CN103500920A - Pulse single-frequency operating 2.09 micron solid laser - Google Patents
Pulse single-frequency operating 2.09 micron solid laser Download PDFInfo
- Publication number
- CN103500920A CN103500920A CN201310475776.4A CN201310475776A CN103500920A CN 103500920 A CN103500920 A CN 103500920A CN 201310475776 A CN201310475776 A CN 201310475776A CN 103500920 A CN103500920 A CN 103500920A
- Authority
- CN
- China
- Prior art keywords
- total reflection
- laser
- reflection mirror
- mirror
- yag
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007787 solid Substances 0.000 title 1
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 238000002347 injection Methods 0.000 claims abstract description 18
- 239000007924 injection Substances 0.000 claims abstract description 18
- 238000002834 transmittance Methods 0.000 claims abstract description 13
- 238000005086 pumping Methods 0.000 claims abstract description 9
- 239000000835 fiber Substances 0.000 claims abstract description 8
- 239000013078 crystal Substances 0.000 claims description 46
- 230000008878 coupling Effects 0.000 claims description 35
- 238000010168 coupling process Methods 0.000 claims description 35
- 238000005859 coupling reaction Methods 0.000 claims description 35
- 239000000919 ceramic Substances 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 claims description 6
- 230000010355 oscillation Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 3
- 238000002310 reflectometry Methods 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 abstract description 3
- 230000001427 coherent effect Effects 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 abstract description 2
- 239000000463 material Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
一种脉冲单频运转的2.09微米固体激光器,涉及雷达的光源系统领域。本发明是为了解决现有2μm固体激光器输出激光透过率和转换效率低,且设备体积大的问题。本发明所述的一种脉冲单频运转的2.09微米固体激光器,选用LD泵浦的Tm,Ho:YAG激光器作为种子光源,光纤激光器泵浦的单掺Ho:YAG激光器作为振荡器,得到了单频脉冲2.09μm激光输出;同时本发明运用种子激光注入锁定技术,在调Q重复频率为100Hz时,获得单脉冲能量达到7.6mJ的2090.9nm单频脉冲激光输出;并且本发明全部采用固态器件,得到了全固态的激光器。本发明能够为差分吸收激光雷达和相干多普勒测风雷达提供适合的光源。
The invention discloses a 2.09 micron solid-state laser operating at a single pulse frequency, which relates to the field of radar light source systems. The invention aims to solve the problems of low output laser transmittance and conversion efficiency of the existing 2 μm solid-state laser and large equipment volume. The 2.09 micron solid-state laser of a kind of pulse single-frequency operation of the present invention selects the Tm of LD pumping, Ho:YAG laser as seed light source, the single-doped Ho of fiber laser pumping:YAG laser as oscillator, has obtained single frequency pulse 2.09μm laser output; at the same time, the present invention uses the seed laser injection locking technology to obtain a 2090.9nm single-frequency pulse laser output with a single pulse energy of 7.6mJ when the Q-switching repetition frequency is 100Hz; and the present invention uses all solid-state devices, An all-solid-state laser is obtained. The invention can provide a suitable light source for differential absorption lidar and coherent Doppler wind radar.
Description
技术领域technical field
本发明属于雷达的光源系统领域。The invention belongs to the field of radar light source systems.
背景技术Background technique
差分吸收激光雷达和相干多普勒测风雷达是实时测量气体成分和大气风场的有力工具,凭借较高的大气传输透过率,2μm种子注入单频脉冲固体激光器是上述激光雷达的高性能激光发射源。根据大气透过率谱,相同功率下波长越长的2μm激光的传输距离越远,越有利于增大激光雷达的测量距离。激光二极管,LD,直接泵浦的2μm固体激光装置具有结构紧凑、性能稳定及易于维护等的优点,非常适合于实际应用。LD泵浦的Tm\Ho掺杂材料是实现2μm输出的有效途径,主要有:(1)800nm左右LD泵浦单掺Tm材料;(2)1.9μm左右LD泵浦单掺Ho材料;(3)800nm左右LD泵浦Tm,Ho双掺材料。方法(1)由于其增益峰集中在1.9μm左右,难以得到大气透过率更高的2.1μm波长激光;方法(2)可以实现2.1μm波长激光输出,但是目前的1.9μm左右LD制作工艺不成熟,导致整个装置转换效率低、废热量大;方法(3)通常要使用低温制冷设备才能有效运转,不方便实际应用。Differential absorption lidar and coherent Doppler wind radar are powerful tools for real-time measurement of gas composition and atmospheric wind field. With high atmospheric transmission transmittance, 2μm seed injection single-frequency pulsed solid-state laser is the high performance of the above lidar Laser emission source. According to the atmospheric transmittance spectrum, the longer the wavelength of the 2 μm laser at the same power, the longer the transmission distance, which is more conducive to increasing the measurement distance of the lidar. Laser diodes, LDs, and directly pumped 2μm solid-state laser devices have the advantages of compact structure, stable performance, and easy maintenance, and are very suitable for practical applications. LD pumped Tm\Ho doped materials are an effective way to achieve 2μm output, mainly include: (1) LD pumped single-doped Tm materials around 800nm; (2) LD pumped single-doped Ho materials around 1.9μm; (3 ) 800nm or so LD pump Tm, Ho double-doped material. Method (1) is difficult to obtain 2.1 μm wavelength laser with higher atmospheric transmittance because its gain peak is concentrated at about 1.9 μm; method (2) can achieve 2.1 μm wavelength laser output, but the current 1.9 μm LD manufacturing process is not enough Mature, resulting in low conversion efficiency of the entire device, large waste heat; method (3) usually requires the use of low-temperature refrigeration equipment to operate effectively, which is inconvenient for practical application.
发明内容Contents of the invention
本发明是为了解决现有2μm固体激光器输出激光透过率和转换效率低的问题,现提供一种脉冲单频运转的2.09微米固体激光器。The present invention aims to solve the problem of low output laser transmittance and conversion efficiency of the existing 2 μm solid-state laser, and now provides a 2.09-micron solid-state laser with pulsed single-frequency operation.
一种脉冲单频运转的2.09微米固体激光器,它包括:Tm,Ho:YAG种子激光器、Ho:YAG脉冲激光器和注入锁频伺服系统;A 2.09-micron solid-state laser with pulsed single-frequency operation, which includes: Tm, Ho:YAG seed laser, Ho:YAG pulsed laser and injection-locked servo system;
所述Tm,Ho:YAG种子激光器包括:第一全反镜、Tm,Ho:YAG晶体、起偏元件、第一波长调谐元件、第二波长调谐元件、输出耦合镜和激光二极管;The Tm, Ho: YAG seed laser includes: a first total reflection mirror, a Tm, Ho: YAG crystal, a polarizing element, a first wavelength tuning element, a second wavelength tuning element, an output coupling mirror and a laser diode;
所述Ho:YAG脉冲激光器包括:2μm输出耦合镜、第一2μm全反镜、Ho:YAG晶体、第二2μm全反镜、第三2μm全反镜、声光调Q晶体和光纤激光器;The Ho:YAG pulsed laser includes: a 2 μm output coupling mirror, a first 2 μm total reflection mirror, a Ho:YAG crystal, a second 2 μm total reflection mirror, a third 2 μm total reflection mirror, an acousto-optic Q-switched crystal and a fiber laser;
激光二极管发出的LD泵浦光依次经过第一全反镜、Tm,Ho:YAG晶体、起偏元件、第一波长调谐元件、第二波长调谐元件和输出耦合镜透射出Tm,Ho:YAG种子激光器,Tm,Ho:YAG种子激光器输出的激光作为种子激光;The LD pump light emitted by the laser diode passes through the first total reflection mirror, Tm, Ho: YAG crystal, polarizer, first wavelength tuning element, second wavelength tuning element and output coupling mirror to transmit the Tm, Ho: YAG seed Laser, Tm,Ho:YAG seed laser output laser as seed laser;
2μm输出耦合镜13、第一2μm全反镜14、Ho:YAG晶体15、第二2μm全反镜16、第三2μm全反镜17和声光调Q晶体18构成了一个环形腔,2μm输出耦合镜将其接收到的种子激光透射到第一2μm全反镜上,第一2μm全反镜将该种子激光反射到Ho:YAG晶体的一端,光纤激光器发出的泵浦光透过第一2μm全反镜入射到Ho:YAG晶体的一端,Ho:YAG晶体的另一端输出的激励光经过第二2μm全反镜透射出Ho:YAG脉冲激光器,Ho:YAG晶体的另一端输出的种子激光入射到第二2μm全反镜上,第二2μm全反镜将该种子激光反射到第三2μm全反镜上,第三2μm全反镜将该种子激光分束为反射光和透射光,该反射光入射到声光调Q晶体中,该透射光经第三2μm全反镜透射出Ho:YAG脉冲激光器,声光调Q晶体输出的单频脉冲激光经过2μm输出耦合镜透射出Ho:YAG脉冲激光器;The 2 μm
注入锁频伺服系统的驱动端用于驱动第三2μm全反镜对其接收到的种子激光进行谐振扫描,注入锁频伺服系统的控制信号输出端连接声光调Q晶体的控制信号输入端。The driving end of the injection frequency-locking servo system is used to drive the third 2μm total mirror to perform resonant scanning on the received seed laser, and the control signal output end of the injection frequency-locking servo system is connected to the control signal input end of the acousto-optic Q-switching crystal.
它还包括:耦合系统,所述耦合系统包括:变换透镜、二分之一波片、光学隔离元件、第二全反镜、第三全反镜和变换透镜;It also includes: a coupling system comprising: a conversion lens, a half-wave plate, an optical isolation element, a second total reflection mirror, a third total reflection mirror and a conversion lens;
变换透镜将其接收到的种子激光依次通过二分之一波片和光学隔离元件透射到第二全反镜上,第二全反镜将该种子激光反射到第三全反镜上,第三全反镜将该种子激光反射到变换透镜上,变换透镜将该种子激光透射出耦合系统。The conversion lens transmits the seed laser light received by it to the second total reflection mirror through the half-wave plate and the optical isolation element in turn, and the second total reflection mirror reflects the seed laser light to the third total reflection mirror, and the third total reflection mirror The total reflection mirror reflects the seed laser light to the conversion lens, and the conversion lens transmits the seed laser light out of the coupling system.
所述注入锁频伺服系统包括:压电陶瓷、红外探测器和电学伺服系统;The injection frequency locking servo system includes: piezoelectric ceramics, an infrared detector and an electrical servo system;
压电陶瓷的驱动端作为注入锁频伺服系统的驱动端,压电陶瓷的驱动信号输入端连接电学伺服系统的驱动信号输出端,红外探测器用于探测第三2μm全反镜透射出的种子激光的谐振强度,红外探测器的电信号输出端连接电学伺服系统的电信号输入端,电学伺服系统的控制信号输出端作为注入锁频伺服系统的控制信号输出端。The driving end of the piezoelectric ceramic is used as the driving end of the injection frequency locking servo system, the driving signal input end of the piezoelectric ceramic is connected to the driving signal output end of the electrical servo system, and the infrared detector is used to detect the seed laser transmitted by the third 2μm full mirror The resonance strength of the infrared detector is connected to the electrical signal input end of the electrical servo system, and the control signal output end of the electrical servo system is used as the control signal output end of the frequency-locked servo system.
本发明所述的一种脉冲单频运转的2.09微米固体激光器,选用LD泵浦的Tm,Ho:YAG激光器作为种子光源,选用光纤激光器泵浦的单掺Ho:YAG激光器作为振荡器,得到了雷达系统所需要的单频脉冲2.09μm激光输出;同时本发明运用种子激光注入锁定技术,在调Q重复频率为100Hz时,获得单脉冲能量达到7.6mJ的2090.9nm单频脉冲激光输出,激光线宽为3.5MHz,脉冲宽度为132ns;并且本发明全部采用固态器件,得到了全固态的激光器。本发明所述的一种脉冲单频运转的2.09微米固体激光器能够为差分吸收激光雷达和相干多普勒测风雷达提供适合的光源。A kind of 2.09 micron solid-state laser with pulsed single-frequency operation according to the present invention selects Tm pumped by LD, Ho: YAG laser as the seed light source, selects single-doped Ho: YAG laser pumped by fiber laser as the oscillator, and obtains The single-frequency pulse 2.09μm laser output required by the radar system; at the same time, the present invention uses the seed laser injection locking technology to obtain a 2090.9nm single-frequency pulse laser output with a single pulse energy of 7.6mJ when the Q-switching repetition frequency is 100Hz, and the laser line The pulse width is 3.5MHz, and the pulse width is 132ns; and the present invention uses all solid-state devices to obtain an all-solid-state laser. The 2.09-micron solid-state laser with pulse single-frequency operation described in the present invention can provide a suitable light source for differential absorption lidar and coherent Doppler wind radar.
附图说明Description of drawings
图1是一种脉冲单频运转的2.09微米固体激光器的结构示意图。Figure 1 is a schematic diagram of the structure of a 2.09-micron solid-state laser operating at a pulsed single frequency.
具体实施方式Detailed ways
具体实施方式一:参照图1具体说明本实施方式,本实施方式所述的一种脉冲单频运转的2.09微米固体激光器,它包括:Tm,Ho:YAG种子激光器、Ho:YAG脉冲激光器和注入锁频伺服系统;Specific Embodiment 1: This embodiment is described in detail with reference to FIG. 1. A 2.09-micron solid-state laser operating at a pulsed single frequency described in this embodiment includes: Tm, Ho:YAG seed laser, Ho:YAG pulse laser and injection Frequency-locked servo system;
所述Tm,Ho:YAG种子激光器包括:第一全反镜1、Tm,Ho:YAG晶体2、起偏元件3、第一波长调谐元件4、第二波长调谐元件5、输出耦合镜6和激光二极管22;The Tm, Ho: YAG seed laser includes: a first total reflection mirror 1, a Tm, Ho: YAG crystal 2, a polarizing
所述Ho:YAG脉冲激光器包括:2μm输出耦合镜13、第一2μm全反镜14、Ho:YAG晶体15、第二2μm全反镜16、第三2μm全反镜17、声光调Q晶体18和光纤激光器23;The Ho:YAG pulse laser includes: 2 μm
激光二极管22发出的LD泵浦光依次经过第一全反镜1、Tm,Ho:YAG晶体2、起偏元件3、第一波长调谐元件4、第二波长调谐元件5和输出耦合镜6透射出Tm,Ho:YAG种子激光器,Tm,Ho:YAG种子激光器输出的激光作为种子激光;The LD pumping light emitted by the
2μm输出耦合镜13、第一2μm全反镜14、Ho:YAG晶体15、第二2μm全反镜16、第三2μm全反镜17和声光调Q晶体18构成了一个环形腔,2μm输出耦合镜13将其接收到的种子激光透射到第一2μm全反镜14上,第一2μm全反镜14将该种子激光反射到Ho:YAG晶体15的一端,光纤激光器23发出的泵浦光透过第一2μm全反镜14入射到Ho:YAG晶体15的一端,Ho:YAG晶体15的另一端输出的激励光经过第二2μm全反镜16透射出Ho:YAG脉冲激光器,Ho:YAG晶体15的另一端输出的种子激光入射到第二2μm全反镜16上,第二2μm全反镜16将该种子激光反射到第三2μm全反镜17上,第三2μm全反镜17将该种子激光分束为反射光和透射光,该反射光入射到声光调Q晶体18中,该透射光经第三2μm全反镜17透射出Ho:YAG脉冲激光器,声光调Q晶体18输出的单频脉冲激光经过2μm输出耦合镜13透射出Ho:YAG脉冲激光器;The 2 μm
注入锁频伺服系统的驱动端用于驱动第三2μm全反镜17对其接收到的种子激光进行谐振扫描,注入锁频伺服系统的控制信号输出端连接声光调Q晶体18的控制信号输入端。The driving end of the injection frequency-locking servo system is used to drive the third 2 μm
起偏元件3能够保证Tm,Ho:YAG种子激光器输出的种子激光为线偏振激光;第一波长调谐元件4和第二波长调谐元件5能够限制Tm,Ho:YAG种子激光器输出的种子激光为单纵模激光。The polarizing
具体实施方式二:本实施方式是对具体实施方式一所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,它还包括:耦合系统,所述耦合系统包括:变换透镜7、二分之一波片8、光学隔离元件9、第二全反镜10、第三全反镜11和变换透镜12;Embodiment 2: This embodiment is a further description of the 2.09-micron solid-state laser operating at a pulsed single frequency described in Embodiment 1. In this embodiment, it also includes: a coupling system, and the coupling system includes:
变换透镜7将其接收到的种子激光依次通过二分之一波片8和光学隔离元件9透射到第二全反镜10上,第二全反镜10将该种子激光反射到第三全反镜11上,第三全反镜11将该种子激光反射到变换透镜12上,变换透镜12将该种子激光透射出耦合系统。The
具体实施方式三:本实施方式是对具体实施方式一所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,所述注入锁频伺服系统包括:压电陶瓷19、红外探测器20和电学伺服系统21;Specific embodiment three: This embodiment is a further description of the 2.09-micron solid-state laser with pulsed single-frequency operation described in specific embodiment one. In this embodiment, the injection frequency-locked servo system includes:
压电陶瓷19的驱动端作为注入锁频伺服系统的驱动端,压电陶瓷19的驱动信号输入端连接电学伺服系统21的驱动信号输出端,红外探测器20用于探测第三2μm全反镜17透射出的种子激光的谐振强度,红外探测器20的电信号输出端连接电学伺服系统21的电信号输入端,电学伺服系统21的控制信号输出端作为注入锁频伺服系统的控制信号输出端。The driving end of the
红外探测器20将其探测到的种子激光谐振强度转换为电信号,并将该电信号发送给电学伺服系统21,电学伺服系统21将该电信号进行放大和整形,然后向声光调Q晶体18发送控制信号,实现Ho:YAG单频脉冲激光振荡。The
具体实施方式四:本实施方式是对具体实施方式二所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,第一全反镜1的入射面、Tm,Ho:YAG晶体2的两面、第二全反镜10的反射面和第三全反镜11的反射面均镀有对LD泵浦光透过率大于99.5%且振荡光反射率大于99.7%的介质膜。Embodiment 4: This embodiment is to further illustrate the 2.09 micron solid-state laser of a kind of pulsed single-frequency operation described in Embodiment 2. In this embodiment, the incident surface, Tm, and Ho of the first total reflection mirror 1 The two sides of the YAG crystal 2, the reflection surface of the second
具体实施方式五:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,2μm输出耦合镜13、第一2μm全反镜14、Ho:YAG晶体15、第二2μm全反镜16、第三2μm全反镜17和声光调Q晶体18构成的环形腔的物理长度为2.8m。Specific embodiment five: This embodiment is a further description of a 2.09 micron solid-state laser operating at a pulsed single frequency as described in specific embodiment one, two or three. In this embodiment, the 2 μm
具体实施方式六:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,输出耦合镜6对震荡光的透过率为2%,输出耦合镜6的入射面镀有LD泵浦光透过率大于99.5%的介质膜。Specific embodiment six: This embodiment is a further description of a 2.09 micron solid-state laser operating at a pulsed single frequency described in specific embodiment one, two or three. In this embodiment, the transmission of the
具体实施方式七:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,2μm输出耦合镜13为曲率半径为1000mm的平凹镜,2μm输出耦合镜13的凹面镀有对振荡光透过率为18%的介质膜。Specific embodiment seven: this embodiment is a further description of a 2.09 micron solid-state laser with pulsed single-frequency operation described in specific embodiment one, two or three. In this embodiment, the 2 μm
具体实施方式八:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,第一2μm全反镜14的反射面、第二2μm全反镜16的反射面和第三2μm全反镜17凹面均镀有对LD泵浦光透过率大于99.5%且振荡光反射率大于99.7%的介质膜。Embodiment 8: This embodiment is a further description of a 2.09 micron solid-state laser with a pulsed single-frequency operation described in
具体实施方式九:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,第三2μm全反镜17为曲率半径为1000mm的平凹镜。Specific Embodiment Nine: This embodiment is a further description of a 2.09 micron solid-state laser with pulsed single-frequency operation described in
具体实施方式十:本实施方式是对具体实施方式一、二或三所述的一种脉冲单频运转的2.09微米固体激光器作进一步说明,本实施方式中,激光二极管22的波长为785nm。Embodiment 10: This embodiment is a further description of the 2.09 micron solid-state laser with pulsed single-frequency operation described in
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310475776.4A CN103500920A (en) | 2013-10-14 | 2013-10-14 | Pulse single-frequency operating 2.09 micron solid laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310475776.4A CN103500920A (en) | 2013-10-14 | 2013-10-14 | Pulse single-frequency operating 2.09 micron solid laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103500920A true CN103500920A (en) | 2014-01-08 |
Family
ID=49866102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310475776.4A Pending CN103500920A (en) | 2013-10-14 | 2013-10-14 | Pulse single-frequency operating 2.09 micron solid laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103500920A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104022438A (en) * | 2014-06-25 | 2014-09-03 | 哈尔滨工业大学 | 2-micron pulse single-frequency laser device based on Tm:YAG ceramic material |
CN104158083A (en) * | 2014-09-10 | 2014-11-19 | 哈尔滨工业大学 | Single-doped Ho:YAG tunable single longitudinal mode laser on basis of torsional mode technology |
CN104158084A (en) * | 2014-09-10 | 2014-11-19 | 哈尔滨工业大学 | Single-doped Ho:YAG single longitudinal mode laser transmitting device on basis of F-P (Fabry-Perot) etalon |
CN109950778A (en) * | 2019-03-29 | 2019-06-28 | 中国空间技术研究院 | An end-pumped injection-locked single-frequency pulsed slab laser device |
CN113540944A (en) * | 2021-07-19 | 2021-10-22 | 哈尔滨工业大学 | 2.1-micrometer waveband single-pulse self-starting polarization-maintaining 9-shaped cavity mode-locking holmium-doped fiber laser |
CN114122879A (en) * | 2022-01-25 | 2022-03-01 | 中国工程物理研究院激光聚变研究中心 | Self-injection single longitudinal mode Q-switched laser |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305334A (en) * | 1992-12-16 | 1994-04-19 | Litton Systems, Inc. | Pulsed solid state ring laser injection locking stabilizer |
CN101697398A (en) * | 2009-10-29 | 2010-04-21 | 哈尔滨工程大学 | Common output mirror thulium and holmium co-doped yttrium lithium fluoride single-frequency pulse laser for master and slave laser purpose |
-
2013
- 2013-10-14 CN CN201310475776.4A patent/CN103500920A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305334A (en) * | 1992-12-16 | 1994-04-19 | Litton Systems, Inc. | Pulsed solid state ring laser injection locking stabilizer |
CN101697398A (en) * | 2009-10-29 | 2010-04-21 | 哈尔滨工程大学 | Common output mirror thulium and holmium co-doped yttrium lithium fluoride single-frequency pulse laser for master and slave laser purpose |
Non-Patent Citations (2)
Title |
---|
H.FUKUOKA ET AL.: "Injection Seeded Tm:Ho:YLF Laser", 《PROC.SPIE》 * |
鞠有伦等: "Tm,Ho:YAP种子注入激光多普勒测速实验", 《红外与激光工程》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104022438A (en) * | 2014-06-25 | 2014-09-03 | 哈尔滨工业大学 | 2-micron pulse single-frequency laser device based on Tm:YAG ceramic material |
CN104158083A (en) * | 2014-09-10 | 2014-11-19 | 哈尔滨工业大学 | Single-doped Ho:YAG tunable single longitudinal mode laser on basis of torsional mode technology |
CN104158084A (en) * | 2014-09-10 | 2014-11-19 | 哈尔滨工业大学 | Single-doped Ho:YAG single longitudinal mode laser transmitting device on basis of F-P (Fabry-Perot) etalon |
CN109950778A (en) * | 2019-03-29 | 2019-06-28 | 中国空间技术研究院 | An end-pumped injection-locked single-frequency pulsed slab laser device |
CN113540944A (en) * | 2021-07-19 | 2021-10-22 | 哈尔滨工业大学 | 2.1-micrometer waveband single-pulse self-starting polarization-maintaining 9-shaped cavity mode-locking holmium-doped fiber laser |
CN114122879A (en) * | 2022-01-25 | 2022-03-01 | 中国工程物理研究院激光聚变研究中心 | Self-injection single longitudinal mode Q-switched laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103500920A (en) | Pulse single-frequency operating 2.09 micron solid laser | |
CN106711745A (en) | Wide-tuning and narrow-linewidth nanosecond pulse double-resonance medium-infrared parameter oscillator | |
CN112993727B (en) | Intermediate infrared differential dual-wavelength laser based on multi-period Nd-MgO-PPLN servo matching control | |
CN103779776B (en) | Seed injection single-frequency pulse laser based on tunable cavity length of electro-optical crystal | |
CN101572380B (en) | 2.12 micron mode-locked laser | |
CN106856292A (en) | The mu m waveband pure-tone pulse optical parametric oscillator of injection seeded 2 based on heterodyne beat locking | |
CN102946047A (en) | Seed injection single frequency optical parametric oscillator | |
CN107482425A (en) | A laser pump source with high repetition rate, single longitudinal mode, and narrow pulse width of 2.79um | |
CN207753292U (en) | Two-frequency laser | |
CN102842849A (en) | High power 3 mum -5mum wave band solid laser of optical fiber laser pump | |
CN103474872A (en) | Single longitudinal mould Ho:YAP solid laser generator for pulse operation | |
CN104503183A (en) | Self-frequency-conversion terahertz parametric oscillator | |
CN103368053B (en) | A kind of pure-tone pulse 1645nm solid state laser of LD pumping | |
CN107611760A (en) | A kind of torsional pendulum chamber pure-tone pulse laser | |
CN1897370A (en) | 2 mu m bonded monoblock and non-planar longitudinal-mode laser | |
CN108155550A (en) | A kind of ring oscillator for obtaining high repetition frequency injection locking pure-tone pulse | |
CN105470793A (en) | Device and method for achieving stable dual-frequency laser output by using etalon and electro-optical crystal | |
CN102842842B (en) | High-power narrow-linewidth 1.94mum Tm: YLF (Yttrium Lithium Fluoride) laser | |
CN111224311A (en) | Hundred-nanosecond-level fast-switching dual-wavelength Raman laser | |
CN101272029A (en) | All-solid-state mid-infrared optical parametric difference-frequency laser | |
CN203895739U (en) | Device used for generating high-mean-power quasi-continuous pulse green laser | |
CN208241070U (en) | THz wave oscillator | |
Li et al. | Continuous wave and AO Q-switch operation of a b-cut Tm, Ho: YAP laser with dual wavelengths pumped by a laser diode of 792 nm | |
CN102801098A (en) | Pulsed laser and method for controlling same | |
CN103500919A (en) | LD (Laser Disc) pumping pulse single-frequency Tm, Ho:YAP solid laser based on injection locking mode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140108 |