CN103546080B - 风力发电系统的励磁式同步发电机的控制方法 - Google Patents

风力发电系统的励磁式同步发电机的控制方法 Download PDF

Info

Publication number
CN103546080B
CN103546080B CN201210327803.9A CN201210327803A CN103546080B CN 103546080 B CN103546080 B CN 103546080B CN 201210327803 A CN201210327803 A CN 201210327803A CN 103546080 B CN103546080 B CN 103546080B
Authority
CN
China
Prior art keywords
power
synchronous generator
motor
excitation
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210327803.9A
Other languages
English (en)
Other versions
CN103546080A (zh
Inventor
陈遵立
蔡得民
光灼华
刘立祥
陈韦廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Publication of CN103546080A publication Critical patent/CN103546080A/zh
Application granted granted Critical
Publication of CN103546080B publication Critical patent/CN103546080B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0272Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor by measures acting on the electrical generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/028Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor controlling wind motor output power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/10Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load
    • H02P9/105Control effected upon generator excitation circuit to reduce harmful effects of overloads or transients, e.g. sudden application of load, sudden removal of load, sudden change of load for increasing the stability
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/14Arrangements for controlling electric generators for the purpose of obtaining a desired output by variation of field
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明提出一种独立供电型风力发电系统的励磁式同步发电机的控制方法。在此方法中,利用同轴配置,将风机输入、增速机、励磁式同步发电机与电动机整合于同一传动轴,将输入风能转换为电能输出至负载。同时通過励磁场控制,以达到稳定电压输出的目标。通过电动机伺服控制,于风力改变的情况下,可稳定控制励磁式同步发电机的转速,进而使输出电源的频率稳定。通过量测电动机的输入功率、电力转换器及蓄电池组等所构成的能量流管理单元,进行能量储存与释放,以完成独立供电型风力发电的励磁式同步发电机的控制。

Description

风力发电系统的励磁式同步发电机的控制方法
技术领域
本发明涉及一种发电机的控制方法,且特别是有关于一种应用于独立供电型风力发电系统的励磁式同步发电机的控制方法。风力发电系统可通过同轴配置与励磁场控制,使励磁式同步发电机将输入风能转换成电能输出,并利用电动机进行励磁式同步发电机的转速伺服控制。通过蓄电池及电力转换器的相互结合,且量测电动机的输入功率所构成的能量流管理控制方法,进行储存能量与释放能量,使励磁式同步发电机可应用于独立供电型风力发电系统。
背景技术
目前一般发电系统架构是以永磁式发电机为主要发电设备,其需要通过交-直流、蓄电池与直-交流转换器设备,将输入电源经由转换后输出,如此转换方式,会造成电力转换的功率损耗,使整体发电系统转换率降低,并增加发电设备的成本。当输入风能变动与输出负载增加时,由于永磁式发电机无法控制其励磁场大小,因此当负载端所需要的能量增加时,其可能造成负载端的电压无法维持恒定,而降低输出电源的质量。
发明内容
本发明的独立供电型风力发电系统包含风机、传动轴、增速机、励磁式同步发电机、电动机、驱动器、编码器、电流侦测器、升压型转换器、蓄电池组、励磁场控制、整流及降压型转换器、发电机电压及电流、负载及数码信号处理器。
本发明的主要目的在于提供一种独立供电型风力发电系统的励磁式同步发电机的控制方法,其利用同轴配置,将风机输入、增速机、励磁式同步发电机与电动机整合于同一传动轴,将输入风能转换为电能输出至负载。于输入风能充足时,励磁式同步发电机输出电能并直接提供至负载端,同时,通过能量流管理单元与数码信号处理器控制,经由整流及降压型转换器,对蓄电池组充电储存电能。于风力变化过程中所造成的输入风能不足时,通过能量流管理单元,通过蓄电池组、升压型转换器及电动机来进行伺服控制,通过蓄电池的能量提供至电动机,使励磁式同步发电机得以稳定转速,如此,可以稳定输出电源的频率。此外,通过励磁场控制将励磁式同步发电机的电压信息回授,控制励磁式同步发电机的励磁场大小,来达到稳定输出电压的目的。
本发明是利用励磁式同步发电机将输入风能转换为电能输出,提供负载电源。同时通过励磁场控制,以达到稳定电压输出的目标。通过电动机的伺服控制,于风力改变的情况下,可稳定控制励磁式同步发电机的转速,进而使输出电源的频率稳定。通过量测电动机的输入功率、电力转换器及蓄电池组等所构成的能量流管理单元,进行能量储存与释放,以完成独立供电型风力发电的励磁式同步发电机的控制。
为让本发明的上述内容能更明显易懂,下文特举优选实施例,并配合所附图式,作详细说明如下:
附图说明
图1显示本发明的一实施例的独立供电型风力发电系统的励磁式同步发电机的控制架构图。
图2显示本发明的一实施例的风力发电系统励磁式同步发电机的转速伺服控制的架构图。
图3显示本发明的一实施例的蓄电池的充电控制的方块图。
图4显示本发明的一实施例的电压调整控制的方块图。
图5显示本发明的一实施例的能量流管理的模拟图。
具体实施方式
请参阅图1,其显示本发明的一实施例的独立供电型风力发电系统的励磁式同步发电机的控制架构图。本发明的方法可应用于风力发电系统(如下述的实施例),然不限于此,其亦可应用于其它发电系统,例如水力、火力、洋流与潮汐发电,本发明的应用领域范围可为各种动力发电系统相关的再生能源控制技术。
请再参阅图1,此发电系统包含风机10、传动轴11、增速机20、励磁式同步发电机30、电动机40、驱动器41、编码器42、电流侦测器43、升压型转换器50、蓄电池组51、整流及降压型转换器53、负载60、数码信号处理器70。
请再参阅第图1,当风机10输入风能时,利用同轴配置,将风机10输入、增速机20、励磁式同步发电机30与电动机40整合于同一传动轴11,将输入风能经由增速机20传递至励磁式同步发电机30,并转换为电能来输出至负载60上。通过数码信号处理器70来进行励磁场控制,以控制励磁式同步发电机30的励磁场大小,进行自动电压调控,稳定励磁式同步发电机30输出的电压值。
请再参阅图1,当输入风能充足时,励磁式同步发电机30输出的电能除了提供给负载60外,也可将多余的能量经由第一能量流管理单元1的整流及降压型转换器53,对蓄电池组51来进行充电储存能量,使励磁式同步发电机30的输出电能可以完全被利用。
请再参阅图1,当输入风能不足时,其会导致励磁式同步发电机30的转速受到影响,使输出电源的频率改变。因此,本发明的控制方法可通过电动机伺服控制来稳定励磁式同步发电机30的转速及输出电源频率。励磁式同步发电机30与电动机40的转速与频率,皆可通过编码器42输出至数码信号处理器70运算后获得,当励磁式同步发电机30的转速与额定的转速相互比较并有转速误差时,数码信号处理器70输出一速度命令至驱动器41,使电动机40根据此速度命令来进行速度伺服控制,藉此来稳定励磁式同步发电机30的转速与输出电源的频率。
请再参阅图1,通过第二能量流管理单元2的蓄电池组51及电动机40,可提供进行电动机速度伺服控制所需的电能。在第二能量流管理单元2中,通过储存于蓄电池组51中的电能,将电能经过升压型转换器50进行升压,以提供驱动器41进行电动机伺服控制,使电动机40提供励磁式同步发电机30一能量,稳定励磁式同步发电机30的转速与输出电压的频率。当蓄电池组51的电力不足时,也可通过市电的电源,提供电动机40驱动的能量。
请再参阅图2,通过编码器42所获得的电动机角度θM,可进而获得电动机转速ωM。根据速度命令ωM-cmd与电动机转速ωM相比较所得到的转速误差,转速伺服控制器及驱动器41可藉此控制电动机40的转速。利用同轴配置的方式,将风机10的转速ωW及转矩TW,以及电动机40的转速ωM与转矩TM整合,以产生提供给励磁式同步发电机30的转速ωG及转矩TG。同时,根据自动电压调控来产生调整励磁式同步发电机的励磁场大小的控制信号If,以稳定励磁式同步发电机30的输出电压,并将电能输出至负载60。
如图2所示,上述的第一能量流管理单元1及第二能量流管理单元2可整合于一能量流管理单元中,此整合的能量流管理单元可包括升压型转换器50、蓄电池组51、降压型转换器53及AC-DC转换器55。
请再参阅图2,当输入风能充足时,能量流管理单元会将励磁式同步发电机30的输出电压经过AC-DC转换器55,与降压型转换器53输出充电电流IB,对蓄电池组51进行充电储存电能,并且将电动机的输入电压Va,Vb,Vc、电流Ia,Ib,Ic、转速ωM及角度θM等信息汇整,来获得电动机40的输入功率并进行蓄电池组51的充电控制。当输入风力变动时,通过蓄电池组51释放所储存的能量,经由升压型转换器50,进行升压以提供驱动器所需要的DCBus电压,来完成电动机的转速伺服控制。
请参阅图3,当进行蓄电池组充电时,其功率控制方式为通过电流侦测器43将电动机40的输入电流Ia,Ib,Ic回授至数码信号处理器70,并根据电动机40的输入电压Va,Vb,Vc来获得电动机输入的功率PM,将输入电动机的功率PM与电动机功率命令PMcmd进行比较,于系统稳态时,电动机功率命令PMcmd的值会设定为零,其比较结果再经过一比例积分控制器57获得ΔP信号。其中,KP与KI分别为比例参数与积分参数。此时,将蓄电池组的电压VB及充电电流IB相乘所获得的蓄电池充电功率PB回授,并与信号ΔP进行比较,接着将此比较结果经过比例积分控制器57产生控制信号,并通过降压型转换器的降压增益KB,以进行蓄电池组充电的控制。
请参阅第4图,当进行励磁式同步发电机输出电压控制时,通过将励磁式同步发电机30的输出电压均方根值Vrms回授,并与电压命令Vcmd进行比较以获得电压误差,将此电压误差经过比例积分控制器57与励磁增益KF,来产生励磁式同步发电机的励磁场控制信号,以调整励磁式同步发电机的输出电压,达到稳压输出的目的。
请参阅第5图,线L1表示风机所输入的功率,线L2表示蓄电池组51所充电储存的功率,线L3表示电动机40所提供的功率,线L4表示发电机30输出至负载60的功率。如图5所示,于时间10秒之前,风力发电系统的输入风力充足且稳定,因而蓄电池组51可进行充电储存能量,电动机40则无需提供功率。当于区间A1、区间A3、区间A5时,输入风力开始变动,于上述区间A1、A3、A5中,输入风力小于发电机30输出至负载60的功率,因而蓄电池组51利用所储存的电能来提供驱动电动机所需的功率,以维持负载60的功率稳定。当于区间A2、区间A4时,输入风力大于发电机30输出至负载的功率,因而发电机30输出电能至负载60外,也将多余的功率充电至蓄电池组51中进行储能,此时,电动机40无需提供功率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (4)

1.一种风力发电系统的励磁式同步发电机的控制方法,其特征在于:所述控制方法包括如下步骤:
利用同轴配置,将风机的输入、所述励磁式同步发电机与电动机整合于同一传动轴,将所述风机的输入风能转换为电能输出至负载;以及
于所述风力发电系统为一稳态时,利用一能量流管理单元来量测所述电动机的输入功率,并将所述电能经过整流及电力转换器,以进行一蓄电池组的电能储存过程;
当输入风能充足时,所述能量流管理单元将所述电动机的输入电压、电流、转速及角度的资讯汇整,以获得所述电动机的所述输入功率;
当所述电动机输入功率为正,表示风力的输入功率小于所述负载的输出功率,此时所述电动机除了维持转轴恒速,并提供能量给所述负载,此时所述蓄电池组不充电;
当所述电动机的输入功率为负,表示风力的输入功率大于所述负载的输出功率,所述电动机的输入功率的资讯通过一控制器产生一电池充电命令,将所述发电机所产生的比所述负载需求多的功率经过所述整流及电力转换器,以进行所述蓄电池组的充电储能,并使所述电动机维持转轴恒速。
2.根据权利要求1所述的控制方法,其特征在于:还包括如下步骤:
当所述输入风能变动时,进行一电动机伺服控制,使所述励磁式同步发电机的转速稳定,并稳定所输出的所述电能的频率,其中在所述电动机伺服控制的过程中,用于驱动所述电动机的驱动器所需的电能是由储存于所述蓄电池组中的电能,并经由所述电力转换器来将电源提供至所述驱动器。
3.根据权利要求2所述的控制方法,其特征在于:当所述蓄电池组的能量不足时,所述电动机是利用市电的输入电能来进行驱动。
4.根据权利要求1所述的控制方法,其特征在于:还包括如下步骤:
通过一电压调整控制将所述励磁式同步发电机的输出电压回授,而与一电压命令比较,并进行所述励磁式同步发电机的一励磁场控制,以调整所述励磁式同步发电机的所述输出电压。
CN201210327803.9A 2012-07-16 2012-09-06 风力发电系统的励磁式同步发电机的控制方法 Active CN103546080B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW101125580 2012-07-16
TW101125580A TWI488425B (zh) 2012-07-16 2012-07-16 風力發電系統及其激磁式同步發電機的控制方法

Publications (2)

Publication Number Publication Date
CN103546080A CN103546080A (zh) 2014-01-29
CN103546080B true CN103546080B (zh) 2016-01-27

Family

ID=49913354

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210327803.9A Active CN103546080B (zh) 2012-07-16 2012-09-06 风力发电系统的励磁式同步发电机的控制方法

Country Status (4)

Country Link
US (1) US8853875B2 (zh)
JP (1) JP5636412B2 (zh)
CN (1) CN103546080B (zh)
TW (1) TWI488425B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI446138B (zh) * 2011-07-29 2014-07-21 Univ Nat Sun Yat Sen 風力發電之激磁式同步發電機系統的控制方法
CN104242762A (zh) * 2014-10-14 2014-12-24 内蒙古科技大学 一种双馈风力发电机频率闭环控制实验装置及控制方法
JP6978825B2 (ja) * 2015-03-20 2021-12-08 Ntn株式会社 風力発電装置
WO2016171632A1 (en) * 2015-04-21 2016-10-27 WIENGPATI, Noppadol Drive and control apparatus of permanent magnatic generator
US20180112648A1 (en) * 2016-10-20 2018-04-26 James Bond Hybrid wind turbine for power output in low and zero wind conditions
CA3000240A1 (en) * 2016-12-13 2018-06-21 Obshchestvo S Ogranichennoj Otvetstvennostyu "Vdm-Tekhnika" The method of adjusting wind turbine power take-off
JP7229127B2 (ja) * 2019-08-26 2023-02-27 三菱電機株式会社 風力発電装置
EP4007110A1 (en) * 2020-11-30 2022-06-01 Siemens Gamesa Renewable Energy A/S Operating a wind turbine in an off-grid stand-alone mode
US20230261475A1 (en) * 2021-07-08 2023-08-17 Kyung Soo Han Converting variable renewable energy to constant frequency electricity by voltage-controlled speed converter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW273645B (en) * 1993-02-11 1996-04-01 Tay-Her Yang A differential distribution type electrical energy storing and distribution system
GB2275377B (en) * 1993-02-22 1997-05-28 Yang Tai Her An electric energy generation and storage apparatus
JPH07245997A (ja) * 1994-02-21 1995-09-19 Tai-Her Yang 差動分配型電気エネルギー保存分配システム
JP4738206B2 (ja) * 2006-02-28 2011-08-03 三菱重工業株式会社 風力発電システム、及びその制御方法
US7622815B2 (en) * 2006-12-29 2009-11-24 Ingeteam Energy, S.A. Low voltage ride through system for a variable speed wind turbine having an exciter machine and a power converter not connected to the grid
JP2008301584A (ja) * 2007-05-30 2008-12-11 Hitachi Ltd 風力発電システムおよび電力変換器の制御方法
US7635923B2 (en) * 2008-01-25 2009-12-22 Deangeles Steven J Momentum-conserving wind-driven electrical generator
US8097967B2 (en) * 2008-06-30 2012-01-17 Demand Energy Networks, Inc. Energy systems, energy devices, energy utilization methods, and energy transfer methods
CA2722848A1 (en) * 2008-10-16 2010-04-22 Shinji Arinaga Wind power generator system and control method of the same
US8203229B2 (en) * 2009-06-15 2012-06-19 Challenger Design, LLC Auxiliary drive/brake system for a wind turbine
BR112012022864A2 (pt) * 2010-03-11 2018-05-15 Siemens Ag método e sistema para amortecimento de oscilações ressonantes subsincronizadas em um sistema de energia utilizando uma turbina eólica

Also Published As

Publication number Publication date
TW201406049A (zh) 2014-02-01
TWI488425B (zh) 2015-06-11
JP5636412B2 (ja) 2014-12-03
JP2014023421A (ja) 2014-02-03
CN103546080A (zh) 2014-01-29
US8853875B2 (en) 2014-10-07
US20140015249A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
CN103546080B (zh) 风力发电系统的励磁式同步发电机的控制方法
CN110571871B (zh) 储能电站参与电网一次调频深度控制及贡献力分析方法
CN110071531B (zh) 一种大规模储能与永磁风力发电协调控制系统及方法
Belhadj et al. Investigation of different methods to control a small variable-speed wind turbine with PMSM drives
CN102792545A (zh) 太阳能发电系统以及供电系统
US11368025B2 (en) Hybrid power plant and a method for controlling a hybrid power plant
US10069303B2 (en) Power generation system and method with energy management
KR101735308B1 (ko) 플라이휠 에너지 저장장치를 이용한 풍력 터빈의 전력 충방전 제어 시스템 및 방법
WO2021173136A1 (en) System and method for control of hybrid renewable energy storage system
Akbari et al. A PSO solution for improved voltage stability of a hybrid ac-dc microgrid
Georgescu et al. Smart electrical energy storage system for small power wind turbines
Pavković et al. Modeling, parameterization and damping optimum-based control system design for an airborne wind energy ground station power plant
Pathomchaiwat et al. Control of power management in the renewable energy system by using Flywheel Energy Storage
Barote et al. Smart storage solution for wind systems
CN1893256A (zh) 一种永磁发电机的微机控制移相脉冲触发稳压装置
Bu et al. Control and implementation of dual-stator-winding induction generator for variable frequency AC-generating system
KR20210153566A (ko) 하이브리드 발전 플랫폼
Lana et al. Control of directly connected energy storage in diesel electric vessel drives
Nicy et al. Isolated wind-hydro hybrid system using permanent magnet synchronous generator and battery storage with fuzzy logic controller
YADAV et al. POWER QUALITY IMPROVEMENT IN GRID-BASED VARIABLE SPEED WIND ENERGY CONVERSION SYSTEM
Jadallah et al. Control Strategy on Ducting Vertical Axis Wind Turbine Based on Permanent Magnet Synchronous Generator
Shushu et al. MPPT for stand-alone wind power generation system based on hybrid excitation synchronous generator
Hassoune et al. Experimental analysis of control in electric vehicle charging station based grid tied photovoltaic-battery system
KR20190012283A (ko) 발전기 회전속도 제어에 의한 배터리 충전용 제어 시스템 및 그 제어 시스템을 갖는 발전기 시스템
Monroy‐Morales et al. Frequency control in an isolated wind‐diesel hybrid system with energy storage and an irrigation water supply system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant