CN103577698B - 一种交直流混联系统的在线电压稳定判别方法 - Google Patents

一种交直流混联系统的在线电压稳定判别方法 Download PDF

Info

Publication number
CN103577698B
CN103577698B CN201310562558.4A CN201310562558A CN103577698B CN 103577698 B CN103577698 B CN 103577698B CN 201310562558 A CN201310562558 A CN 201310562558A CN 103577698 B CN103577698 B CN 103577698B
Authority
CN
China
Prior art keywords
electricity
transmission line
voltage
voltage stability
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310562558.4A
Other languages
English (en)
Other versions
CN103577698A (zh
Inventor
唐晓骏
马世英
张鑫
李再华
程振龙
林俊杰
李晶
罗红梅
杨琦
邱丽萍
陈湘
申旭辉
张志强
李晓珺
吴丽华
郑超
宋云亭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Sichuan Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
State Grid Sichuan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, State Grid Sichuan Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201310562558.4A priority Critical patent/CN103577698B/zh
Publication of CN103577698A publication Critical patent/CN103577698A/zh
Application granted granted Critical
Publication of CN103577698B publication Critical patent/CN103577698B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明提供一种交直流混联系统的在线电压稳定判别方法,包括:步骤1,根据实时采集输电线路电阻R、电抗X和导纳B等参数构建该输电线路的两节点模型;步骤2,实时采集输电线路受端的有功功率PB、无功功率QB和线路送端母线电压UA;步骤3,根据各条输电线路的两节点模型计算各条输电线路的在线电压稳定评估指标;步骤4,根据所有输电线路的在线电压稳定评估指标判断系统是否达到电压失稳边界。本发明提供的一种判别方法,既可有效评估负荷缓慢增长方式下的静态电压稳定水平,也可有效评估直流闭锁故障下系统的暂态电压稳定水平,依据故障性质不同采用不同的电压稳定判别方法,显著简化了在线计算规模,提升了计算速度。

Description

一种交直流混联系统的在线电压稳定判别方法
技术领域
本发明涉及电力系统安全稳定分析领域,具体涉及一种交直流混联系统的在线电压稳定判别方法。
背景技术
国外大电网相继发生的电压崩溃事故,给电力工业带来深刻警示,有力地推进了电压稳定领域的深入发展,但到目前为止,电压稳定问题的理论体系尚未完善。20世纪90年代以前电压稳定的研究主要集中于静态稳定方面。目前动态电压稳定分析方法的研究正在不断深入。日本强调事故后电压控制能力的增强,法国则侧重于事故发生前紧急状态下的预防措施。意大利电网、瑞典电网、魁北克水电局等单位也投运了防止电压崩溃的控制系统。国内研究机构在电压稳定方面做了大量的工作,积累了丰富的经验。随着直流输电技术的广泛应用,交直流混联输电给电网电压稳定问题带来了新的特点。
从故障对电网的影响方面可以简单分为两类,一类为对系统无短路故障冲击,仅考虑大规模潮流转移引起的稳定问题,如直流闭锁故障、发电机无故障跳闸故障;另一类为对系统有短路故障冲击,同时需要考虑短路冲击和大规模潮流转移引起的稳定问题,如直流逆变站附近交流系统短路故障等。对于第一类故障,由于不考虑短路冲击,情况相对简单;与静态电压稳定考虑的负荷缓慢增长引起电压失稳情况具有一定的相似性,一般意义上往往强调第一类故障时间短暂,会引发负荷、发电机等的响应,静态电压稳定方法不能准确模拟,但静态电压稳定中也已可以考虑部分类型负荷响应和发电机约束。目前常用的静态电压稳定指标包括灵敏度指标、负荷裕度指标、雅克比矩阵最小奇异值指标、局部电压稳定L指标等,取得了较好的静态电压稳定评估效果,但这些方法都需要进行不同程度的复杂计算,难以应用于需要快速计算的在线电压稳定监测系统。
发明内容
本发明针对现有技术的不足,提供一种交直流混联系统的在线电压稳定判别方法,包括:
步骤1,根据实时采集的输电线路的电阻R、电抗X和导纳B构建所述输电线路的两节点模型;
步骤2,实时采集所述输电线路受端的有功功率PB、无功功率QB和线路送端母线电压UA
步骤3,根据所述系统中各条所述输电线路的所述两节点模型计算各条所述输电线路的在线电压稳定评估指标;
步骤4,根据所有所述输电线路的在线电压稳定评估指标判断所述系统是否达到电压失稳边界。
本发明提供的第一优选实施例中:所述输电线路的电阻R、电抗X、导纳B、有功功率PB、无功功率QB和线路送端母线电压UA是通过PMU实时采集的。
本发明提供的第二优选实施例中:所述步骤2完成数据采集后,当监测到事件发生时,判断是否有短路故障冲击,
如果有短路故障冲击,则停止在所述线电压稳定评估指标LPQ的计算,查询事前生成的安控策略表进行紧急控制;
如果无短路故障冲击,则启动所述在线电压稳定评估指标LPQ的计算;
所述监测到的发生事件包括:直流单双极闭锁、发电机跳闸和交流系统短路故障。
本发明提供的第三优选实施例中:所述步骤1中构建所述输电线路的两节点模型时,根据电网电压等级的不同构建不同的两节点模型:
220kV及以下电压等级电网的输电线路的两节点模型中,送端A和受端B之间串接阻抗R+jX;
1000kV或者500kV电压等级电网的输电线路的两节点模型中,所述送端A和所述受端B之间串接阻抗R+jX,所述送端A和所述受端B还分别经过接地,B为所述输电线路的导纳。
本发明提供的第四优选实施例中:所述步骤3中针对不同电压等级电网的不同的所述输电线路两节点模型,计算各条所述输电线路的在线电压稳定评估指标LPQ的值包括:
对于所述220kV及以下电压等级电网的输电线路的在线电压稳定评估指标LPQ
对于所述1000kV或者500kV电压等级电网的输电线路的在线电压稳定评估指标LPQ
其中,Z2=R2+X2
本发明提供的第五优选实施例中:所述步骤4中,根据所有所述输电线路的在线电压稳定评估指标判断系统是否达到电压失稳边界的方法包括:
步骤401,周期性的扫描系统中各条所述输电线路的在线电压稳定评估指标LPQ,计算所述系统的电压稳定指标LSPQ
其中,S代表所述电网的支路集合,LPQk代表支路k的在线电压稳定评估指标;
步骤402,如果十秒之内每次得到的所述系统的电压稳定指标LSPQ的值均小于0.9时,判断所述系统未发生失稳,执行步骤1;如果十秒之内有80%以上的情况所述系统的电压稳定指标LSPQ的值均大于等于0.9时,判断所述系统发生失稳,执行步骤403;
步骤403,启动告警或稳控预案。
本发明提供的第六优选实施例中:所述步骤401中采用每5~10个周波计算一次所述系统的电压稳定指标LSPQ
本发明提供的一种交直流混联系统的在线电压稳定判别方法的有益效果包括:
本发明提供的一种交直流混联系统的在线电压稳定判别方法,通过对现状/规划交直流混联电网电压稳定问题的大量仿真计算,提出电压失稳问题的分类方法;针对无短路冲击的大范围潮流转移问题,提出分电压等级的综合考虑有功、无功潮流影响的电压稳定在线评估指标,既可有效评估负荷缓慢增长方式下的静态电压稳定水平,也可有效评估直流闭锁故障下系统的暂态电压稳定水平;综合提出了交直流混联电网电压稳定在线评估体系,依据故障性质不同采用不同的电压稳定判别方法,显著简化了在线计算规模、提升了计算速度。
附图说明
如图1所示为本发明提供的一种交直流混联系统的在线电压稳定判别方法的。
如图2所示为本发明提供的220kV及以下电压等级电网输电线路的两节点模型的结构示意图;
如图3所示为本发明提供的1000kV或者500kV电压等级电网输电线路的两节点模型的结构示意图;
如图4所示为本发明提供的实施例一的交直流系统的结构示意图;
如图5所示为本发明提供的实施例一中Bus2和Bus3母线电压图;
如图6所示为本发明提供的实施例一中Bus2和Bus3之间交流通道的功率变化曲线图;
如图7所示为本发明提供的实施例一中电压稳定指标变化曲线图。
具体实施方式
下面根据附图对本发明的具体实施方式作进一步详细说明。
本发明提供一种交直流混联系统的在线电压稳定判别方法,其方法流程如图1所示,由图1可知,该方法包括:
步骤1,根据实时采集的输电线路的电阻R、电抗X和导纳B等参数构建该输电线路的两节点模型。
步骤2,实时采集输电线路受端的有功功率PB、无功功率QB和线路送端母线电压UA
步骤3,根据系统中各条输电线路的两节点模型计算各条输电线路的在线电压稳定评估指标。
步骤4,根据所有输电线路的在线电压稳定评估指标判断系统是否达到电压失稳边界。
进一步的,输电线路的电阻R、电抗X、导纳B、有功功率PB、无功功率QB和线路送端母线电压UA等参数是通过PMU(Phasor Measurement Unit,向量量测单元)实时采集的。
进一步的,步骤2完成数据采集后,当监测到事件发生时(如直流单双极闭锁、发电机跳闸、交流系统短路故障等),首先判断是否有短路故障冲击。若有短路故障冲击,则停止在线电压稳定评估指标LPQ的计算,查询事前生成的安控策略表进行紧急控制;如无短路故障冲击,则启动在线电压稳定评估指标LPQ的计算。
步骤1中构建输电线路的两节点模型时,应该根据电网电压等级的不同构建不同的两节点模型。
220kV及以下电压等级电网的输电线路可采用不考虑充电功率的简化两节点模型,其结构示意图如图2所示,由图2可知,220kV及以下电压等级电网输电线路的两节点模型中,送端A和受端B的母线电压分别为UA和UB,送端A和受端B之间串接阻抗R+jX。
目前500kV电网已成为电网主网架,未来1000kV电网将构建全国联网主网架,1000kV或者500kV电压等级电网线路距离长,充电功率大,应考虑充电功率对计算结果的影响,因此,对于交直流混联多电压等级电网,1000kV或者500kV电压等级电网的输电线路应采用考虑充电功率影响的简化两节点模型,其结构示意图如图3所示,由图3可知,1000kV或者500kV电压等级电网的输电线路的两节点模型中,送端A和受端B之间串接阻抗R+jX,送端A和受端B还分别经过接地,B为该输电线路的导纳。
对应的,步骤3中针对不同电压等级电网的不同的输电线路两节点模型,计算各条输电线路的在线电压稳定评估指标LPQ的值包括:
对于220kV及以下电压等级电网的输电线路的在线电压稳定评估指标LPQ计算时可采用不考虑充电功率的式(1):
对于1000kV或者500kV电压等级电网的输电线路的在线电压稳定评估指标LPQ计算时应采用考虑充电功率的式(2):
其中,Z2=R2+X2,PB、QB分别为输电线路受端的有功功率和无功功率,UA为输电线路送端母线电压,B为线路导纳。
步骤4中,根据所有输电线路的在线电压稳定评估指标判断系统是否达到电压失稳边界具体包括:
步骤401,周期性的扫描系统中各条输电线路的在线电压稳定评估指标LPQ,计算该系统的电压稳定指标LSPQ如式(3)所示:
其中,S代表所研究电网的支路集合,LPQk代表支路k的在线电压稳定评估指标。
由于应对的是故障后的暂态过程,因此计算间隔非常短,采用每5~10个周波(0.1~0.2秒)计算一次该系统的电压稳定指标LSPQ
步骤402,如果十秒之内每次得到的系统的电压稳定指标LSPQ的值均小于0.9时,判断系统未发生失稳,执行步骤1;如果十秒之内有百分之八十以上的情况电压稳定指标LSPQ的值均大于等于0.9时,判断该系统发生失稳,执行步骤403。
步骤403,启动告警或稳控预案。
实施例一:
本发明提供的实施例一以实际的交直流系统为原型,构建算例系统如图4所示,该算例中包含交直流送电通道和明确的送受关系。在Bus1和Bus3形成典型的交直流混联系统,负荷主要分布在Bus6和Bus8处,负荷功率因数0.95。
首先,按照恒功率因数负荷增长模式,计算Bus2和Bus3之间交流通道的的静态电压稳定极限,如表1所示。随着远端负荷的不断增加,交流通道有功、无功潮流逐步增加,受端Bus3母线电压逐步降低,LPQ指标不断增大,计算得到的静态电压稳定极限为3450MW,此时对应的LPQ指标为0.9782,非常接近1,说明系统达到静态电压稳定极限,证明了该指标的有效性。
表1:交流通道的静态电压稳定极限表
以直流双极闭锁故障校核交流通道的暂态电压稳定极限。假设0秒发生直流双极闭锁故障,0.1秒切除两侧配套滤波电容,约3000MW电力转由交流通道外送,交流线路受端Bus3母线电压显著降低,如图5所示。依据第1节中的工程实用暂态电压稳定判据,可以看出3.88秒左右Bus2和Bus3之间交流通道达到暂态电压稳定极限3640MW。
暂态过程中,Bus2和Bus3之间交流通道的功率变化曲线如图6所示,依据图5和图6可以做出故障后任一时刻Bus2和Bus3之间交流通道的LPQ指标,如图7所示。可以看出,发生直流闭锁故障后,交流通道上潮流大幅变化,母线电压显著降低,LPQ指标逐步接近1,在3.88秒左右最接近1,达到暂态电压稳定极限。因此,故障后依据PMU就地测量信息,实时计算各条线路的LPQ指标,可有效评估电网的实时暂态电压稳定水平,为后继采用预防电压失稳的紧急控制措施提供参考。
最后应当说明的是:以上实施例仅用以说明本发明的技术方案而非对其限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本发明的具体实施方式进行修改或者等同替换,而未脱离本发明精神和范围的任何修改或者等同替换,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种交直流混联系统的在线电压稳定判别方法,其特征在于,所述方法包括:
步骤1,根据实时采集的输电线路的电阻R、电抗X和导纳B构建所述输电线路的两节点模型;
步骤2,实时采集所述输电线路受端的有功功率PB、无功功率QB和线路送端母线电压UA
步骤3,根据所述系统中各条所述输电线路的所述两节点模型计算各条所述输电线路的在线电压稳定评估指标;
步骤4,根据所有所述输电线路的在线电压稳定评估指标判断所述系统是否达到电压失稳边界;
所述步骤3中针对不同电压等级电网的不同的所述输电线路两节点模型,计算各条所述输电线路的在线电压稳定评估指标LPQ的值包括:
对于220kV及以下电压等级电网的输电线路的在线电压稳定评估指标LPQ
L P Q = 4 S B 2 Z 2 ( - U A 2 + 2 P B R + 2 Q B X ) 2 ;
对于1000kV或者500kV电压等级电网的输电线路的在线电压稳定评估指标LPQ
L P Q = 4 [ 1 - B X + 1 4 B 2 Z 2 ] S B 2 Z 2 [ 2 ( P B R + Q B X ) - U A 2 - Q B BZ 2 ] 2 ;
其中,SB 2=PB 2+QB 2,Z2=R2+X2
2.如权利要求1所述的方法,其特征在于,所述输电线路的电阻R、电抗X、导纳B、受端的有功功率PB、受端的无功功率QB和线路送端母线电压UA是通过PMU实时采集的。
3.如权利要求1所述的方法,其特征在于,所述步骤2完成数据采集后,当监测到事件发生时,判断是否有短路故障冲击;
如果有短路故障冲击,则停止所述在线电压稳定评估指标LPQ的计算,查询事前生成的安控策略表进行紧急控制;
如果无短路故障冲击,则启动所述在线电压稳定评估指标LPQ的计算;
所述监测到的发生事件包括:直流单双极闭锁、发电机跳闸和交流系统短路故障。
4.如权利要求1所述的方法,其特征在于,所述步骤1中构建所述输电线路的两节点模型时,根据电网电压等级的不同构建不同的两节点模型:
220kV及以下电压等级电网的输电线路的两节点模型中,送端A和输电线路受端导纳B之间串接阻抗R+jX;
1000kV或者500kV电压等级电网的输电线路的两节点模型中,所述送端A和所述输电线路受端导纳B之间串接阻抗R+jX,所述送端A和所述输电线路受端导纳B还分别经过接地。
5.如权利要求1所述的方法,其特征在于,所述步骤4中,根据所有所述输电线路的在线电压稳定评估指标判断系统是否达到电压失稳边界的方法包括:
步骤401,周期性的扫描系统中各条所述输电线路的在线电压稳定评估指标LPQ,计算所述系统的电压稳定指标LSPQ
其中,S代表电网的支路集合,LPQk代表支路k的在线电压稳定评估指标;
步骤402,如果十秒之内每次得到的所述系统的电压稳定指标LSPQ的值均小于0.9时,判断所述系统未发生失稳,执行步骤1;如果十秒之内有80%以上的情况所述系统的电压稳定指标LSPQ的值均大于等于0.9时,判断所述系统发生失稳,执行步骤403;
步骤403,启动告警或稳控预案。
6.如权利要求5所述的方法,其特征在于,所述步骤401中采用每5~10个周波计算一次所述系统的电压稳定指标LSPQ
CN201310562558.4A 2013-11-13 2013-11-13 一种交直流混联系统的在线电压稳定判别方法 Active CN103577698B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310562558.4A CN103577698B (zh) 2013-11-13 2013-11-13 一种交直流混联系统的在线电压稳定判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310562558.4A CN103577698B (zh) 2013-11-13 2013-11-13 一种交直流混联系统的在线电压稳定判别方法

Publications (2)

Publication Number Publication Date
CN103577698A CN103577698A (zh) 2014-02-12
CN103577698B true CN103577698B (zh) 2017-06-23

Family

ID=50049462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310562558.4A Active CN103577698B (zh) 2013-11-13 2013-11-13 一种交直流混联系统的在线电压稳定判别方法

Country Status (1)

Country Link
CN (1) CN103577698B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901319B (zh) * 2014-03-03 2017-02-01 广州供电局有限公司 电网暂态电压稳定性检测方法
CN105207275B (zh) * 2015-09-21 2019-03-19 中国电力科学研究院 一种直流功率转移时的交流母线电压薄弱点识别方法
CN106021848B (zh) * 2016-05-04 2018-12-21 国网重庆市电力公司电力科学研究院 一种特高压直流输电线路地面合成电场屏蔽分析方法
CN108988335A (zh) * 2018-08-06 2018-12-11 国家电网公司华北分部 电压稳定评估方法及装置
CN111162529B (zh) * 2020-01-13 2022-12-09 国家电网有限公司 一种混联电网的交流母线电压运行范围计算方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118265A (zh) * 2007-09-17 2008-02-06 重庆大学 通过辨识电网薄弱环节实时识别电网电压稳定性的方法
CN102012967A (zh) * 2010-11-26 2011-04-13 中国电力科学研究院 具有时空标记的高压电网输电能力快速计算方法
CN103279639A (zh) * 2013-04-23 2013-09-04 国家电网公司 基于响应的受端电网电压稳定全过程态势评估及防控方法
CN103294891A (zh) * 2013-03-23 2013-09-11 中国水利电力物资有限公司 一种基于历史故障数据的风电机组状态评估方法和系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7816927B2 (en) * 2007-07-27 2010-10-19 British Columbia Hydro And Power Authority Method and system for real time identification of voltage stability via identification of weakest lines and buses contributing to power system collapse

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101118265A (zh) * 2007-09-17 2008-02-06 重庆大学 通过辨识电网薄弱环节实时识别电网电压稳定性的方法
CN102012967A (zh) * 2010-11-26 2011-04-13 中国电力科学研究院 具有时空标记的高压电网输电能力快速计算方法
CN103294891A (zh) * 2013-03-23 2013-09-11 中国水利电力物资有限公司 一种基于历史故障数据的风电机组状态评估方法和系统
CN103279639A (zh) * 2013-04-23 2013-09-04 国家电网公司 基于响应的受端电网电压稳定全过程态势评估及防控方法

Also Published As

Publication number Publication date
CN103577698A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103577698B (zh) 一种交直流混联系统的在线电压稳定判别方法
CN103887810B (zh) 基于短路比动态跟踪的直流系统持续换相失败判断方法
CN101800426A (zh) 电网安全性水平评估方法
CN106295160B (zh) 交直流互联电网戴维南等值参数在线计算方法
CN103632043B (zh) 一种基于实测响应信息的电力系统主导失稳模式识别方法
CN105244903A (zh) 一种背靠背异步联网混合直流输电系统的可靠性评估方法
CN107330639A (zh) 一种主动配电网运行风险评估方法
CN103107544B (zh) 一种海上油田群电网紧急控制的在线预决策方法
CN103050933B (zh) 基于单端电流突变量的大型电池储能电站接口保护方法
CN108134394A (zh) 一种考虑分布式电源影响的优化减载方法
CN104502801B (zh) 一种高压输电线故障的定位方法及系统
CN100335912C (zh) 基于模型参数识别的小电流接地选线方法
CN104849614A (zh) 小电流单相接地故障选线的判断方法
CN103997041B (zh) 一种交直流混联系统的在线电压稳定判别系统
CN106712030B (zh) 基于wams动态跟踪的直流受端交流系统电压稳定判别方法
CN109659917A (zh) 一种基于暂态电压的多端柔性直流线路保护方法及装置
CN105743071B (zh) 一种继电保护在线安全裕度评估系统
CN100487477C (zh) 一种发电机冲击过电压预测方法
CN103762593B (zh) 一种跨区交直流联网安全稳定协调控制措施实时量化方法
CN104111381A (zh) 一种35kV高压并联电力电容器组介损在线监测装置
CN106505563A (zh) 一种电网故障下并网变流器韧性评估方法
CN103439596B (zh) 一种输电网安全运行稳态性能检测方法
CN106786564B (zh) 一种基于动态跟踪的直流受端交流系统电压薄弱区域评估方法
CN104993466A (zh) 一种适用于交直流电网的连锁故障快动态仿真方法
CN102946099B (zh) 一种多机互联电力系统的暂态功角稳定性实时判别的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant