CN103482728A - Desalination technology for utilizing microbial fuel cell to drive capacitive deionization - Google Patents

Desalination technology for utilizing microbial fuel cell to drive capacitive deionization Download PDF

Info

Publication number
CN103482728A
CN103482728A CN201310467063.3A CN201310467063A CN103482728A CN 103482728 A CN103482728 A CN 103482728A CN 201310467063 A CN201310467063 A CN 201310467063A CN 103482728 A CN103482728 A CN 103482728A
Authority
CN
China
Prior art keywords
fuel cell
microbial fuel
energy
capacitive deionization
microbiological fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310467063.3A
Other languages
Chinese (zh)
Inventor
冯翠杰
于昌平
侯嘉洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Urban Environment of CAS
Original Assignee
Institute of Urban Environment of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Environment of CAS filed Critical Institute of Urban Environment of CAS
Priority to CN201310467063.3A priority Critical patent/CN103482728A/en
Publication of CN103482728A publication Critical patent/CN103482728A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

Belonging to the technical field of environmental protection, the invention discloses a new desalination method integrating wastewater treatment, microbial electricity generation, energy recovery and treatment of ion-containing aqueous solutions. The desalination method involved in the invention mainly employs a microbial fuel cell operating in a continuous flow mode to provide continuous and steady voltage, and applies the power supply to a capacitive deionization device so as to achieve effective removal of salt ions from wastewater. The invention aims to provide a low energy consumption method that can achieve continuous deionization so as to further enhance the recyclability of microbial fuel cell energy recovered from wastewater and reduce energy consumption.

Description

A kind of desalting technology that utilizes microbiological fuel cell to drive capacitive deionization
Technical field
The invention belongs to a kind of new methods that collects wastewater treatment, electricity generation by microorganism, energy recovery and process the low ion concns aqueous solution of environmental protection technical field.Specifically, in conjunction with microbiological fuel cell and capacitive deionization technology advantage separately, reach the method for organic carbon in effective removal waste water, electrogenesis, less energy-consumption removal lower concentration ion.
Background technology
Microbiological fuel cell (Microbial fuel cell, MFC) is to utilize microorganism as catalyzer as a kind of new wastewater processing technology, and the organic matter transformed in waste water produces electric energy and reaches the purpose of removing pollutent simultaneously.The about 0.8V of open circuit voltage (Clauwaert et al., 2008 of current MFC; Logan, 2009; Logan and Rabaey 2012).If utilize MFCs to process waste water, can not only can also reclaim the energy by degradable organic pollutant, this is undoubtedly the innovation to existing sewage disposal theory, and has immeasurable development potentiality.In the past few years, for the production capacity efficiency researcher that promotes MFCs, taked a lot of measures, the MFCs power density is from 11 initial W m -3be increased to 4000 W m -3(Logan, 2008; Biffinger et al., 2009).But because its output rating is lower, not only reduced its efficiency limitations, among others that reclaims the energy from waste water its apply in practice may.In fact, only have at present a kind of MFC(to drive seabed installation to supervise online environmental parameter as power supply) can utilize settling to produce electric energy, and produced electric energy is applied to reality (Tender et al., 2008).Therefore, how to utilize the lower energy to become a difficult problem urgently to be resolved hurrily.
Capacitive deionization (Capacitive deionization, CDI) be a kind of electro-chemical water treatment technology that utilizes the electro-adsorption process to remove the water intermediate ion, its ultimate principle is to force ion is moved to the electrode with opposite charges by applying electrostatic field (voltage is usually less than 1.2 V), thereby is removed.Use the carbon material that specific surface area is large, conductivity is good, as carbon aerogels (specific surface area 400 ~ 1100 m 2g – 1bET; Resistivity<40 m Ω cm) etc., when making electrode and being placed in electrostatic field, electrode and electrolyte solution interface can form electrostatic double layer (thickness only has 1 ~ 10 nm), can attract a large amount of electrolyte ions, and store certain energy.The CDI technology has simple and convenient operation and maintenance, non-secondary pollution, cost is low, efficiency is high, energy consumption is hanged down advantage (Famer et al., 1996 such as reaching the tool reversibility; Anderson et al., 2010).It has wide range of applications, comprise that family and process water are softening, purification of waste water, sea water desalinization, water-soluble radwaste are processed, the nuclear power power plant effluent is processed, preparation of high-purity water and agricultural irrigation water deionization etc. (Yin Guangjun etc., 2003) in semiconductor machining.The research of (2005) such as Welgemoed and Schutte shows, is processing 1.0 ~ 0.01 gL – 1saline experiment in, the energy consumption of CDI only has 0.13 ~ 0.59 kWhm – 3.(2.03 kWhm are analysed in this and the electrolysis of conventional deionization technology – 3) and reverse osmosis (2.25 kWhm – 3) compare, there is clear superiority.
Can process waste water and electric energy is provided based on MFC, CDI only need just can remove or reduce the characteristics of solution ion concentration less than the voltage of 1.2 V simultaneously, and investigators have proposed MFC the coupling deionized idea of CDI (Forrestal et al., 2012 recently; Yuan et al., 2012).Yuan etc. (2012) utilize a batch stream H type MFC to drive CDI to remove aqueous solution ion as external power source, and (NaCl concentration is 60 mg L – 1), studied desalting effect and the attached performance of desorption of this system.
The present invention is intended to invent a kind of desalting technology that utilizes microbiological fuel cell to drive capacitive deionization (being called for short MFC-CDI), and this technology is a kind ofly just can stablize desalination, scrubbing without additional electric energy, simple and easy-operating new type water treatment technology.Special feature is to adopt the operational mode of Continuous Flow, and therefore can be CDI provides comparatively stable voltage, reaches the effect of stablizing desalination, without the desorption phenomenon.
Summary of the invention
MFC-CDI system deionization process
Related coupling deionization system of the present invention comprises microbiological fuel cell (power supply provides unit) and capacitive deionization (electro-adsorption unit), its principle is: in MFC Anodic chamber, the electrogenesis microorganism of electrodes utilizes organism in waste water to produce electric energy, by external circuit, anode and two electrodes of negative electrode is connected to the activated carbon electrodes (as shown in Figure 1) of CDI device.
Power supply provides unit: microbial fuel cell unit
It is without film MFC that power supply provides unit, and this device utilizes baffle plate from left and right, reactive tank to be divided into to three reaction chambers: water inlet anaerobic zone (anode), an aerobic zone (negative electrode) and an inner clarifying area.Three parts are separated by baffle plate, and two upright openings are opened and on the baffle plate of negative electrode and anode, can be allowed effluent stream through system.
Electro-adsorption unit: capacitor deionizing instrument
The CDI device is comprised of a pair of activated carbon electrodes.Capacitor deionizing instrument is comprised of a pair of activated carbon electrodes, between two electrodes, keeps certain distance, so that solution passes through smoothly.
The accompanying drawing explanation
Accompanying drawing is a kind of desalting technology basic design drawing that utilizes microbiological fuel cell to drive capacitive deionization of the present invention.
Embodiment
Embodiment 1: it is 550 mg/L that the artificial wastewater is mainly contained chemical oxygen demand (COD) (COD) concentration, ammonia nitrogen 30 mg/L, total phosphorus content 6 mg/L and trace element.Microbial fuel cell wastewater treatment system is 3.0 days in the water conservancy residence time, and the lower operation of long sludge retention time (mud is not discarded).CDI device required voltage is provided by MFC.In every batch of experiment, the cumulative volume of electrolytic solution is 50 mL, via peristaltic pump with 0.84 mLmin – 1flow velocity constantly circulation pump in the CDI device.Two MFCs(of take are denoted as respectively MFC1 and MFC2) running parallel as CDI provides power supply.The OCP of MFC1 and MFC2 is respectively 0.90 ± 0.01 V and 0.85 ± 0.05 V, and output voltage is respectively 0.37 ± 0.10 V and 0.36 ± 0.15 V.Contrast three kinds of different MFCs mode of connection (single MFC, two MFCs series, parallel) and find, output voltage the highest (0.63 V) while being connected in parallel, the NaCl clearance surpasses 60%.When concentration of electrolyte is followed successively by 50 mgL – 1, 100 mgL – 1with 150 mgL – 1the time, the electro-adsorption capacity is respectively 150 μ gg – 1, 346 μ gg – 1with 295 μ gg – 1.Result of study shows the MFC-CDI technology, can from waste water, reclaim the energy, and can realize deionization, is a very potential power-saving technology.

Claims (4)

1. a desalting technology that utilizes microbiological fuel cell driving capacitive deionization, realize that pollution is controlled, the recovery energy also can be by the emerging Sewage treatment systems of reusing of energy source; Reaction unit of the present invention consists of microbial fuel cells system and capacitive deionization system, by external circuit, both is connected; Wherein microbial fuel cells system adopts the Continuous Flow operational mode, possesses the characteristics of disposing of sewage simultaneously and can produce stabilized voltage, sustainablely provides the required voltage of desalination for capacitor deionizing instrument.
2. require described power supply generator according to right 1, it is characterized in that microbiological fuel cell utilizes baffle plate that reactive tank is divided into to three reaction chambers successively: anaerobic zone (anolyte compartment), aerobic zone (cathode compartment) and clarifying chamber, its material is synthetic glass; This device is different from traditional microbiological fuel cell configuration, with having replaced expensive with foraminate baffle plate and being prone to traditional proton exchange membrane of membrane pollution problem, therefore can realize the Continuous Flow operational mode, can produce stable voltage; The configuration of this system and A/O technique approach, and can come into operation in practice.
3. require described deionizer according to right 1, it is characterized in that capacitor deionizing instrument is comprised of a pair of activated carbon electrodes; The electro-adsorption unit comprises: resin glass lid, titanium plate, activated carbon electrodes, rubber sheet gasket (with aperture), hollow resin glass; The material of activated carbon electrodes can be: carbon aerosol, carbon cloth, gac etc. have adsorptive power and conductive absorbent charcoal material; And the source of Powdered Activated Carbon comprises carbon nanotube, coconut husk, coal, timber etc. than horn of plenty.
4. innovate the coupling desalting technology for one kind, according to the described method of right 1, it is characterized in that utilizing microbiological fuel cell to process waste water, and utilize microorganism to transfer the chemical energy in waste water to electric energy as catalyzer, then institute's electrogenesis is pressed and put on capacitor deionizing instrument to process containing solion, reach the purpose of advanced treatment of waste water; Such design has solved the problem that the microbiological fuel cell output rating is low, the recovery electric energy is difficult to recycling to a certain extent.
CN201310467063.3A 2013-10-10 2013-10-10 Desalination technology for utilizing microbial fuel cell to drive capacitive deionization Pending CN103482728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310467063.3A CN103482728A (en) 2013-10-10 2013-10-10 Desalination technology for utilizing microbial fuel cell to drive capacitive deionization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310467063.3A CN103482728A (en) 2013-10-10 2013-10-10 Desalination technology for utilizing microbial fuel cell to drive capacitive deionization

Publications (1)

Publication Number Publication Date
CN103482728A true CN103482728A (en) 2014-01-01

Family

ID=49823398

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310467063.3A Pending CN103482728A (en) 2013-10-10 2013-10-10 Desalination technology for utilizing microbial fuel cell to drive capacitive deionization

Country Status (1)

Country Link
CN (1) CN103482728A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106784951A (en) * 2016-12-28 2017-05-31 烟台大学 A kind of device and method of tubular biological-cathode microbiological desalination fuel cell desalination
CN106946351A (en) * 2017-03-31 2017-07-14 浙江工业大学 A kind of self power generation micro-current organic matter degradation device and its application
CN107445253A (en) * 2017-08-09 2017-12-08 南京大学 Resin compounded activated carbon two-layer electrode, preparation method and applications
CN108339846A (en) * 2018-01-18 2018-07-31 青岛科技大学 Fuel cell handles the system and method that organic wastewater synchronizes repairing heavy metal in soil
US10388977B2 (en) * 2016-03-31 2019-08-20 South Dakota Board Of Regents Generation of electricity and other value-added products from culled tomatoes in microbially catalyzed electrochemical systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110176A1 (en) * 2007-03-12 2008-09-18 Danmarks Tekniske Universitet (Technical University Of Denmark) Microbial fuel cell
US7695834B1 (en) * 2008-10-15 2010-04-13 Ut-Battelle, Llc Microbial fuel cell with improved anode
CN101800327A (en) * 2010-04-08 2010-08-11 刘忠毅 Microbial fuel cell and power generation device with same
CN102557200A (en) * 2010-12-13 2012-07-11 中国科学院城市环境研究所 Novel film aeration and microbial fuel cell wastewater treatment system
CN102603039A (en) * 2012-01-19 2012-07-25 清华大学 Coupling desalination method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008110176A1 (en) * 2007-03-12 2008-09-18 Danmarks Tekniske Universitet (Technical University Of Denmark) Microbial fuel cell
US7695834B1 (en) * 2008-10-15 2010-04-13 Ut-Battelle, Llc Microbial fuel cell with improved anode
CN101800327A (en) * 2010-04-08 2010-08-11 刘忠毅 Microbial fuel cell and power generation device with same
CN102557200A (en) * 2010-12-13 2012-07-11 中国科学院城市环境研究所 Novel film aeration and microbial fuel cell wastewater treatment system
CN102603039A (en) * 2012-01-19 2012-07-25 清华大学 Coupling desalination method and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10388977B2 (en) * 2016-03-31 2019-08-20 South Dakota Board Of Regents Generation of electricity and other value-added products from culled tomatoes in microbially catalyzed electrochemical systems
CN106784951A (en) * 2016-12-28 2017-05-31 烟台大学 A kind of device and method of tubular biological-cathode microbiological desalination fuel cell desalination
CN106784951B (en) * 2016-12-28 2019-06-14 烟台大学 A kind of device and method of tubular biological-cathode microbiological desalination fuel cell desalination
CN106946351A (en) * 2017-03-31 2017-07-14 浙江工业大学 A kind of self power generation micro-current organic matter degradation device and its application
CN107445253A (en) * 2017-08-09 2017-12-08 南京大学 Resin compounded activated carbon two-layer electrode, preparation method and applications
CN108339846A (en) * 2018-01-18 2018-07-31 青岛科技大学 Fuel cell handles the system and method that organic wastewater synchronizes repairing heavy metal in soil

Similar Documents

Publication Publication Date Title
CN104150681B (en) A kind of microorganism nitrogen phosphorus for water treatment reclaims cell reaction device
CN102786174B (en) Seawater desalination device and method thereof
CN102674632B (en) Garbage leachate zero-emission reuse treatment method
US6462935B1 (en) Replaceable flow-through capacitors for removing charged species from liquids
CN204727706U (en) A kind of film electrical coupling system of Sewage advanced treatment
CN102701337B (en) Method and reactor for removing organic matters by enzyme electrode coupled electroflocculation
Liu et al. Continuous electrochemical oxidation of methyl orange waste water using a three-dimensional electrode reactor
CN103936106B (en) Electrochemical synchronous nitrogen and phosphorus removal apparatus and municipal sewage treatment method
CN103803683B (en) A kind of nano-titanium carburizing electrode capactitance deionizer
CN103482728A (en) Desalination technology for utilizing microbial fuel cell to drive capacitive deionization
CN102329007A (en) Microbial desalting cell (MDC)
CN102603039A (en) Coupling desalination method and device
CN104944646A (en) Wastewater advanced treatment method coupling membrane and electricity
Khan et al. Performance of the salt bridge based microbial fuel cell
CN101696069B (en) Ultra advanced treatment method and device for sewage
Sivasubramanian et al. Capacitive deionization and electrosorption techniques with different electrodes for wastewater treatment applications
CN202610083U (en) Device for removing heavy metal from sludge in coupled film separating technology and electrokinetic technology
Saleem et al. Performance optimization of integrated electrochemical capacitive deionization and reverse electrodialysis model through a series pass desorption process
CN106571498B (en) Molybdenum tin method is separated and recovered from from molybdenum stannic acid mixed salt solution using microbiological fuel cell
CN105836879A (en) An anaerobic electrically-conductive ceramic membrane biological reacting device effectively controlling membrane pollution and a method
CN105417845A (en) Treating device and method for rubbish infiltration membrane concentrated solution
CN117585802A (en) Fermentation antibiotic pharmaceutical wastewater treatment, ammonia nitrogen recovery and hydrogen production method
CN202465430U (en) Seawater desalination device
CN202610073U (en) Processing apparatus of garbage percolating liquid
CN115676973B (en) High-concentration complex wastewater treatment and resource recovery system and working method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140101