CN103514894B - 用于减少nft热突出的方法和系统 - Google Patents

用于减少nft热突出的方法和系统 Download PDF

Info

Publication number
CN103514894B
CN103514894B CN201310254614.8A CN201310254614A CN103514894B CN 103514894 B CN103514894 B CN 103514894B CN 201310254614 A CN201310254614 A CN 201310254614A CN 103514894 B CN103514894 B CN 103514894B
Authority
CN
China
Prior art keywords
stitch
transducer
nft
eamr transducer
eamr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310254614.8A
Other languages
English (en)
Other versions
CN103514894A (zh
Inventor
S·M·坦纳
Y·胡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Western Digital Technologies Inc
Original Assignee
Western Digital Fremont LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Western Digital Fremont LLC filed Critical Western Digital Fremont LLC
Publication of CN103514894A publication Critical patent/CN103514894A/zh
Application granted granted Critical
Publication of CN103514894B publication Critical patent/CN103514894B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/3136Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure for reducing the pole-tip-protrusion at the head transducing surface, e.g. caused by thermal expansion of dissimilar materials
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/58Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with provision for moving the head for the purpose of maintaining alignment of the head relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B5/60Fluid-dynamic spacing of heads from record-carriers
    • G11B5/6005Specially adapted for spacing from a rotating disc using a fluid cushion
    • G11B5/6088Optical waveguide in or on flying head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0021Thermally assisted recording using an auxiliary energy source for heating the recording layer locally to assist the magnetization reversal
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3163Fabrication methods or processes specially adapted for a particular head structure, e.g. using base layers for electroplating, using functional layers for masking, using energy or particle beams for shaping the structure or modifying the properties of the basic layers
    • G11B5/3173Batch fabrication, i.e. producing a plurality of head structures in one batch

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

本发明提供用于能量辅助磁记录(EAMR)换能器的近场换能器(NFT)的方法和系统。该方法和系统包括形成具有盘片和针脚的NFT。沉积基本上覆盖NFT的电介质层。移除一部分电介质层,使得电介质层具有在其中的孔。该孔暴露NFT的针脚。EAMR换能器在大于EAMR换能器的预期工作温度的温度下退火。

Description

用于减少NFT热突出的方法和系统
背景技术
图1A和图1B示出了传统能量辅助磁记录(EAMR)换能器10的一部分。传统EAMR换能器10包括具有传统芯体18和包层14、16的传统波导12、光栅20、传统近场换能器(NFT)30以及写磁极40。NFT30具有盘片部分34和针脚(pin)部分32。针脚部分32在盘片部分34和空气轴承表面(ABS)之间。传统EAMR换能器10用于写入记录介质并从传统激光器(未示出)接收光或能量。
在操作中,来自激光器的光耦合到波导12。传统波导12将光引导到靠近ABS的NFT30。NFT30利用表面等离子体中的局部共振将光聚焦到磁记录介质(未示出),如磁盘。NFT30使用的表面等离子体是沿着金属/电介质界面传播的电磁波。共振时,NFT30以远小于光衍射极限的受限光斑将表面等离子体的光能有效耦合到记录介质层。该光斑通常在几纳秒内将记录介质层加热到居里点(Curiepoint)以上。可以使用具有相对适中的磁场的磁极40将高密度位写在高矫顽力介质上。
虽然EAMR换能器10可使用传统的NFT30将数据记录到介质中,但存在缺点。图2A和图2B示出在使用期间的传统EAMR换能器10,并示出了一个此类缺点。在操作中,来自激光器的大量光能以NFT30局部加热的形式损失。一些估计显示EAMR换能器10在NFT30附近的温度可近似两百摄氏度。在这样的高工作温度下,NFT30的一部分可能从ABS突出。这在图2A和图2B中示出,具体显示为NFT30的部分33。在换能器10的更高工作温度下,NFT的针脚32可能经受弹性变形和塑性变形。这些变形可能是由于高内应力与NFT材料(即金)的软化的组合。结果,针脚32的部分33从ABS突出。虽然变形的弹性部分可至少部分地通过降低温度来修正,但是变形的塑性部分不能得到修正。此外,突出可能是明显的。在一些情形下,NFT30的部分33可能从ABS突出几纳米。由于传统换能器10的低飞行高度,该突出33可能导致NFT30接触盘片。结果,NFT30的一部分可能会被磨掉,这会不利地影响换能器10的性能和可靠性。
解决NFT30的突出33的传统机制可包括选择用于NFT30的材料以增强硬度和/或提高材料软化的温度。这种变化可能降低NFT的功效,这是不期望的。而且,找到在高温下具有所需机械稳定性和光学效率的材料可能是困难的。
因此,需要一种用于提高EAMR换能器可靠性的系统和方法。
发明内容
本方法和系统提供了用于能量辅助磁记录换能器的近场换能器。该方法和系统包括形成具有盘片和针脚的NFT。沉积基本覆盖NFT的电介质层。移除电介质层的一部分,从而电介质层具有在其中的孔。该孔暴露NFT的针脚。EAMR换能器在大于EAMR换能器的预期工作温度的温度下退火。
附图说明
图1A和图1B是示出传统EAMR换能器的图示。
图2A和图2B是示出操作期间传统EAMR换能器的图示。
图3是示出用于减少EAMR换能器中NFT突出的方法的示例性实施例的流程图。
图4是示出使用该方法的示例性实施例形成的NFT的示例性实施例的侧视图的图示。
图5是示出利用NFT的EAMR磁头的示例性实施例的图示。
图6是示出用于减少EAMR换能器中NFT突出的方法的另一示例性实施例的流程图。
图7-14是示出制造期间磁记录换能器的示例性实施例的图示。
具体实施方式
图3示出了减少EAMR换能器中NFT的突出的方法100的一个实施例。因而,该方法100可以是用于制造EAMR换能器的方法的一部分。为简便起见,一些步骤可以省略、交错、以其他次序执行和/或组合。EAMR换能器可以是合并磁头的部分,该合并磁头还包括读磁头并位于磁盘驱动器中的滑动器上。该方法100也在提供单一EAMR换能器的背景中描述。然而,该方法100也用于基本同时制造多个换能器。该方法100也在特定层的背景中描述。然而,在一些实施例中,这类层可包括多个子层。该方法100也可在EAMR换能器的其它部分形成之后开始。在一个实施例中,该方法100在EAMR换能器的各部分形成之后开始。例如,该方法100可在波导的部分例如芯体形成之后开始。
通过步骤102形成NFT。NFT可具有针脚和盘片。针脚存在于盘片和ABS位置(当制造完成时ABS期望存在的位置)之间。虽然描述为盘片,但是在一些实施例中,盘片不需要具有圆形的置着区(footprint)。在一些实施例中,步骤102包括多个子步骤。例如,(一个或多个)膜如金层可被沉积用于NFT,且可以移除膜的一部分。从而,可保留盘片和针脚。在其它实施例中,盘片和针脚可分开制造。在替代的实施例中,可以在电介质层中形成沟槽,并在沟槽中制造NFT。
通过步骤104沉积电介质层。步骤104发生在步骤102之后。电介质层可覆盖NFT。沉积电介质层的步骤可包括沉积二氧化硅、氧化铝或一些其它电介质。此外,在一些实施例中,可以使用多种电介质。例如,步骤104中沉积的电介质层可包括多个子层。在步骤104完成之后,理想的是NFT包封在电介质中,该电介质的至少部分是在步骤104中沉积的。
通过步骤106移除NFT上的一部分电介质层。在一些实施例中,通过执行离子铣完成步骤106。在一些这样的实施例中,离子铣是成角度的离子铣。在一些实施例中,离子铣的角度是自晶圆表面的至少二十度且不超过五十度。在一些这样的实施例中,该角度是自晶圆表面的至少三十度且不超过四十度。步骤106中暴露的表面可以相对ABS成非零角。通过步骤106,孔在电介质层中形成。该孔暴露NFT的针脚。
通过步骤108,EAMR换能器在大于EAMR换能器的预期工作温度的温度下退火。在一些实施例中,退火温度大于150°C。在一些这样的实施例中,退火温度不超过200°C。在一些实施例中,退火执行至少一个小时。在一些这样的实施例中,退火不超过十六个小时。退火可在晶圆级上执行。因此,衬底上的所有换能器可基本上同时退火。由于孔形成在电介质中,因此作为退火的结果,NFT针脚可能流入孔中。
图4示出执行步骤108后包括NFT120的换能器的一个实施例的侧视图。图4未按比例绘制。NFT120包括针脚122和盘片124,并在步骤102中形成。其也示出在步骤104中沉积的电介质126。孔128已形成于电介质126中。在图4示出的实施例中,成角度的离子铣用于暴露针脚122。因此,电介质126的表面与ABS位置形成非零角度。ABS位置指示制造完成时的ABS的位置。由于步骤108中执行的退火和孔128提供的出口,NFT120的部分针脚122变形并流入孔128中。因此,NFT针脚122可视为以与操作中可能发生的突出类似的方式突出。
通过步骤110可选地移除在孔128中突出的针脚122的一部分。在一些实施例中,移除在退火之后不久发生。在这样的实施例中,NFT针脚128的突出可通过另一次离子铣移除。在其它实施例中,移除可以明显较晚地在处理过程中发生。例如,通过孔128突出的针脚122的部分可通过在后端处理中进行研磨/抛光而移除。例如,衬底分成多个长形条,其每个包括多个EAMR换能器。然后,长形条被研磨且移除突出。在突出较早移除的实施例中,EAMR换能器通常仍然经历研磨。然而,突出已移除。在一些这样的实施例中,长形条可能被研磨从而暴露针脚122,然后被再次退火。在这样的实施例中,针脚122可能从研磨期间已暴露的研磨表面突出。之后,针脚122的突出部分可通过另一次研磨或其他工艺被移除。然后,换能器的制造完成。
使用方法100,可以制造具有减少的热突出的NFT。例如,图5示出使用方法100制造的包括NFT120′的磁头150的侧视图。图5未按比例绘制。而且,可能未示出所有的组件。此外,可以使用其它组件和/或具有不同配置的组件。磁头150包括EAMR换能器160和读取换能器152。读取换能器152包括屏蔽件154和158和读取传感器156。EAMR换能器160包括光学屏蔽件162、线圈164和165(其可形成螺旋线圈或可以是扁平线圈)、返回磁极166、包括包层172和176以及芯体174的波导170和磁极168。EAMR换能器150还包括NFT120′和选择性的散热器180。NFT120′类似于NFT120。因此,NFT120′包括盘片部分124′和针脚部分122′,其分别类似于盘片部分124和针脚部分122。针脚部分122′在盘片部分124′和ABS之间。因此,盘片部分124′远离ABS。盘片部分124′进一步在磁道宽度方向(垂直于图5中的页面的平面)而不是针脚部分122′方向延伸。
NFT120/120′使用方法100制造。由于在工作温度以上的温度执行退火,因此已经实现NFT120/120′的应力消除和变形。例如,NFT120/120′的塑性变形可由NFT120/120′的突出的退火和移除来解决。因此,NFT120/120′可以经历较少的热突出。例如,在一些实施例中,NFT120/120′在操作中可能突出不超过一纳米。在一些这样的实施例中,NFT120/120′在操作中可能突出不超过半纳米。此外,NFT120/120′经受的突出可能是弹性的,而不是塑性的。由于NFT120/120′受到较少的突出,因此NFT120/120′不太可能接触磁盘(未示出)。结果,NFT120/120′和磁头150的性能和可靠性可以得到改进。此外,因为在步骤108的退火可在晶圆级上执行,因此产量可以得到提高。
图6是示出用于减少EAMR磁头中NFT突出的方法200的示例性实施例的流程图。为简便起见,一些步骤可省略、交错、以其他次序执行和/或组合。图7-14是示出250制造期间EAMR换能器的一部分的示例性实施例的侧视图和俯视图的示意图。为清楚起见,图7-14未按比例绘制。此外,虽然图7-13示出了ABS位置(将要形成ABS的位置)和ABS在磁极特定点处,但是其它实施例可将其它位置用于ABS。参考图6-14,方法200在EAMR换能器250的背景中描述。然而,方法200可用于形成另一器件(未示出)。制造的EAMR换能器250可以是合并磁头的一部分,该合并磁头还包括读磁头(图7-14中未示出)、激光器(图7-14中未示出),并存在于磁盘驱动器中的滑动器上(未示出)。此外,未显示EAMR换能器250的其它部分,如(一个或多个)磁极、(一个或多个)屏蔽、(一个或多个)线圈和其余光学装置。方法200也可在EAMR换能器250的其它部分形成后开始。方法200也在提供单一的EAMR换能器250和EAMR换能器250的单一NFT的背景中描述。然而,方法200可用于基本同时制造多个换能器和/或每个换能器的多个散热器。方法200和器件250也在特定层的背景中描述。然而,在一些实施例中,这类层可包括多个子层。
NFT通过步骤202形成在衬底上。该步骤类似于方法100的步骤102。图7示出执行步骤202后的换能器250。因此,NFT260被显示为形成在光学电介质252上。NFT260包括盘片264和针脚262。因此,在示出的实施例中,NFT260的盘片264具有圆形的置着区。还示出了电介质254。然而,在其它实施例中,省略了电介质254。
通过步骤204沉积电介质包层。步骤204类似于步骤104。图8示出了执行步骤204后的换能器250。因此,电介质层270覆盖NFT260。在一些实施例中,电介质254在同一步骤204中沉积。在其它实施例中,可能之前已经提供电介质254。在一些实施例中,电介质254和270基本上相同,并且可视为单一层。
通过步骤206执行成角度的离子铣,从而移除电介质层270的一部分。在一些实施例中,离子铣的角度是自晶圆表面的至少二十度,且不超过五十度。在其它实施例中,该角度可以是自晶圆表面的至少三十度,且不超过四十度。图9示出了执行步骤206后的换能器250。因此,孔272在电介质270′中形成,且离子铣表面273被暴露。在示出的实施例中,NFT260′和电介质252′的一部分已经被移除。从图9可以看出,表面273与ABS位置成非零角度。孔272暴露NFT260′的针脚262′。
通过步骤208在大于EAMR换能器的预期工作温度的温度下对EAMR换能器进行退火。在一些实施例中,退火的温度大于150°C。在一些这样的实施例中,退火温度不超过200°C。在一些实施例中,退火执行至少一个小时。在一些这样的实施例中,退火不超过十六个小时。退火可在晶圆级上执行。因此,衬底上的所有换能器基本上可同时退火。由于孔272形成于电介质270′中,因此作为退火的结果,NFT针脚262′′可流入孔中。图10示出执行步骤208后的EAMR换能器250。为清楚起见,孔272没有单独标识。由于孔272形成在电介质270′中,因此作为退火的结果,NFT针脚262′′突出到孔272中。因此,针脚262′′的突出266位于电介质270′之外。
针脚262′′的突出266可选择地通过步骤210移除。在一些实施例中,移除在退火后不久发生。在这样的实施例中,NFT针脚128的突出可通过另一次离子铣或其它工艺移除。图11示出执行步骤210后的换能器250。突出266已移除,其留下包括针脚262′′′和盘片264′′′的NFT260′′′。之后,可以通过步骤212继续制造。
通过步骤214将EAMR换能器250位于其上的衬底分成多个长形条。之后,长形条被研磨。在一些实施例中,每个长形条包括两个换能器250。然后,长形条通过步骤216被研磨。在一些实施例中,步骤216中的研磨在ABS暴露之前终止。图12示出执行步骤216后的EAMR换能器。因此,衬底的边缘更靠近ABS位置。此外,NFT260′′′具有更短的针脚262′′′。然而,盘片264′′′保持完好。而且,NFT260′′′的针脚262′′′被暴露。
然后,通过步骤218对EAMR换能器250进行再次退火。步骤218中的退火类似于步骤208中的退火,其中期望退火在预期工作温度以上的温度实施。因此,步骤218中用于退火的温度可以与步骤208中用于退火的温度相同。类似地,退火时间在步骤208和218可以是相似的。然而,在其它实施例中,不同于步骤208的时间和/或温度可用于步骤218。图13示出执行步骤218后的换能器250。因此,另一个突出267已经形成。
通过步骤220移除突出267。在一些实施例中,通过再次研磨长形条执行步骤220,并由此再次研磨EAMR换能器250。之后,可完成换能器的制造。图14示出执行步骤220后的换能器250。因此,突出267已经移除。此外,已经暴露了ABS。
使用方法200,可制造EAMR换能器250。因此,可提供具有减少的热突出的NFT260。从而,EAMR换能器250的制造、可靠性和性能可以得到改善。

Claims (14)

1.一种提供用于能量辅助磁记录即EAMR换能器的近场换能器即NFT的方法,所述方法包括:
形成具有盘片和针脚的NFT;
沉积基本上覆盖所述NFT的电介质层;
移除一部分所述电介质层,使得电介质层具有在其中的孔,所述孔暴露所述针脚;以及
在形成所述孔以后在大于所述EAMR换能器的预期工作温度的温度下将所述EAMR换能器退火。
2.根据权利要求1所述的方法,其中所述温度大于150℃。
3.根据权利要求2所述的方法,其中所述温度不超过200℃。
4.根据权利要求1所述的方法,其中将所述EAMR换能器退火的步骤进一步包括:
在所述温度下,将所述EAMR换能器退火至少一个小时且不超过十六个小时。
5.根据权利要求1所述的方法,其中EAMR换能器是衬底上的多个EAMR换能器之一,且其中将所述EAMR换能器退火的步骤进一步包括:
将所述衬底在所述温度下退火,使得所述多个换能器被退火。
6.根据权利要求5所述的方法,其进一步包括:
将所述衬底分成多个长形条,所述EAMR换能器位于所述多个长形条的一个长形条上;
研磨所述长形条;
将所述长形条退火,使得所述针脚的一部分从研磨的表面突出;以及
在将所述长形条退火的步骤后,移除所述NFT的所述针脚的所述部分。
7.根据权利要求6所述的方法,其中移除所述针脚的所述部分的步骤进一步包括:
对所述长形条执行额外的研磨。
8.根据权利要求1所述的方法,在所述退火步骤后,所述针脚的一部分至少突出到所述孔中。
9.根据权利要求8所述的方法,其进一步包括:
移除所述针脚的所述部分。
10.根据权利要求8所述的方法,其中移除所述针脚的步骤进一步包括:
研磨所述EAMR换能器。
11.根据权利要求1所述的方法,其中移除所述电介质层的所述部分的步骤进一步包括:
离子铣至少所述电介质层的所述部分。
12.根据权利要求1所述的方法,其中所述EAMR换能器位于长形条上,所述长形条包括至少一个额外的EAMR换能器,所述方法进一步包括:
将所述长形条退火,使得所述针脚的部分突出;以及
研磨所述长形条,使得针脚的所述部分被移除。
13.一种具有空气轴承表面即ABS的EAMR换能器,其被配置为在操作期间接近介质,所述EAMR换能器包括:
近场换能器即NFT,其用于将能量聚焦到所述介质的区域上,所述NFT具有接近所述ABS的盘片和针脚,所述NFT通过以下被提供:形成具有所述盘片和所述针脚的所述NFT,沉积基本上覆盖所述NFT的电介质层,移除一部分所述电介质层使得电介质层具有在其中的孔、所述孔暴露所述针脚,并且在形成所述孔以后在大于所述EAMR换能器的预期工作温度的温度下将所述EAMR换能器退火,并且可选地在退火之后移除从所述孔突出的所述针脚的一部分,使得在所述EAMR换能器的操作期间,所述针脚突出不超过一纳米;
写磁极,其被配置为写入所述介质的区域;以及
用于激励所述写磁极的至少一个线圈。
14.根据权利要求13所述的EAMR换能器,其中在所述EAMR换能器的操作期间,所述针脚突出不超过半纳米。
CN201310254614.8A 2012-06-26 2013-06-25 用于减少nft热突出的方法和系统 Expired - Fee Related CN103514894B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/533,150 2012-06-26
US13/533,150 US8565049B1 (en) 2012-06-26 2012-06-26 Method and system for reducing thermal protrusion of an NFT

Publications (2)

Publication Number Publication Date
CN103514894A CN103514894A (zh) 2014-01-15
CN103514894B true CN103514894B (zh) 2016-06-22

Family

ID=49355274

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310254614.8A Expired - Fee Related CN103514894B (zh) 2012-06-26 2013-06-25 用于减少nft热突出的方法和系统

Country Status (3)

Country Link
US (1) US8565049B1 (zh)
CN (1) CN103514894B (zh)
HK (1) HK1190492A1 (zh)

Families Citing this family (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8689430B1 (en) 2006-11-29 2014-04-08 Western Digital (Fremont), Llc Method for providing a perpendicular magnetic recording (PMR)head
US8404128B1 (en) 2009-02-23 2013-03-26 Western Digital (Fremont), Llc Method and system for providing a perpendicular magnetic recording head
US8400731B1 (en) 2009-04-19 2013-03-19 Western Digital (Fremont), Llc Write head with variable side shield gaps
US8611055B1 (en) 2009-07-31 2013-12-17 Western Digital (Fremont), Llc Magnetic etch-stop layer for magnetoresistive read heads
US9202480B2 (en) 2009-10-14 2015-12-01 Western Digital (Fremont), LLC. Double patterning hard mask for damascene perpendicular magnetic recording (PMR) writer
US8441896B2 (en) 2010-06-25 2013-05-14 Western Digital (Fremont), Llc Energy assisted magnetic recording head having laser integrated mounted to slider
US8997832B1 (en) 2010-11-23 2015-04-07 Western Digital (Fremont), Llc Method of fabricating micrometer scale components
US8441756B1 (en) 2010-12-16 2013-05-14 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled writer
US9123359B1 (en) 2010-12-22 2015-09-01 Western Digital (Fremont), Llc Magnetic recording transducer with sputtered antiferromagnetic coupling trilayer between plated ferromagnetic shields and method of fabrication
US8456961B1 (en) 2011-03-22 2013-06-04 Western Digital (Fremont), Llc Systems and methods for mounting and aligning a laser in an electrically assisted magnetic recording assembly
US8419954B1 (en) 2011-10-31 2013-04-16 Western Digital (Fremont), Llc Method for providing a side shield for a magnetic recording transducer
US8760823B1 (en) 2011-12-20 2014-06-24 Western Digital (Fremont), Llc Method and system for providing a read transducer having soft and hard magnetic bias structures
US8451563B1 (en) 2011-12-20 2013-05-28 Western Digital (Fremont), Llc Method for providing a side shield for a magnetic recording transducer using an air bridge
US9093639B2 (en) 2012-02-21 2015-07-28 Western Digital (Fremont), Llc Methods for manufacturing a magnetoresistive structure utilizing heating and cooling
US9349392B1 (en) 2012-05-24 2016-05-24 Western Digital (Fremont), Llc Methods for improving adhesion on dielectric substrates
US8724259B1 (en) 2012-06-11 2014-05-13 Western Digital (Fremont), Llc Conformal high moment side shield seed layer for perpendicular magnetic recording writer
US8711528B1 (en) 2012-06-29 2014-04-29 Western Digital (Fremont), Llc Tunnel magnetoresistance read head with narrow shield-to-shield spacing
US9269382B1 (en) 2012-06-29 2016-02-23 Western Digital (Fremont), Llc Method and system for providing a read transducer having improved pinning of the pinned layer at higher recording densities
US9213322B1 (en) 2012-08-16 2015-12-15 Western Digital (Fremont), Llc Methods for providing run to run process control using a dynamic tuner
US8984740B1 (en) 2012-11-30 2015-03-24 Western Digital (Fremont), Llc Process for providing a magnetic recording transducer having a smooth magnetic seed layer
US9053719B2 (en) 2012-11-30 2015-06-09 Western Digital (Fremont), Llc Magnetoresistive sensor for a magnetic storage system read head, and fabrication method thereof
US8980109B1 (en) 2012-12-11 2015-03-17 Western Digital (Fremont), Llc Method for providing a magnetic recording transducer using a combined main pole and side shield CMP for a wraparound shield scheme
US8760818B1 (en) 2013-01-09 2014-06-24 Western Digital (Fremont), Llc Systems and methods for providing magnetic storage elements with high magneto-resistance using heusler alloys
US9142231B2 (en) * 2013-03-11 2015-09-22 Seagate Technology Llc Method of making a transducer head
US9042208B1 (en) 2013-03-11 2015-05-26 Western Digital Technologies, Inc. Disk drive measuring fly height by applying a bias voltage to an electrically insulated write component of a head
US9336814B1 (en) 2013-03-12 2016-05-10 Western Digital (Fremont), Llc Inverse tapered waveguide for use in a heat assisted magnetic recording head
US8883017B1 (en) 2013-03-12 2014-11-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having seamless interfaces
US9111564B1 (en) 2013-04-02 2015-08-18 Western Digital (Fremont), Llc Magnetic recording writer having a main pole with multiple flare angles
US9013836B1 (en) 2013-04-02 2015-04-21 Western Digital (Fremont), Llc Method and system for providing an antiferromagnetically coupled return pole
US8897104B1 (en) * 2013-04-02 2014-11-25 Western Digital (Fremont), Llc Method and system for performing off-disk measurements of laser-induced NFT protrusion in a heat assisted magnetic recording transducer
US9104107B1 (en) 2013-04-03 2015-08-11 Western Digital (Fremont), Llc DUV photoresist process
US8993217B1 (en) 2013-04-04 2015-03-31 Western Digital (Fremont), Llc Double exposure technique for high resolution disk imaging
US9064527B1 (en) 2013-04-12 2015-06-23 Western Digital (Fremont), Llc High order tapered waveguide for use in a heat assisted magnetic recording head
US9070381B1 (en) 2013-04-12 2015-06-30 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
US9245545B1 (en) 2013-04-12 2016-01-26 Wester Digital (Fremont), Llc Short yoke length coils for magnetic heads in disk drives
US9431047B1 (en) 2013-05-01 2016-08-30 Western Digital (Fremont), Llc Method for providing an improved AFM reader shield
US9064528B1 (en) 2013-05-17 2015-06-23 Western Digital Technologies, Inc. Interferometric waveguide usable in shingled heat assisted magnetic recording in the absence of a near-field transducer
US9431039B1 (en) 2013-05-21 2016-08-30 Western Digital (Fremont), Llc Multiple sensor array usable in two-dimensional magnetic recording
US9263067B1 (en) 2013-05-29 2016-02-16 Western Digital (Fremont), Llc Process for making PMR writer with constant side wall angle
US9361913B1 (en) 2013-06-03 2016-06-07 Western Digital (Fremont), Llc Recording read heads with a multi-layer AFM layer methods and apparatuses
US9406331B1 (en) 2013-06-17 2016-08-02 Western Digital (Fremont), Llc Method for making ultra-narrow read sensor and read transducer device resulting therefrom
US20140376340A1 (en) * 2013-06-24 2014-12-25 Seagate Technology Llc Peg only near-field transducer
US9275659B2 (en) 2013-06-24 2016-03-01 Seagate Technology Llc Peg only near-field transducer
US9099117B2 (en) 2013-06-24 2015-08-04 Seagate Technology Llc Near-field transducer peg encapsulation
US9287494B1 (en) 2013-06-28 2016-03-15 Western Digital (Fremont), Llc Magnetic tunnel junction (MTJ) with a magnesium oxide tunnel barrier
US9318130B1 (en) 2013-07-02 2016-04-19 Western Digital (Fremont), Llc Method to fabricate tunneling magnetic recording heads with extended pinned layer
US8923102B1 (en) 2013-07-16 2014-12-30 Western Digital (Fremont), Llc Optical grating coupling for interferometric waveguides in heat assisted magnetic recording heads
US8947985B1 (en) 2013-07-16 2015-02-03 Western Digital (Fremont), Llc Heat assisted magnetic recording transducers having a recessed pole
US9431032B1 (en) 2013-08-14 2016-08-30 Western Digital (Fremont), Llc Electrical connection arrangement for a multiple sensor array usable in two-dimensional magnetic recording
US9275657B1 (en) 2013-08-14 2016-03-01 Western Digital (Fremont), Llc Process for making PMR writer with non-conformal side gaps
US9042051B2 (en) 2013-08-15 2015-05-26 Western Digital (Fremont), Llc Gradient write gap for perpendicular magnetic recording writer
US9343098B1 (en) 2013-08-23 2016-05-17 Western Digital (Fremont), Llc Method for providing a heat assisted magnetic recording transducer having protective pads
US9343086B1 (en) 2013-09-11 2016-05-17 Western Digital (Fremont), Llc Magnetic recording write transducer having an improved sidewall angle profile
US9441938B1 (en) 2013-10-08 2016-09-13 Western Digital (Fremont), Llc Test structures for measuring near field transducer disc length
US9042058B1 (en) 2013-10-17 2015-05-26 Western Digital Technologies, Inc. Shield designed for middle shields in a multiple sensor array
US9349394B1 (en) 2013-10-18 2016-05-24 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having a gradient side gap
US9214172B2 (en) 2013-10-23 2015-12-15 Western Digital (Fremont), Llc Method of manufacturing a magnetic read head
US9007719B1 (en) 2013-10-23 2015-04-14 Western Digital (Fremont), Llc Systems and methods for using double mask techniques to achieve very small features
US9251819B2 (en) * 2013-11-12 2016-02-02 Seagate Technology Llc Mode converter coupling energy at a high-order transverse electric mode to a plasmonic transducer
US8988812B1 (en) 2013-11-27 2015-03-24 Western Digital (Fremont), Llc Multi-sensor array configuration for a two-dimensional magnetic recording (TDMR) operation
US9194692B1 (en) 2013-12-06 2015-11-24 Western Digital (Fremont), Llc Systems and methods for using white light interferometry to measure undercut of a bi-layer structure
US9280990B1 (en) 2013-12-11 2016-03-08 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using multiple etches
US9001628B1 (en) 2013-12-16 2015-04-07 Western Digital (Fremont), Llc Assistant waveguides for evaluating main waveguide coupling efficiency and diode laser alignment tolerances for hard disk
US8917581B1 (en) 2013-12-18 2014-12-23 Western Digital Technologies, Inc. Self-anneal process for a near field transducer and chimney in a hard disk drive assembly
US9082423B1 (en) 2013-12-18 2015-07-14 Western Digital (Fremont), Llc Magnetic recording write transducer having an improved trailing surface profile
US8971160B1 (en) 2013-12-19 2015-03-03 Western Digital (Fremont), Llc Near field transducer with high refractive index pin for heat assisted magnetic recording
US9147408B1 (en) 2013-12-19 2015-09-29 Western Digital (Fremont), Llc Heated AFM layer deposition and cooling process for TMR magnetic recording sensor with high pinning field
US8970988B1 (en) 2013-12-31 2015-03-03 Western Digital (Fremont), Llc Electric gaps and method for making electric gaps for multiple sensor arrays
US9305583B1 (en) 2014-02-18 2016-04-05 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using multiple etches of damascene materials
US9183854B2 (en) 2014-02-24 2015-11-10 Western Digital (Fremont), Llc Method to make interferometric taper waveguide for HAMR light delivery
US9142233B1 (en) 2014-02-28 2015-09-22 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having a recessed pole
US9202493B1 (en) 2014-02-28 2015-12-01 Western Digital (Fremont), Llc Method of making an ultra-sharp tip mode converter for a HAMR head
US8988825B1 (en) 2014-02-28 2015-03-24 Western Digital (Fremont, LLC Method for fabricating a magnetic writer having half-side shields
US9396743B1 (en) 2014-02-28 2016-07-19 Western Digital (Fremont), Llc Systems and methods for controlling soft bias thickness for tunnel magnetoresistance readers
US9001467B1 (en) 2014-03-05 2015-04-07 Western Digital (Fremont), Llc Method for fabricating side shields in a magnetic writer
US9153255B1 (en) 2014-03-05 2015-10-06 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having an asymmetric gap and shields
US9135930B1 (en) 2014-03-06 2015-09-15 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole using vacuum deposition
US9934811B1 (en) 2014-03-07 2018-04-03 Western Digital (Fremont), Llc Methods for controlling stray fields of magnetic features using magneto-elastic anisotropy
US9190085B1 (en) 2014-03-12 2015-11-17 Western Digital (Fremont), Llc Waveguide with reflective grating for localized energy intensity
US9111558B1 (en) 2014-03-14 2015-08-18 Western Digital (Fremont), Llc System and method of diffractive focusing of light in a waveguide
US9322997B2 (en) 2014-03-25 2016-04-26 Seagate Technology Llc Branched waveguide configuration
US9135937B1 (en) 2014-05-09 2015-09-15 Western Digital (Fremont), Llc Current modulation on laser diode for energy assisted magnetic recording transducer
US9007879B1 (en) 2014-06-10 2015-04-14 Western Digital (Fremont), Llc Interfering near field transducer having a wide metal bar feature for energy assisted magnetic recording
US8958272B1 (en) 2014-06-10 2015-02-17 Western Digital (Fremont), Llc Interfering near field transducer for energy assisted magnetic recording
US8976635B1 (en) 2014-06-10 2015-03-10 Western Digital (Fremont), Llc Near field transducer driven by a transverse electric waveguide for energy assisted magnetic recording
US8953422B1 (en) 2014-06-10 2015-02-10 Western Digital (Fremont), Llc Near field transducer using dielectric waveguide core with fine ridge feature
US9508363B1 (en) 2014-06-17 2016-11-29 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole having a leading edge bevel
US9361914B1 (en) 2014-06-18 2016-06-07 Western Digital (Fremont), Llc Magnetic sensor with thin capping layer
US9053735B1 (en) 2014-06-20 2015-06-09 Western Digital (Fremont), Llc Method for fabricating a magnetic writer using a full-film metal planarization
US9214169B1 (en) 2014-06-20 2015-12-15 Western Digital (Fremont), Llc Magnetic recording read transducer having a laminated free layer
US9042052B1 (en) 2014-06-23 2015-05-26 Western Digital (Fremont), Llc Magnetic writer having a partially shunted coil
US9230565B1 (en) 2014-06-24 2016-01-05 Western Digital (Fremont), Llc Magnetic shield for magnetic recording head
US9153266B1 (en) 2014-09-11 2015-10-06 Western Digital Technologies, Inc. Data storage device measuring laser protrusion fly height profile
US9190079B1 (en) 2014-09-22 2015-11-17 Western Digital (Fremont), Llc Magnetic write pole having engineered radius of curvature and chisel angle profiles
US9007725B1 (en) 2014-10-07 2015-04-14 Western Digital (Fremont), Llc Sensor with positive coupling between dual ferromagnetic free layer laminates
US9087527B1 (en) 2014-10-28 2015-07-21 Western Digital (Fremont), Llc Apparatus and method for middle shield connection in magnetic recording transducers
US9424865B2 (en) 2014-11-04 2016-08-23 HGST Netherlands B.V. Near field transducer anneal for heat assisted magnetic recording
US9786301B1 (en) 2014-12-02 2017-10-10 Western Digital (Fremont), Llc Apparatuses and methods for providing thin shields in a multiple sensor array
US9111550B1 (en) 2014-12-04 2015-08-18 Western Digital (Fremont), Llc Write transducer having a magnetic buffer layer spaced between a side shield and a write pole by non-magnetic layers
US9721595B1 (en) 2014-12-04 2017-08-01 Western Digital (Fremont), Llc Method for providing a storage device
US9236560B1 (en) 2014-12-08 2016-01-12 Western Digital (Fremont), Llc Spin transfer torque tunneling magnetoresistive device having a laminated free layer with perpendicular magnetic anisotropy
US9286919B1 (en) 2014-12-17 2016-03-15 Western Digital (Fremont), Llc Magnetic writer having a dual side gap
US9881638B1 (en) 2014-12-17 2018-01-30 Western Digital (Fremont), Llc Method for providing a near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
US9741366B1 (en) 2014-12-18 2017-08-22 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having a gradient in saturation magnetization of the shields
US9214165B1 (en) 2014-12-18 2015-12-15 Western Digital (Fremont), Llc Magnetic writer having a gradient in saturation magnetization of the shields
US10074387B1 (en) 2014-12-21 2018-09-11 Western Digital (Fremont), Llc Method and system for providing a read transducer having symmetric antiferromagnetically coupled shields
US9343087B1 (en) 2014-12-21 2016-05-17 Western Digital (Fremont), Llc Method for fabricating a magnetic writer having half shields
US9437251B1 (en) 2014-12-22 2016-09-06 Western Digital (Fremont), Llc Apparatus and method having TDMR reader to reader shunts
US9449625B1 (en) 2014-12-24 2016-09-20 Western Digital (Fremont), Llc Heat assisted magnetic recording head having a plurality of diffusion barrier layers
US9123374B1 (en) 2015-02-12 2015-09-01 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having an integrated polarization rotation plate
US9312064B1 (en) 2015-03-02 2016-04-12 Western Digital (Fremont), Llc Method to fabricate a magnetic head including ion milling of read gap using dual layer hard mask
US9792931B2 (en) * 2015-03-22 2017-10-17 Seagate Technology Llc Devices including a difussion barrier layer
US9431031B1 (en) 2015-03-24 2016-08-30 Western Digital (Fremont), Llc System and method for magnetic transducers having multiple sensors and AFC shields
US9443541B1 (en) 2015-03-24 2016-09-13 Western Digital (Fremont), Llc Magnetic writer having a gradient in saturation magnetization of the shields and return pole
US9449621B1 (en) 2015-03-26 2016-09-20 Western Digital (Fremont), Llc Dual free layer magnetic reader having a rear bias structure having a high aspect ratio
US9384763B1 (en) 2015-03-26 2016-07-05 Western Digital (Fremont), Llc Dual free layer magnetic reader having a rear bias structure including a soft bias layer
US9245562B1 (en) 2015-03-30 2016-01-26 Western Digital (Fremont), Llc Magnetic recording writer with a composite main pole
US9263071B1 (en) 2015-03-31 2016-02-16 Western Digital (Fremont), Llc Flat NFT for heat assisted magnetic recording
US9147404B1 (en) 2015-03-31 2015-09-29 Western Digital (Fremont), Llc Method and system for providing a read transducer having a dual free layer
US9508372B1 (en) 2015-06-03 2016-11-29 Western Digital (Fremont), Llc Shingle magnetic writer having a low sidewall angle pole
US9508365B1 (en) 2015-06-24 2016-11-29 Western Digital (Fremont), LLC. Magnetic reader having a crystal decoupling structure
US9530443B1 (en) 2015-06-25 2016-12-27 Western Digital (Fremont), Llc Method for fabricating a magnetic recording device having a high aspect ratio structure
US9842615B1 (en) 2015-06-26 2017-12-12 Western Digital (Fremont), Llc Magnetic reader having a nonmagnetic insertion layer for the pinning layer
US9646639B2 (en) 2015-06-26 2017-05-09 Western Digital (Fremont), Llc Heat assisted magnetic recording writer having integrated polarization rotation waveguides
US9431038B1 (en) 2015-06-29 2016-08-30 Western Digital (Fremont), Llc Method for fabricating a magnetic write pole having an improved sidewall angle profile
US9666214B1 (en) 2015-09-23 2017-05-30 Western Digital (Fremont), Llc Free layer magnetic reader that may have a reduced shield-to-shield spacing
US9472216B1 (en) 2015-09-23 2016-10-18 Western Digital (Fremont), Llc Differential dual free layer magnetic reader
US9424866B1 (en) 2015-09-24 2016-08-23 Western Digital (Fremont), Llc Heat assisted magnetic recording write apparatus having a dielectric gap
US9384765B1 (en) 2015-09-24 2016-07-05 Western Digital (Fremont), Llc Method and system for providing a HAMR writer having improved optical efficiency
US9595273B1 (en) 2015-09-30 2017-03-14 Western Digital (Fremont), Llc Shingle magnetic writer having nonconformal shields
US9484051B1 (en) 2015-11-09 2016-11-01 The Provost, Fellows, Foundation Scholars and the other members of Board, of the College of the Holy and Undivided Trinity of Queen Elizabeth near Dublin Method and system for reducing undesirable reflections in a HAMR write apparatus
US9953670B1 (en) 2015-11-10 2018-04-24 Western Digital (Fremont), Llc Method and system for providing a HAMR writer including a multi-mode interference device
US10037770B1 (en) 2015-11-12 2018-07-31 Western Digital (Fremont), Llc Method for providing a magnetic recording write apparatus having a seamless pole
US9812155B1 (en) 2015-11-23 2017-11-07 Western Digital (Fremont), Llc Method and system for fabricating high junction angle read sensors
US9564150B1 (en) 2015-11-24 2017-02-07 Western Digital (Fremont), Llc Magnetic read apparatus having an improved read sensor isolation circuit
US9754611B1 (en) 2015-11-30 2017-09-05 Western Digital (Fremont), Llc Magnetic recording write apparatus having a stepped conformal trailing shield
US9799351B1 (en) 2015-11-30 2017-10-24 Western Digital (Fremont), Llc Short yoke length writer having assist coils
US9767831B1 (en) 2015-12-01 2017-09-19 Western Digital (Fremont), Llc Magnetic writer having convex trailing surface pole and conformal write gap
US9740805B1 (en) 2015-12-01 2017-08-22 Western Digital (Fremont), Llc Method and system for detecting hotspots for photolithographically-defined devices
US9858951B1 (en) 2015-12-01 2018-01-02 Western Digital (Fremont), Llc Method for providing a multilayer AFM layer in a read sensor
US9947346B2 (en) 2016-03-30 2018-04-17 Western Digital Technologies, Inc. Using window underlayer structures to protect near field transducers on heat assisted magnetic recording heads
US10360939B2 (en) * 2017-12-23 2019-07-23 Western Digital Technologies, Inc. Metal-insulator-metal near-field transducer for heat-assisted magnetic recording

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937684A (zh) * 2009-06-25 2011-01-05 希捷科技有限公司 集成的热辅助磁性记录装置
CN101937685A (zh) * 2009-06-26 2011-01-05 西部数据(弗里蒙特)公司 利用加热对磁阻结构提供势垒的方法和系统
CN101958125A (zh) * 2009-07-16 2011-01-26 西部数据(弗里蒙特)公司 制造具有改进钉扎的磁换能器的方法与系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5872684A (en) 1997-05-15 1999-02-16 International Business Machines Corporation Air bearing slider having a relieved trailing edge
US6428715B1 (en) 1998-12-22 2002-08-06 International Business Machines Corporation Method for producing sliders
US6069770A (en) 1999-10-04 2000-05-30 International Business Machines Corporation Method for producing sliders
US6928721B2 (en) 2001-10-05 2005-08-16 Headway Technologies, Inc. Method of manufacturing a magnetic read/write head and slider assembly
US6857937B2 (en) 2002-05-30 2005-02-22 Komag, Inc. Lapping a head while powered up to eliminate expansion of the head due to heating
US7086931B2 (en) 2003-04-18 2006-08-08 Tdk Corporation Magnetic head bar holding unit, lapping device, and method of lapping medium-opposing surface of thin-film magnetic head
US20060221498A1 (en) 2005-03-30 2006-10-05 Hitachi Global Storage Technologies Netherlands, B.V Head design with low coefficient of thermal expansion insert layer
US7455332B2 (en) 2005-11-16 2008-11-25 Sae Magnetics (Hk) Ltd. Method for controlling overcoat recession in a magnetic thin film head
US7461447B2 (en) 2006-05-05 2008-12-09 Hitachi Global Storage Technologies Netherlands B.V. Method of fabrication of magnetic head having annealed embedded read sensor
US8077418B1 (en) 2009-03-31 2011-12-13 Western Digital (Fremont), Llc Reducing thermal protrusion of a near field transducer in an energy assisted magnetic recording head
US8031561B2 (en) * 2009-10-28 2011-10-04 Hitachi Global Storage Technologies Netherlands B.V. Joint design of thermally-assisted magnetic recording head and patterned media for high optical efficiency
US8107326B1 (en) * 2010-11-15 2012-01-31 Hitachi Global Storage Technologies Netherlands B.V. Slider with integrated thermally-assisted recording (TAR) head and integrated long laser diode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101937684A (zh) * 2009-06-25 2011-01-05 希捷科技有限公司 集成的热辅助磁性记录装置
CN101937685A (zh) * 2009-06-26 2011-01-05 西部数据(弗里蒙特)公司 利用加热对磁阻结构提供势垒的方法和系统
CN101958125A (zh) * 2009-07-16 2011-01-26 西部数据(弗里蒙特)公司 制造具有改进钉扎的磁换能器的方法与系统

Also Published As

Publication number Publication date
HK1190492A1 (zh) 2014-07-04
CN103514894A (zh) 2014-01-15
US8565049B1 (en) 2013-10-22

Similar Documents

Publication Publication Date Title
CN103514894B (zh) 用于减少nft热突出的方法和系统
US8491801B1 (en) Method and system for providing an NFT using a sacrificial NFT structure
US9196279B2 (en) Near field transducer with isolated peg
US8576673B2 (en) Recording head for heat assisted magnetic recording with a side lobe blocker
US9076475B2 (en) Apparatuses and methods for controlling near-field transducer to write pole spacing
US8649245B2 (en) Direct waveguide light delivery to NFT for heat assisted magnetic recording
US9542960B2 (en) Thermally-assisted magnetic recording head including a main pole, a plasmon generator and two side shields
US9019661B2 (en) Apparatus with a plurality of heat sinks
US8929698B2 (en) Plasmonic transducer with reduced cross section at media-reading surface
US8760809B1 (en) Thermally-assisted magnetic recording head having a plasmon generator
US9099114B1 (en) Surface diffusion inhibitor for HAMR NFT
US10106885B2 (en) Heat assisted magnetic recording head having near-field transducer with a sloped nose
CN107851445A (zh) 热强健的近场换能器销钉
US8867170B1 (en) Multilayer plasmon generator
US9424866B1 (en) Heat assisted magnetic recording write apparatus having a dielectric gap
US8691102B1 (en) Method of manufacturing plasmon generator
US9159346B1 (en) Near field transducer using dielectric waveguide core with fine ridge feature
US9311952B2 (en) Interfering near field transducer for energy assisted magnetic recording
US10553241B2 (en) Near-field transducer (NFT) for a heat assisted magnetic recording (HAMR) device
US8908482B1 (en) Sacrificial protection layer for preventing ion mill damage to HAMR optical components
US9378762B1 (en) Thermally-assisted magnetic recording head including a waveguide and two plasmon generators
US9099111B2 (en) Heat assisted magnetic recording head employing noble metal alloy as diffusion barrier layer
US20170047088A1 (en) Near-field transducer for heat assisted magnetic recording with trailing edge taper and side taper
JP2010152942A (ja) 磁気ヘッド及びその製造方法並びに磁気記録装置
CN102637442B (zh) 近场光产生元件的制造方法和近场光产生元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1190492

Country of ref document: HK

EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1190492

Country of ref document: HK

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200316

Address after: California, USA

Patentee after: Western Digital Technologies, Inc.

Address before: California, USA

Patentee before: Western Digital (Fremont), LLC

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20160622