常运作。镉中毒的典型症状是肾功能受破坏,肾小管对低分子蛋白再吸收功能发生障碍,糖、蛋白质代谢紊乱,引发尿蛋白症,糖尿病; 镉进入呼吸道可引起肺炎、肺气肿;作用于消化系统则引起肠胃炎;镉中毒者常常伴有贫血;骨骼中有过量镉积累会使骨骼软化、变形、骨折、萎缩;镉中毒也会引起癌症。
环境化学家认为镉的生物毒性不仅与其总量有关,更大程度上由其形态分布决定,不同形态的镉会产生不同的环境效应,研究镉的活性形态及其影响已成为热点之一。众所周知,游离态镉与镉的毒性效应有直接的相关性,自然环境中游离态的镉浓度越高,其对动植物的毒性效应就越大,建立游离态Cd(
Figure 705438DEST_PATH_IMAGE001
)离子的监测技术极为重要。
环境监测是环境保护工作中的一个重要环节,可以反映环境质量现状及发展趋势,在控制污染、保护环境方面起着非常重要的作用。人们对环境的认知在很大程度上取决于环境分析监测的水平。与常规分析不同,环境分析对样品的采集提出了更高的要求,样品要具有代表性和有效性。目前尚未建立起对游离态重金属镉的原位定量采集和监测的技术,本发明公开的一种原位定量采集环境中游离态Cd(
Figure 16465DEST_PATH_IMAGE001
)离子的新方法能够准确、及时、全面地反映环境中游离态Cd(
Figure 584849DEST_PATH_IMAGE001
)离子的环境信息。
发明内容
本发明的目的在于提供一种原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 112651DEST_PATH_IMAGE001
)离子的方法,该方法通过惰性的扩散膜控制Cd(
Figure 57474DEST_PATH_IMAGE001
)的交换过程,并利用装置内对游离态Cd(
Figure 223007DEST_PATH_IMAGE001
)离子具有特异性结合和富集作用的Cd()离子印迹材料实现的单向扩散,从而达到定量采集水环境、沉积物环境和土壤环境中游离态Cd(II)离子的目的。
    原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 977391DEST_PATH_IMAGE001
)离子的方法,所述方法包括以下条件:一种能够对游离态Cd(
Figure 460325DEST_PATH_IMAGE001
)有特异性结合的Cd(
Figure 745944DEST_PATH_IMAGE001
)离子印迹材料;能够使游离态Cd(
Figure 656131DEST_PATH_IMAGE001
)离子渗透的具有一定孔径的扩散膜;对游离态Cd(
Figure 910524DEST_PATH_IMAGE001
)离子有特异性的Cd(
Figure 197149DEST_PATH_IMAGE001
)离子印迹材料与被测环境体系被扩散膜分开;在环境体系中放置一定时间;所述对游离态Cd(
Figure 524225DEST_PATH_IMAGE001
)有特异选择性结合的离子印迹材料的合成:含有伯氨基的硅烷和乙醛酸或丙酮酸或2-吡啶甲醛或2-噻吩甲醛按摩尔比1:1在乙醇溶液中混合,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 621626DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式使其充分反应;将正硅酸乙酯与水按混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,加入氨水调节pH值在6-8范围内,形成凝胶,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡除去Cd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到具有一定粒度范围的Cd(
Figure 414373DEST_PATH_IMAGE001
)离子印迹材料;其扩散膜包括醋酸纤维素膜、硝酸纤维素膜、混合纤维素膜、聚醚砜膜、聚砜膜、亲水偏氟膜、尼龙膜、氧化铝膜、玻璃膜;其环境体系,包括天然淡水、天然矿化水、污水、饮用水、回用水、生物体内水、沉积物、土壤。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 682674DEST_PATH_IMAGE001
)离子的方法,所述混合温度为50℃恒温反应,形成含有Schiff 碱功能基团的硅烷;水热方式为120℃加热24 h,使其充分反应;与含有Cd(
Figure 644814DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,为搅拌20 min。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 522509DEST_PATH_IMAGE001
)离子的方法,所述扩散膜,其孔径小于等于0.22 μm。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 620915DEST_PATH_IMAGE001
)离子的方法,所述放置时间从1小时到1年。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 60118DEST_PATH_IMAGE001
)离子的方法,所述对游离态Cd(
Figure 509554DEST_PATH_IMAGE001
)有特异性结合的Cd(
Figure 925360DEST_PATH_IMAGE001
)离子印迹材料的用量,为每个装置1-300 mg。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd()离子的方法,所述伯氨基的硅烷,包括3-氨基丙基三甲氧基硅烷、二乙烯三胺基丙基三甲氧基硅烷、脲丙基三乙氧基硅烷、N-氨乙基-γ-氨丙基三乙氧基硅、N-氨乙基-γ-氨丙基三甲氧基硅。
所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 753956DEST_PATH_IMAGE001
)离子的方法,所述游离态Cd(
Figure 425109DEST_PATH_IMAGE001
)有特异选择性结合的离子印迹材料的粒度范围,在1 -100 μm范围内。
附图说明
    图1为本发明装置示意图。
具体实施方式
下面结合附图所示实施例,对本发明作进一步详述。
图1为本发明装置示意图:1-保护膜;2-扩散膜;3-对游离态Cd(II)离子有特异性结合的Cd(II)离子印迹材;4-塑料或聚四氟乙烯支撑体;5-塑料或聚四氟乙烯支撑体。
本发明通过惰性的扩散膜控制Cd()的交换过程,并利用装置内对游离态Cd(
Figure 926727DEST_PATH_IMAGE001
)离子具有特异性结合和富集作用的Cd(
Figure 956999DEST_PATH_IMAGE001
)离子印迹材料实现的单向扩散,从而做到对游离态Cd(
Figure 866181DEST_PATH_IMAGE001
)离子的定量采集。
以Fick’s第一扩散定律为理论基础。对游离态Cd(
Figure 374522DEST_PATH_IMAGE001
)离子具有特异性结合的Cd(
Figure 816874DEST_PATH_IMAGE001
)离子印迹材料被厚度为⊿g的扩散膜与本体溶液分开。而离子的传输仅仅通过面积为A的扩散膜进行。在时间t内,游离态Cd()离子从扩散膜扩散到其具有特异性结合的的扩散量(M)可以表达为:
M = D · C  ·t ·A /⊿g                       (Eq.1)
扩散到对游离态Cd(
Figure 414526DEST_PATH_IMAGE001
)离子具有特异性结合的Cd(
Figure 726558DEST_PATH_IMAGE001
)离子印迹材料的离子总量M可以通过定量分析方法(如FASB,ICP-MS)测定得到,所以本体溶液中游离态Cd()离子浓度则可定量的表达为:
b  = M ·⊿g / D · t· A                       (Eq.2)
Eq.2通常被用于计算本体溶液的浓度。M可通过测量得到,⊿g,A,t均为可测量的量,D是在一定温度下游离态Cd(
Figure 395492DEST_PATH_IMAGE001
)离子在水中的扩散系数。在常规应用中,在一定温度下,⊿g,A,t,D均是常数。M 与 b 形成函数关系。
本方法中对游离态Cd()离子具有特异性结合能力的物质是利用印迹技术制备的Cd(
Figure 394989DEST_PATH_IMAGE001
)离子印迹材料。在印迹技术中, 当游离态Cd(
Figure 546353DEST_PATH_IMAGE001
)离子与带官能团的功能硅烷接触时会形成多重作用点,聚合过程中这种作用就会被记忆下来,当游离态Cd(
Figure 89330DEST_PATH_IMAGE001
)离子去除后,聚合物中就形成了与游离态Cd(
Figure 194820DEST_PATH_IMAGE001
)离子印迹材料空间构型相匹配的具有多重作用位点的空穴,这样的空穴将对游离态Cd(
Figure 114235DEST_PATH_IMAGE001
)离子具有选择识别特性。而在环境中存在多种形态的Cd(
Figure 114247DEST_PATH_IMAGE001
),如吸附交换态的Cd(
Figure 828125DEST_PATH_IMAGE001
)、碳酸盐结合态的Cd(
Figure 686490DEST_PATH_IMAGE001
)、铁锰氧化物结合态的Cd(
Figure 144017DEST_PATH_IMAGE001
)、有机结合态的Cd(),这些形态的镉由于与Cd()离子印迹材料中留下的游离态Cd(
Figure 421786DEST_PATH_IMAGE001
)离子空穴的大小不相匹配。不能被Cd()离子印迹材料所结合,只有与Cd()离子印迹材料中留下的空穴的大小相匹配的游离态Cd(
Figure 469879DEST_PATH_IMAGE001
)离子才能被结合。所制备对游离态Cd()离子具有特异性结合能力的Cd()离子印迹材料的特点是能够快速结合和富集游离态Cd(
Figure 422289DEST_PATH_IMAGE001
)离子,而对其他形态的Cd(
Figure 898138DEST_PATH_IMAGE001
)不具有结合能力,虽然各种可溶形态Cd(
Figure 202081DEST_PATH_IMAGE001
)均能通过扩散膜,但是Cd(
Figure 555833DEST_PATH_IMAGE001
)离子印迹材料只能结合游离态Cd(
Figure 996041DEST_PATH_IMAGE001
)离子,使得扩散膜与Cd(
Figure 914231DEST_PATH_IMAGE001
)离子印迹材料界面间只有游离态Cd(
Figure 439890DEST_PATH_IMAGE001
)离子的浓度始终保持为零,在扩散膜形成一个能够用于准确定量采集游离态Cd(
Figure 597333DEST_PATH_IMAGE001
)离子的恒定的扩散梯度,Cd(
Figure 157628DEST_PATH_IMAGE001
)离子印迹材料的特异性的结合能力是保证该方法定量采集的先决条件。
在本发明中,特异性物质与扩散膜,按装置图所示依次放入装置内。由聚乙烯或聚四氟材料制成的外壳,主要起到支持、保护和固定的作用。塑料外壳又分为两部分:直径为2 cm的前开窗口和后面的支撑结构。前开窗口主要是作为扩散通道使用,并且限定了扩散面积。后面的支撑结构主要起到支撑扩散膜和特异性结合物质的作用。保护膜主要作用是保护内部的扩散层和结合相不受到污染,同时限定通过微粒的粒径。扩散膜的作用是限定通过粒子的通过速度,使其与时间、外部溶液、内部离子浓度成比例。与扩散膜内部紧密的相连的是特异性结合的Cd(II)离子印迹材料。特异性结合的Cd(II)离子印迹材的主要作用就是结合扩散过来的游离态Pb(
Figure 975280DEST_PATH_IMAGE001
)离子,使扩散相与结合相之间的游离态Pb(
Figure 253814DEST_PATH_IMAGE001
)离子浓度减至最低。
实施例1
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd()离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 364170DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 352220DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 621528DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd()的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 34109DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 71466DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 460859DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例2
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 74373DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 283637DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 311636DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 306268DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd()离子印迹材料装入装置后,用混合纤维素膜将装置封好,共36个,然后将装置放入Cd(
Figure 35245DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 663672DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 512810DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 201281DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例3
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 66523DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 895119DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 815539DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 785769DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用亲水偏氟膜将装置封好,共36个,然后将装置放入Cd()污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd()的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 735905DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 764953DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 958037DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例4
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd()离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 290109DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 116989DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 164579DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 287387DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用尼龙膜将装置封好,共36个,然后将装置放入Cd(
Figure 154849DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 519840DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 421937DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 715646DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例5
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd()离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 261269DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 567933DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 268868DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用氧化铝膜将装置封好,共36个,然后将装置放入Cd(
Figure 145557DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 781069DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 48102DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 309319DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例6
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 345463DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 912842DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 977750DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 812719DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 39301DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 93976DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 696996DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 386472DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 49534DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 325926DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例7
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 670320DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 965035DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 54126DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 67081DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 824953DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 489021DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 493886DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd()离子的浓度,表明本发明可以准确的监测Cd()污染环境体系中游离态Cd(
Figure 11958DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例8
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 187724DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 926004DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 212629DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 932378DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用混合纤维素膜将装置封好,共36个,然后将装置放入Cd(
Figure 157955DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 248270DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd()离子的浓度,表明本发明可以准确的监测Cd(
Figure 276585DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 723877DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例9
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 352305DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 965558DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 591711DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 958419DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用混合纤维素膜将装置封好,共36个,然后将装置放入Cd(
Figure 176910DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 285550DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 956702DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd()污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例10
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd()离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 188652DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 713306DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 640810DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 97112DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用氧化铝膜将装置封好,共36个,然后将装置放入Cd(
Figure 742857DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 71201DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 853212DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 474555DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例11
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol乙醛酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 474052DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 376149DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 168393DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 193298DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用氧化铝膜将装置封好,共36个,然后将装置放入Cd(
Figure 887585DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 867042DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 958364DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 415890DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例12
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 928091DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 762066DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 243994DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd()离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 365589DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd()的浓度,并计算在放置时间内环境系中游离态Cd()离子的浓度,表明本发明可以准确的监测Cd(
Figure 993513DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 546723DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例13
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 884164DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 738167DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 919805DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd()污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 64795DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 332878DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 277700DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 443233DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例14
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol丙酮酸在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 448098DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 867502DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 402389DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 328887DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 316435DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 852327DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 976141DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 73541DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 548385DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例15
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol 2-吡啶甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 218046DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 461946DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 464668DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 426808DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 304503DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 668488DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 842112DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 291548DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 972934DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 925846DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例16
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol 2-吡啶甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 535950DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 207103DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 692180DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 765178DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 733134DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 642315DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 416236DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 598868DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 800042DEST_PATH_IMAGE001
)污染环境体系中游离态Cd()离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例17
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol 2-吡啶甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 508552DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 805410DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 177486DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-300 μm范围的Cd(
Figure 61259DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 176983DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 328347DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 871324DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 976814DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 896229DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 902100DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例18
取0.01 mol 3-氨基丙基三甲氧基硅烷和0.01 mol 2-噻吩甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 615978DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd()离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd(
Figure 480663DEST_PATH_IMAGE001
)离子印迹材料。将50 mg Cd(
Figure 936746DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd()污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 215729DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 681346DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 251873DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 881569DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例19
取0.01 mol二乙烯三胺基丙基三甲氧基硅烷和0.01 mol 2-噻吩甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 680897DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 515867DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 945711DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd()离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 43615DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd(
Figure 690365DEST_PATH_IMAGE001
)的浓度,并计算在放置时间内环境系中游离态Cd()离子的浓度,表明本发明可以准确的监测Cd(
Figure 373468DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 933762DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。
实施例20
取0.01 mol N-氨乙基-γ-氨丙基三乙氧基硅和0.01 mol 2-噻吩甲醛在乙醇溶液中混合,50℃恒温反应,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 757274DEST_PATH_IMAGE001
)离子作用形成螯合物,采用水热方式120℃加热24 h,使其充分反应;将正硅酸乙酯与水按一定比例混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd(
Figure 35808DEST_PATH_IMAGE001
)离子螯合物硅烷溶液混合,搅拌20 min后,加入氨水调节pH值在6-8范围内,形成凝胶,老化48 h后,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡一定时间后除去Cd(
Figure 731363DEST_PATH_IMAGE001
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到粒度在1-100 μm范围的Cd()离子印迹材料。将50 mg Cd(
Figure 462613DEST_PATH_IMAGE001
)离子印迹材料装入装置后,用聚醚砜膜将装置封好,共36个,然后将装置放入Cd(
Figure 713597DEST_PATH_IMAGE001
)污染环境体系中,放置1年,每个月取出3个,利用原子吸收光谱法测定Cd()的浓度,并计算在放置时间内环境系中游离态Cd(
Figure 980685DEST_PATH_IMAGE001
)离子的浓度,表明本发明可以准确的监测Cd(
Figure 890872DEST_PATH_IMAGE001
)污染环境体系中游离态Cd(
Figure 629152DEST_PATH_IMAGE001
)离子含量,同时可以降低采样次数,大量减少工作量,节约人力物力。

Claims (7)

1.原位定量采集水、沉积物、土壤环境中游离态Cd(                                               
Figure 2013105651714100001DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述方法包括以下条件:一种能够对游离态Cd(
Figure 847243DEST_PATH_IMAGE002
)有特异性结合的Cd(
Figure 157044DEST_PATH_IMAGE002
)离子印迹材料;能够使游离态Cd(
Figure 432168DEST_PATH_IMAGE002
)离子渗透的具有一定孔径的扩散膜;对游离态Cd()离子有特异性的Cd()离子印迹材料与被测环境体系被扩散膜分开;在环境体系中放置一定时间;所述对游离态Cd(
Figure 264361DEST_PATH_IMAGE002
)有特异选择性结合的离子印迹材料的合成:含有伯氨基的硅烷和乙醛酸或丙酮酸或2-吡啶甲醛或2-噻吩甲醛按摩尔比1:1在乙醇溶液中混合,形成含有Schiff 碱功能基团的硅烷; 然后含有Schiff 碱功能基团的硅烷再与Cd(
Figure 405492DEST_PATH_IMAGE002
)离子作用形成螯合物,采用水热方式使其充分反应;将正硅酸乙酯与水按混合,用盐酸调节pH=2,形成均一溶液后,与含有Cd()离子螯合物硅烷溶液混合,加入氨水调节pH值在6-8范围内,形成凝胶,产物过滤,先用乙醇洗涤,然后在1 mol/L盐酸溶液中搅拌浸泡除去Cd(
Figure 737433DEST_PATH_IMAGE002
)离子,过滤,用NaHCO3溶液洗涤至pH=7,再用蒸馏水洗涤固体,即得到具有一定粒度范围的Cd(
Figure 750389DEST_PATH_IMAGE002
)离子印迹材料;其扩散膜包括醋酸纤维素膜、硝酸纤维素膜、混合纤维素膜、聚醚砜膜、聚砜膜、亲水偏氟膜、尼龙膜、氧化铝膜、玻璃膜;其环境体系,包括天然淡水、天然矿化水、污水、饮用水、回用水、生物体内水、沉积物、土壤。
2.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 632894DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述混合温度为50℃恒温反应,形成含有Schiff 碱功能基团的硅烷;水热方式为120℃加热24 h,使其充分反应;与含有Cd(
Figure 47695DEST_PATH_IMAGE002
)离子螯合物硅烷溶液混合,为搅拌20 min。
3.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 52560DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述扩散膜,其孔径小于等于0.22 μm。
4.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 490495DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述放置时间从1小时到1年。
5.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 973428DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述对游离态Cd()有特异性结合的Cd(
Figure 621765DEST_PATH_IMAGE002
)离子印迹材料的用量,为每个装置1-300 mg。
6.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 609312DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述伯氨基的硅烷,包括3-氨基丙基三甲氧基硅烷、二乙烯三胺基丙基三甲氧基硅烷、脲丙基三乙氧基硅烷、N-氨乙基-γ-氨丙基三乙氧基硅、N-氨乙基-γ-氨丙基三甲氧基硅。
7.根据权利要求1所述的原位定量采集水、沉积物、土壤环境中游离态Cd(
Figure 833620DEST_PATH_IMAGE002
)离子的方法,其特征在于,所述游离态Cd(
Figure 957434DEST_PATH_IMAGE002
)有特异选择性结合的离子印迹材料的粒度范围,在1 -100 μm范围内。
CN201310565171.4A 2013-11-14 2013-11-14 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法 Active CN103592166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310565171.4A CN103592166B (zh) 2013-11-14 2013-11-14 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310565171.4A CN103592166B (zh) 2013-11-14 2013-11-14 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法

Publications (2)

Publication Number Publication Date
CN103592166A true CN103592166A (zh) 2014-02-19
CN103592166B CN103592166B (zh) 2016-06-22

Family

ID=50082393

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310565171.4A Active CN103592166B (zh) 2013-11-14 2013-11-14 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法

Country Status (1)

Country Link
CN (1) CN103592166B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148851A (zh) * 2015-09-28 2015-12-16 太原理工大学 一种脲基功能化镉离子表面印迹吸附剂的制备方法及用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353556A (zh) * 2011-08-31 2012-02-15 沈阳化工大学 一种选择性定量采集环境体系中锑的方法
CN102393448A (zh) * 2011-10-20 2012-03-28 东北大学 一种选择性定量采集水环境中Cd的方法
CN103254354A (zh) * 2013-05-24 2013-08-21 福州大学 一种镉离子印迹吸附剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353556A (zh) * 2011-08-31 2012-02-15 沈阳化工大学 一种选择性定量采集环境体系中锑的方法
CN102393448A (zh) * 2011-10-20 2012-03-28 东北大学 一种选择性定量采集水环境中Cd的方法
CN103254354A (zh) * 2013-05-24 2013-08-21 福州大学 一种镉离子印迹吸附剂及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
徐伟伟等: "多孔壳聚糖膜的渗透性及其对Cd(Ⅱ)离子的吸附性能研究", 《河北大学学报(自然科学版)》, vol. 25, no. 6, 30 November 2005 (2005-11-30) *
范洪涛等: "水热辅助表面接枝印迹法制备Cd(Ⅱ)离子印迹硅胶及其性能研究", 《功能材料》, vol. 43, no. 15, 31 December 2012 (2012-12-31), pages 2060 - 2064 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105148851A (zh) * 2015-09-28 2015-12-16 太原理工大学 一种脲基功能化镉离子表面印迹吸附剂的制备方法及用途
CN105148851B (zh) * 2015-09-28 2018-10-19 太原理工大学 一种脲基功能化镉离子表面印迹吸附剂的制备方法及用途

Also Published As

Publication number Publication date
CN103592166B (zh) 2016-06-22

Similar Documents

Publication Publication Date Title
Zhang et al. In situ measurement of dissolved phosphorus in natural waters using DGT
Pinheiro et al. Lead and calcium binding to fulvic acids: salt effect and competition
Panther et al. Titanium dioxide-based DGT technique for in situ measurement of dissolved reactive phosphorus in fresh and marine waters
Ding et al. Measurement of dissolved reactive phosphorus using the diffusive gradients in thin films technique with a high-capacity binding phase
Casey et al. Statistical analysis of nitrate concentrations from the River Frome (Dorset) for the period 1965–76
Ngwenya et al. Discrete site surface complexation constants for lanthanide adsorption to bacteria as determined by experiments and linear free energy relationships
Vaithiyanathan et al. Relationships of eutrophication to the distribution of mercury and to the potential for methylmercury production in the peat soils of the Everglades
CN103499688B (zh) 一种汞离子快速检测金标试纸条或卡
Ahmed et al. Testing copper-speciation predictions in freshwaters over a wide range of metal–organic matter ratios
Cape The use of passive diffusion tubes for measuring concentrations of nitrogen dioxide in air
Bandara et al. Chromatographic separation and visual detection on wicking microfluidic devices: quantitation of Cu2+ in surface, ground, and drinking water
Matsuguchi et al. SO2 gas sensors using polymers with different amino groups
Oste et al. Measuring and modeling zinc and cadmium binding by humic acid
Al-Neamy et al. Occupational lead exposure and amino acid profiles and liver function tests in industrial workers
CN102353556B (zh) 一种选择性定量采集环境体系中锑的方法
CN103592153A (zh) 一种原位和定量采集环境中游离态Pb(Ⅱ)离子的方法
Ding et al. Acidified paper substrates for microfluidic solution sampling integrated with potentiometric sensors for determination of heavy metals
Rabaud et al. A passive sampler for the determination of airborne ammonia concentrations near large-scale animal facilities
CN103592166A (zh) 原位定量采集水、沉积物、土壤环境中游离态Cd(Ⅱ)离子的方法
Gaddamwar Analytical study of rain water for the determination of polluted or unpolluted zone
Zhang et al. A study of synchronous measurement of liable phosphorous and iron based on ZrO-Chelex (DGT) in the sediment of the Chaiwopu Lake, Xinjiang, Northwest China
CN102539500B (zh) 一种基于非对称性聚合物膜的传感器及其检测方法和应用
Mohr et al. An in-depth assessment into simultaneous monitoring of dissolved reactive phosphorus (DRP) and low-molecular-weight organic phosphorus (LMWOP) in aquatic environments using diffusive gradients in thin films (DGT)
CN102393448B (zh) 一种选择性定量采集水环境中Cd的方法
CN103630594B (zh) 一种采用镉离子选择性电极实时监测水中微量镉的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant