CN103570067A - 以蒸发结晶法制备铜钒氧纳米结构材料的方法 - Google Patents

以蒸发结晶法制备铜钒氧纳米结构材料的方法 Download PDF

Info

Publication number
CN103570067A
CN103570067A CN201310586410.4A CN201310586410A CN103570067A CN 103570067 A CN103570067 A CN 103570067A CN 201310586410 A CN201310586410 A CN 201310586410A CN 103570067 A CN103570067 A CN 103570067A
Authority
CN
China
Prior art keywords
copper vanadium
solubility
structural material
vanadium oxygen
nano structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310586410.4A
Other languages
English (en)
Other versions
CN103570067B (zh
Inventor
曾晖
王康平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gotion High Tech Co Ltd
Original Assignee
Hefei Guoxuan High Tech Power Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Guoxuan High Tech Power Energy Co Ltd filed Critical Hefei Guoxuan High Tech Power Energy Co Ltd
Priority to CN201310586410.4A priority Critical patent/CN103570067B/zh
Publication of CN103570067A publication Critical patent/CN103570067A/zh
Application granted granted Critical
Publication of CN103570067B publication Critical patent/CN103570067B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了以蒸发结晶法制备铜钒氧纳米结构材料的方法,首先以蒸发结晶法制备铜钒氧纳米结构材料的前驱体,然后将其在空气氛围中煅烧制备了颗粒均匀、微结构可控的铜钒氧纳米结构材料。本发明方法简单、条件温和,所制备的铜钒氧纳米结构材料形貌均匀、结构稳定和导电性好,是一种很有希望的正极材料。

Description

以蒸发结晶法制备铜钒氧纳米结构材料的方法
技术领域
本发明涉及锂离子电池正极材料的制备方法,尤其涉及一种以蒸发结晶法制备铜钒氧(CVO)纳米结构材料的方法。
背景技术
铜钒氧(CVO)作为一种有潜力的锂离子电池材料,由于其优异的电子电导率和Cu的高氧化态,它可以提供比Ag2V4O11更高的放电比容量和能量密度。同时,相对于银钒氧(SVO),铜钒氧(CVO)的原料成本更低。近年来,铜钒氧(CVO)作为锂离子电池正极材料引起了关注。
常见的制备铜钒氧纳米结构材料(CVO)的方法有水热法、固相法和溶胶凝胶法。Yu等人报道了以V2O5、H2O2、尿素和Cu(NO3)2·3H2O为原料,在200℃水热反应24h,制备了由纳米片组装的具有多级结构的Cu4V2.1509.38,结果显示这种材料在5mA g-1的电流密度下,其放电比容量可达471mAh g-1(Hierarchical Cu4V2.1509.38micro/nanostructures:a lithiumintercalating electrode material[J].Nanoscale,2011,3,999-1003.)。Chen等人报道了以CuCl2·2H2O和NH4VO3为原料,在210℃水热反应12h,制备了直径约为100nm、长为十几微米的α-CuV2O6纳米线,结果显示在20mAg-1的电流密度下,所制备的α-CuV2O6纳米线的首次放电比容量达到了514mAh g-1,比其它三种形貌的α-CuV2O6都高,这表明α-CuV2O6纳米线是一种有希望应用于可植入心脏起搏器(ICD)的电极材料。(α-CuV2O6nanowires:hydrothermal synthesis and primary lithium battery application[J].Journal of the American Chemical Society,2008,130,5361-5367.)
本发明是在低成本、条件温和、高效率的前提下,采用蒸发结晶法制备铜钒氧纳米结构材料。
发明内容
本发明要解决的技术问题是提供一种以蒸发结晶法制备铜钒氧(CVO)纳米结构材料的方法。
为了解决上述技术问题,本发明采用的技术方案是:以蒸发结晶法制备铜钒氧(CVO)纳米结构材料的方法,包括如下步骤:
(1)铜钒氧纳米结构材料的前驱体制备:分别配制0.1~2mol/L的可溶性偏钒酸盐水溶液,和0.05~2mol/L的可溶性的二价Cu盐水溶液,按摩尔比V:Cu=1~10:1把可溶性偏钒酸盐水溶液逐滴加入可溶性的二价Cu盐水溶液中,或将可溶性的二价Cu盐水溶液逐滴加入可溶性偏钒酸盐水溶液中,搅拌均匀后,将其置于50~160℃的鼓风干燥箱内,水分蒸发完后将烧其取出,用水和酒精离心洗涤产物并干燥,得到前驱体;
(2)铜钒氧纳米结构材料的制备:将步骤(1)制备出的前驱体在空气中煅烧,于350~650℃焙烧2~15小时,得到铜钒氧纳米结构材料。
作为优选,可溶性偏钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾的一种或两种及以上混合物。
作为优选,可溶性的二价Cu盐选自CuCl2·2H2O、硝酸铜、硫酸铜的一种或两种及以上混合物。
本发明的有益效果是:
1)合成方法简单、形貌可控。
2)采用蒸发结晶法制备了锂离子电池正极材料铜钒氧纳米结构材料,与固相合成的铜钒氧(CVO)粉体相比,具有更好的结构稳定性与导电性,可明显提高材料的放电容量、减小不可逆容量损失、提高循环性能与倍率性能。
3)铜钒氧纳米结构材料相比于铜钒氧(CVO)块体材料,比表面积相对较大,若将其应用于锂离子电池中,可增加了材料与电解液之间的接触面积,从而提高该材料的放电比容量。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明以蒸发结晶法制备的铜钒氧纳米结构材料的方法实施例1前驱体的FESEM照片。
图2为本发明以蒸发结晶法制备的铜钒氧纳米结构材料的方法实施例1前驱体经煅烧后所得样品的X射线衍射(XRD)图。
图3为本发明以蒸发结晶法制备的铜钒氧纳米结构材料的方法实施例1前驱体经煅烧后所得样品的FESEM照片。
具体实施方式
实施例1:
(1)铜钒氧纳米结构材料的前驱体制备
在2个120mL的烧杯中,分别配制0.1mol/L的偏钒酸铵水溶液40mL,和0.1mol/L的硝酸铜水溶液40mL,按摩尔比(V:Cu=1:1)把偏钒酸铵水溶液逐滴加入硝酸铜水溶液中,搅拌均匀后,将烧杯置于120℃的鼓风干燥箱内,水分蒸发完后将烧杯取出,用水和酒精离心洗涤产物并干燥。
蒸发结晶反应所制备的铜钒氧纳米结构材料的前驱体,经过FESEM照片(图1)分析表明,所得前驱体的形貌为纳米棒组装而成的团簇。
(2)铜钒氧纳米结构材料的制备
将步骤(1)制备出的前驱体在空气中煅烧,于550℃焙烧5小时,得到铜钒氧纳米结构材料。
蒸发结晶反应所制备的前驱体经过煅烧后得到的样品,经X射线衍射(XRD(图2)和FESEM照片(图3)分析表明该样品是Cu2V2O7纳米棒,该纳米棒是团簇前驱体在煅烧下裂解而成的。
实施例2:
(1)铜钒氧纳米结构材料的前驱体制备
在2个120mL的烧杯中,分别配制0.1mol/L的偏钒酸铵水溶液50mL,和0.05mol/L的CuCl2水溶液20mL,按摩尔比(V:Cu=5:1)把偏钒酸铵水溶液逐滴加入CuCl2水溶液中,搅拌均匀后,将烧杯置于100℃的鼓风干燥箱内,水分蒸发完后将烧杯取出,用水和酒精离心洗涤产物并干燥。
(2)铜钒氧纳米结构材料的制备
将步骤(1)制备出的前驱体在空气中煅烧,于450℃焙烧8小时,得到铜钒氧纳米结构材料。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (3)

1.以蒸发结晶法制备铜钒氧纳米结构材料的方法,其特征是包括如下步骤:
(1)铜钒氧纳米结构材料的前驱体制备:分别配制0.1~2mol/L的可溶性偏钒酸盐水溶液,和0.05~2mol/L的可溶性的二价Cu盐水溶液,按摩尔比V:Cu=1~10:1把可溶性偏钒酸盐水溶液逐滴加入可溶性的二价Cu盐水溶液中,或将可溶性的二价Cu盐水溶液逐滴加入可溶性偏钒酸盐水溶液中,搅拌均匀后,将其置于50~160℃的鼓风干燥箱内,水分蒸发完后将烧其取出,用水和酒精离心洗涤产物并干燥,得到前驱体;
(2)铜钒氧纳米结构材料的制备:将步骤(1)制备出的前驱体在空气中煅烧,于350~650℃焙烧2~15小时,得到铜钒氧纳米结构材料。
2.根据权利要求1所述以蒸发结晶法制备铜钒氧纳米结构材料的方法,其特征在于:所述可溶性偏钒酸盐为偏钒酸铵、偏钒酸钠、偏钒酸钾的一种或两种及以上混合物。
3.根据权利要求1所述以蒸发结晶法制备铜钒氧纳米结构材料的方法,其特征在于:所述可溶性的二价Cu盐选自CuCl2·2H2O、硝酸铜、硫酸铜的一种或两种及以上混合物。
CN201310586410.4A 2013-11-15 2013-11-15 以蒸发结晶法制备铜钒氧纳米结构材料的方法 Active CN103570067B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310586410.4A CN103570067B (zh) 2013-11-15 2013-11-15 以蒸发结晶法制备铜钒氧纳米结构材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310586410.4A CN103570067B (zh) 2013-11-15 2013-11-15 以蒸发结晶法制备铜钒氧纳米结构材料的方法

Publications (2)

Publication Number Publication Date
CN103570067A true CN103570067A (zh) 2014-02-12
CN103570067B CN103570067B (zh) 2015-08-05

Family

ID=50042875

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310586410.4A Active CN103570067B (zh) 2013-11-15 2013-11-15 以蒸发结晶法制备铜钒氧纳米结构材料的方法

Country Status (1)

Country Link
CN (1) CN103570067B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576206A (zh) * 2016-01-07 2016-05-11 陕西科技大学 一种用于锂离子电池负极的Cu2V2O7-石墨烯复合材料的制备方法
CN107512740A (zh) * 2017-08-29 2017-12-26 合肥国轩电池材料有限公司 一种锂离子电池负极材料FeVO4纳米线的制备方法
CN110482604A (zh) * 2019-07-25 2019-11-22 广东工业大学 一种Cu2V2O7纳米棒钾离子电池正极材料、钾离子电池及其制备方法
CN111847509A (zh) * 2020-06-16 2020-10-30 北京科技大学 一种铜铁矿型铜钒氧化物材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361074A (zh) * 2011-10-25 2012-02-22 王海燕 一种超高倍率锂离子电池纳米正极材料及其制备方法
CN102394291A (zh) * 2011-11-23 2012-03-28 陕西科技大学 一种凝胶微波制备锂电池正极材料LiV3O8的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102361074A (zh) * 2011-10-25 2012-02-22 王海燕 一种超高倍率锂离子电池纳米正极材料及其制备方法
CN102394291A (zh) * 2011-11-23 2012-03-28 陕西科技大学 一种凝胶微波制备锂电池正极材料LiV3O8的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
YINGJIN WEI, ET AL.: "Improvement in electrochemical performance of V2O5 by Cu doping", 《JOURNAL OF POWER SOURCES》, vol. 165, 16 December 2006 (2006-12-16) *
余艳丽等: "掺铜五氧化二钒的制备及电化学性能研究", 《化学研究与应用》, vol. 20, no. 8, 31 August 2008 (2008-08-31) *
张绍岩等: "Cu3V2O7(OH)2·2H2O纳米线的制备及光吸收性能", 《人工晶体学报》, vol. 38, no. 4, 31 August 2009 (2009-08-31) *
张绍岩等: "钒酸铜纳米线的制备及光吸收性能", 《人工晶体学报》, vol. 40, no. 6, 31 December 2011 (2011-12-31), pages 1517 - 1520 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105576206A (zh) * 2016-01-07 2016-05-11 陕西科技大学 一种用于锂离子电池负极的Cu2V2O7-石墨烯复合材料的制备方法
CN105576206B (zh) * 2016-01-07 2017-12-05 陕西科技大学 一种用于锂离子电池负极的Cu2V2O7‑石墨烯复合材料的制备方法
CN107512740A (zh) * 2017-08-29 2017-12-26 合肥国轩电池材料有限公司 一种锂离子电池负极材料FeVO4纳米线的制备方法
CN110482604A (zh) * 2019-07-25 2019-11-22 广东工业大学 一种Cu2V2O7纳米棒钾离子电池正极材料、钾离子电池及其制备方法
CN110482604B (zh) * 2019-07-25 2022-01-25 广东工业大学 一种Cu2V2O7纳米棒钾离子电池正极材料、钾离子电池及其制备方法
CN111847509A (zh) * 2020-06-16 2020-10-30 北京科技大学 一种铜铁矿型铜钒氧化物材料及其制备方法
CN111847509B (zh) * 2020-06-16 2021-08-13 北京科技大学 一种铜铁矿型铜钒氧化物材料及其制备方法

Also Published As

Publication number Publication date
CN103570067B (zh) 2015-08-05

Similar Documents

Publication Publication Date Title
Wang et al. Zn-ion hybrid supercapacitors: achievements, challenges and future perspectives
Yan et al. Design, synthesis, and application of metal sulfides for Li–S batteries: progress and prospects
Jiang et al. Composition engineering boosts voltage windows for advanced sodium-ion batteries
Pathak et al. Self-recovery in Li-metal hybrid lithium-ion batteries via WO 3 reduction
Parveen et al. Manganese oxide as an effective electrode material for energy storage: A review
Huang et al. Molten salt synthesis of α-MnO2/Mn2O3 nanocomposite as a high-performance cathode material for aqueous zinc-ion batteries
Du et al. Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
Wu et al. NiS nanoparticles assembled on biological cell walls-derived porous hollow carbon spheres as a novel battery-type electrode for hybrid supercapacitor
Wang et al. Electrode materials for aqueous asymmetric supercapacitors
Zhu et al. Recent progress of dimensionally designed electrode nanomaterials in aqueous electrochemical energy storage
Xiao et al. ZnO nanoparticles encapsulated in a 3D hierarchical carbon framework as anode for lithium ion battery
Liu et al. In-situ N-doped MnCO3 anode material via one-step solvothermal synthesis: Doping mechanisms and enhanced electrochemical performances
Yu et al. Zinc pyrovanadate nanoplates embedded in graphene networks with enhanced electrochemical performance
Wang et al. Regulate phosphorus configuration in high P-doped hard carbon as a superanode for sodium storage
Si-Heng et al. Progress in research on manganese dioxide electrode materials for electrochemical capacitors
Chen et al. Searching for electrode materials with high electrochemical reactivity
Bie et al. Graphite nanoplates firmly anchored with well-dispersed porous Zn3V2O8 nanospheres: rational fabrication and enhanced lithium storage capability
Zhao et al. Synthesis of carbon-TiO2 nanocomposites with enhanced reversible capacity and cyclic performance as anodes for lithium-ion batteries
Lewis et al. Correlating titania nanostructured morphologies with performance as anode materials for lithium-ion batteries
CN103950992A (zh) 石墨烯表面生长直立的过渡金属氧化物纳米片的方法
Wu et al. Simple preparation of petal-like TiO2 nanosheets as anode materials for lithium-ion batteries
Wang et al. MOF-templated thermolysis for porous CuO/Cu 2 O@ CeO 2 anode material of lithium-ion batteries with high rate performance
Sun et al. 3D interconnected porous graphitic carbon@ MoS2 anchored on carbonized cotton cloth as an anode for enhanced lithium storage performance
Gui et al. TiO2 nanotube/RGO modified separator as an effective polysulfide-barrier for high electrochemical performance Li-S batteries
Wang et al. Enhanced cyclic performance of Cu2V2O7/reduced Graphene Oxide mesoporous microspheres assembled by nanoparticles as anode for Li-ion battery

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 230000 Yaohai Industrial Zone, Hefei New District, Anhui, No. D weft Road, No. 7

Patentee after: Gotion High-tech Co., Ltd.

Address before: 230000 Yaohai Industrial Park, Anhui, Hefei No. D weft Road, No. 7

Patentee before: Hefei Guoxuan High-Tech Power Energy Co.,Ltd.