CN103472728A - 机器学习的农药焚烧炉有害物排放达标控制系统及方法 - Google Patents
机器学习的农药焚烧炉有害物排放达标控制系统及方法 Download PDFInfo
- Publication number
- CN103472728A CN103472728A CN2013104336977A CN201310433697A CN103472728A CN 103472728 A CN103472728 A CN 103472728A CN 2013104336977 A CN2013104336977 A CN 2013104336977A CN 201310433697 A CN201310433697 A CN 201310433697A CN 103472728 A CN103472728 A CN 103472728A
- Authority
- CN
- China
- Prior art keywords
- training sample
- cod
- sigma
- incinerator
- fuzzy group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Feedback Control In General (AREA)
Abstract
本发明公开了一种机器学习的农药焚烧炉有害物排放达标控制系统及方法。它包括焚烧炉、智能仪表、DCS系统、数据接口以及上位机;DCS系统包括控制站和数据库;用于测量易测变量的智能仪表与DCS系统连接,DCS系统通过数据接口与上位机连接。上位机首先对训练样本进行预处理和模糊化,获得新的输入矩阵,然后采用最小二乘支持向量机对新的输入矩阵建立回归模型,获得预测输出,最后对最小二乘支持向量机的输出进行反模糊化,获得系统的输出;上位机还对模型进行判别更新和对结果进行显示。本发明具有在线测量COD、有效监测COD是否超标、控制COD排放达标、泛化能力强、所需样本数少、计算速度快等优点。
Description
技术领域
本发明涉及农药生产领域,尤其涉及一种机器学习的农药焚烧炉有害物排放达标控制系统及方法。
背景技术
我国是农药生产和使用大国,农药生产企业已达4100家左右,其中原药生产企业为500多家,国家农业部统计数据显示2008年1~11月农药总产量达171.1万吨。我国农药品种结构的不合理性更加大了环境治理的难度。据不完全统计,全国农药工业每年排放的废水约为15亿吨。其中,处理达标的仅占已处理的1%。焚烧法是目前处理农药残液和废渣最有效、彻底、应用最普遍的方法。焚烧后废水的化学耗氧量(COD)是农药废液焚烧有害物排放的最重要指标,但是其无法在线测量,离线测量一次需要四五个小时,无法及时反映工况变化和指导实际生产。因此,在实际焚烧过程中,COD严重超标。
发明内容
为了克服已有的焚烧炉过程COD无法在线测量、COD严重超标的不足,本发明提供一种机器学习的农药焚烧炉有害物排放达标控制系统及方法,其具有在线测量COD、有效监测COD是否超标、控制COD排放达标、泛化能力强、所需样本数少、计算速度快等优点。
本发明解决其技术问题所采用的技术方案是:
机器学习的农药焚烧炉有害物排放达标控制系统,包括与农药生产废液焚烧炉连接的现场智能仪表、DCS系统以及上位机,所述的DCS系统包括控制站和数据库;所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,所述的上位机包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、COD和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
其中func(μik)为隶属度值μik的变形函数,一般取exp(μik)等,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,而γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
作为优选的一种方案:所述的上位机还包括:判别模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。
进一步,所述的上位机还包括:结果显示模块,用于将COD预报值和使COD排放达标的操作变量值传给DCS系统,并在DCS的控制站显示过程状态,同时通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。信号采集模块,用于依照设定的每次采样的时间间隔,从数据库中采集数据。
再进一步,所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
所述的农药焚烧炉有害物排放达标控制系统实现的有害物排放达标控制方法,所述的控制方法具体实现步骤如下:
1)、对农药生产废液焚烧炉化学耗氧量排放过程对象,根据工艺分析和操作分析,确定所用的关键变量,从DCS数据库中采集生产正常时所述变量的数据作为训练样本TX的输入矩阵,采集对应的COD和使COD排放达标的操作变量数据作为输出矩阵Y;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、COD和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)对从数据预处理模块传过来的训练样本,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
作为优选的一种方案:所述的方法还包括:4)按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据。
进一步,在所述的步骤3)中,将COD预报值和使COD排放达标的操作变量值传给DCS系统,并在DCS的控制站显示过程状态,同时通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。
再进一步,所述的关键变量包括进入焚烧炉的废液流量,进入焚烧炉的空气流量,进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
本发明的技术构思为:本发明提供一种机器学习的农药焚烧炉有害物排放达标控制系统及方法,寻找到使得COD排放达标的操作变量值。
本发明的有益效果主要表现在:1、建立了系统关键变量和化学耗氧量排放之间定量关系的在线软测量模型;2、迅速找到使得COD排放达标的操作条件。
附图说明
图1是本发明所提出的系统的硬件结构图;
图2是本发明所提出的上位机的功能结构图。
具体实施方式
下面结合附图对本发明作进一步描述。本发明实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。
实施例1
参照图1、图2,机器学习的农药焚烧炉有害物排放达标控制系统,包括与焚烧炉1连接的现场智能仪表2、DCS系统以及上位机6,所述DCS系统包括数据接口3、控制站5和数据库4,所述现场智能仪表2与数据接口3连接,所述数据接口与控制站5、数据库4和上位机6连接,所述的上位机6包括:
数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、COD和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
即为对应于标准化后的第i个训练样本Xi的COD预报值和使COD排放达标的操作变量值。
所述上位机6还包括:信号采集模块10,用于依照设定的每次采样的时间间隔,从数据库中采集数据;
所述的上位机6还包括:判别模型更新模块11,按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测COD与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。
所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
所述系统还包括DCS系统,所述的DCS系统由数据接口3、控制站5、数据库4构成;智能仪表2、DCS系统、上位机6通过现场总线依次相连;上位机6还包括结果显示模块9,用于将COD预报值和使COD排放达标的操作变量值传给DCS系统,并在DCS的控制站显示过程状态,同时通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。
当废液焚烧过程已配有DCS系统时,样本实时动态数据的检测、存储利用DCS系统的实时和历史数据库,得到COD预报值和使COD排放达标的操作变量值的功能主要在上位机上完成。
当废液焚烧过程没有配备DCS系统时,采用数据存储器来替代DCS系统的实时和历史数据库的数据存储功能,并将得到COD预报值和使COD排放达标的操作变量值的功能系统制造成包括I/O元件、数据存储器、程序存储器、运算器、显示模块几大构件的不依赖于DCS系统的一个独立的完整的片上系统,在不管焚烧过程是否配备DCS的情况下,都能够独立使用,更有益于推广使用。
实施例2
参照图1、图2,机器学习的农药焚烧炉有害物排放达标控制方法,所述控制方法具体实现步骤如下:
1)、对农药生产废液焚烧炉化学耗氧量排放过程对象,根据工艺分析和操作分析,确定所用的关键变量,从DCS数据库中采集生产正常时所述变量的数据作为训练样本TX的输入矩阵,采集对应的COD和使COD排放达标的操作变量数据作为输出矩阵Y;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、COD和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)对从数据预处理模块传过来的经过标准化后的训练样本,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
即为对应于标准化后的第i个训练样本Xi的COD预报值和使COD排放达标的操作变量值。
所述的方法还包括:4)、按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测COD与函数预报值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。
5)、在所述的步骤3)中,将COD预报值和使COD排放达标的操作变量传给DCS系统,并在DCS的控制站显示过程状态,同时通过DCS系统和现场总线将过程状态信息传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。
所述的关键变量包括进入焚烧炉的废液流量,进入焚烧炉的空气流量,进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
Claims (2)
1.一种机器学习的农药焚烧炉有害物排放达标控制系统,包括与农药焚烧炉连接的现场智能仪表、DCS系统以及上位机,所述的DCS系统包括控制站和数据库;所述现场智能仪表与DCS系统连接,所述DCS系统与上位机连接,其特征在于:所述的上位机包括:数据预处理模块,用于将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化:
计算均值:
计算方差:
标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、化学耗氧量(COD)和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。模糊方程模块,对从数据预处理模块传过来的标准化后的训练样本X,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
所述的上位机还包括:判别模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数计算值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标的新数据加入训练样本数据,更新模型。结果显示模块,用于将COD预报值和使COD排放达标的操作变量值传给DCS系统,在DCS的控制站显示,并通过DCS系统和现场总线传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。信号采集模块,用于依照设定的每次采样的时间间隔,从数据库中采集数据。
所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
2.一种用如权利要求1所述的机器学习的农药焚烧炉有害物排放达标控制系统实现的控制方法,其特征在于:所述方法具体实现步骤如下:
1)、对农药生产废液焚烧炉有害物排放过程对象,根据工艺分析和操作分析,确定所用的关键变量,从DCS数据库中采集生产正常时所述变量的数据作为训练样本TX的输入矩阵,采集对应的COD和使COD排放达标的操作变量数据作为输出矩阵Y;
2)、将从DCS数据库输入的模型训练样本进行预处理,对训练样本中心化,即减去样本的平均值,然后对其进行标准化,使得其均值为0,方差为1。该处理采用以下算式过程来完成:
2.1)计算均值:
2.2)计算方差:
2.3)标准化:
其中,TXi为第i个训练样本,是从DCS数据库中采集的生产正常时的关键变量、COD和相应的使COD排放达标时的操作变量的数据,N为训练样本数,为训练样本的均值,X为标准化后的训练样本。σx表示训练样本的标准差,σ2 x表示训练样本的方差。
3)对从数据预处理模块传过来的训练样本,进行模糊化。设模糊方程系统中有c*个模糊群,模糊群k、j的中心分别为vk、vj,则标准化后的第i个训练样本Xi对于模糊群k的隶属度μik为:
式中,n为模糊分类过程中需要的分块矩阵指数,通常取作2,||·||为范数表达式。
使用以上隶属度值或者它的变形以获得新的输入矩阵,对于模糊群k,其输入矩阵变形为:
Φik(Xi,μik)=[1 func(μik) Xi] (5)
最小二乘支持向量机作为模糊方程系统的局部方程,对每个模糊群进行优化拟合。设模型训练样本的第i个目标输出为Oi,最小二乘支持向量机通过变换把拟合问题等价于如下二次规划问题:
同时定义拉格朗日函数:
其中,R(w,ξ)是优化问题的目标函数,minR(w,ξ)是优化问题的目标函数的最小值,是非线性映射函数,N是训练样本数,ξ={ξ1,…,ξN}是松弛变量,ξi是松弛变量的第i个分量,αi,i=1,…,N是对应的拉格朗日乘子的第i个分量,w是支持向量机超平面的法向量,b是相应的偏移量,γ是最小二乘支持向量机的惩罚因子,上标T表述矩阵的转置,μik表示标准化后的第i个训练样本Xi对于模糊群k的隶属度,Φik(Xi,μik)表示第i个输入变量Xi及其模糊群k的隶属度μik所对应的新的输入矩阵。由(6)(7)(8)式可推导出模糊群k在训练样本i的输出为:
其中,为模糊群k在训练样本i的输出,K<·>是最小二乘支持向量机的核函数,这里K<·>取线性核函数。μmk表示第m个训练样本Xm对于模糊群k的隶属度,Φmk(Xm,μmk)表示第m个输入变量Xm及其模糊群k的隶属度μmk所对应的新的输入矩阵。αm,m=1,…,N是对应的拉格朗日乘子的第m个分量。
由反模糊方法中的重心法得到最后的模糊方程系统的输出:
4)、判别模型更新模块,用于按设定的采样时间间隔,采集现场智能仪表信号,将得到的实测化学耗氧量与函数计算值比较,如果相对误差大于10%或实测COD数据不达标,则将DCS数据库中生产正常时的达标新数据加入训练样本数据,更新模糊方程模型。
5)、在所述的步骤3)中得到的COD预报值和使COD排放达标的操作变量值,将结果传给DCS系统,在DCS的控制站显示,并通过DCS系统和现场总线传递到现场操作站进行显示;同时,DCS系统将所得到的使COD排放达标的操作变量值作为新的操作变量设定值,自动执行COD排放达标操作。
所述的关键变量包括进入焚烧炉的废液流量、进入焚烧炉的空气流量和进入焚烧炉的燃料流量;所述的操作变量包括进入焚烧炉的空气流量和进入焚烧炉的燃料流量。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433697.7A CN103472728B (zh) | 2013-09-22 | 2013-09-22 | 机器学习的农药焚烧炉有害物排放达标控制系统及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310433697.7A CN103472728B (zh) | 2013-09-22 | 2013-09-22 | 机器学习的农药焚烧炉有害物排放达标控制系统及方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103472728A true CN103472728A (zh) | 2013-12-25 |
CN103472728B CN103472728B (zh) | 2016-08-24 |
Family
ID=49797620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310433697.7A Expired - Fee Related CN103472728B (zh) | 2013-09-22 | 2013-09-22 | 机器学习的农药焚烧炉有害物排放达标控制系统及方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103472728B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006964A (zh) * | 2019-12-06 | 2020-04-14 | 生态环境部华南环境科学研究所 | 全国各区县农药VOCs排放潜力系数率定方法 |
CN112794550A (zh) * | 2020-12-08 | 2021-05-14 | 四川省翰克环保设备有限公司 | 基于人工智能解决污水处理厂出水cod超标的方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101038277A (zh) * | 2007-04-19 | 2007-09-19 | 东北大学 | 基于最小二乘-支持向量机的制粉过程煤粉细度软测量方法 |
CN101419216A (zh) * | 2008-10-16 | 2009-04-29 | 浙江工业大学 | 基于gp学习建模的发酵制药产物质量软测量方法 |
CN101763084A (zh) * | 2009-12-29 | 2010-06-30 | 浙江大学 | 农药生产废液焚烧炉化学耗氧量排放最小化系统及方法 |
CN101763085A (zh) * | 2009-12-29 | 2010-06-30 | 浙江大学 | 农药生产废液焚烧炉炉温最佳化系统及方法 |
CN101794119A (zh) * | 2010-03-08 | 2010-08-04 | 浙江中控软件技术有限公司 | 瓦斯系统平衡与优化调度方法、装置及系统 |
CN101799888A (zh) * | 2010-01-22 | 2010-08-11 | 浙江大学 | 基于仿生智能蚁群算法的工业软测量方法 |
-
2013
- 2013-09-22 CN CN201310433697.7A patent/CN103472728B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101038277A (zh) * | 2007-04-19 | 2007-09-19 | 东北大学 | 基于最小二乘-支持向量机的制粉过程煤粉细度软测量方法 |
CN101419216A (zh) * | 2008-10-16 | 2009-04-29 | 浙江工业大学 | 基于gp学习建模的发酵制药产物质量软测量方法 |
CN101763084A (zh) * | 2009-12-29 | 2010-06-30 | 浙江大学 | 农药生产废液焚烧炉化学耗氧量排放最小化系统及方法 |
CN101763085A (zh) * | 2009-12-29 | 2010-06-30 | 浙江大学 | 农药生产废液焚烧炉炉温最佳化系统及方法 |
CN101799888A (zh) * | 2010-01-22 | 2010-08-11 | 浙江大学 | 基于仿生智能蚁群算法的工业软测量方法 |
CN101794119A (zh) * | 2010-03-08 | 2010-08-04 | 浙江中控软件技术有限公司 | 瓦斯系统平衡与优化调度方法、装置及系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111006964A (zh) * | 2019-12-06 | 2020-04-14 | 生态环境部华南环境科学研究所 | 全国各区县农药VOCs排放潜力系数率定方法 |
CN111006964B (zh) * | 2019-12-06 | 2022-04-01 | 生态环境部华南环境科学研究所 | 全国各区县农药VOCs排放潜力系数率定方法 |
CN112794550A (zh) * | 2020-12-08 | 2021-05-14 | 四川省翰克环保设备有限公司 | 基于人工智能解决污水处理厂出水cod超标的方法及系统 |
CN112794550B (zh) * | 2020-12-08 | 2022-11-18 | 翰克偲诺水务集团有限公司 | 基于人工智能解决污水处理厂出水cod超标的方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103472728B (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Newhart et al. | Data-driven performance analyses of wastewater treatment plants: A review | |
CN101763084B (zh) | 农药生产废液焚烧炉化学耗氧量排放最小化系统及方法 | |
CN101763085B (zh) | 农药生产废液焚烧炉炉温最佳化系统及方法 | |
CN103472865A (zh) | 智能最小二乘的农药废液焚烧炉炉温最佳化系统及方法 | |
CN106682316A (zh) | 一种基于尖峰径向基神经网络的出水总磷实时监测系统 | |
CN106199174A (zh) | 基于迁移学习的挤压机能耗异常预测方法 | |
Wang et al. | Tool wear monitoring based on cointegration modelling of multisensory information | |
CN100470427C (zh) | 基于仿生智能的工业软测量仪表及软测量方法 | |
CN101587113A (zh) | 基于正链rna-ga的连续搅拌反应釜反应物浓度软测量方法及仪表 | |
CN103472728A (zh) | 机器学习的农药焚烧炉有害物排放达标控制系统及方法 | |
CN103472729B (zh) | 群智的农药废液焚烧炉有害物排放达标控制系统及方法 | |
CN103472867B (zh) | 支持向量机的农药生产废液焚烧炉炉温最佳化系统及方法 | |
CN103488145B (zh) | 群智模糊网络的焚烧炉有害物排放达标控制系统及方法 | |
CN103488089B (zh) | 自适应的农药废液焚烧炉有害物排放达标控制系统及方法 | |
CN103472727A (zh) | 群智加权的农药焚烧炉有害物排放达标控制系统及方法 | |
CN103675009B (zh) | 模糊方程的工业熔融指数软测量仪表及方法 | |
CN103488090A (zh) | 群智机器学习的焚烧炉有害物排放达标控制系统及方法 | |
CN103488084B (zh) | 模糊网络的农药焚烧炉有害物排放达标控制系统及方法 | |
CN103488088B (zh) | 误差反向传播的焚烧炉有害物排放达标控制系统及方法 | |
CN103499924A (zh) | 加权的农药废液焚烧炉有害物排放达标控制系统及方法 | |
CN103488087B (zh) | 最优的农药废液焚烧炉有害物排放达标控制系统及方法 | |
Zhichkin et al. | Implementation of Sustainability Analyzes in Software Products for Evaluating the Effectiveness of Investment Projects | |
CN103488208A (zh) | 最小二乘的农药生产废液焚烧炉炉温最佳化系统及方法 | |
CN103488209A (zh) | 智能支持向量机的农药废液焚烧炉炉温最佳化系统及方法 | |
CN103488207B (zh) | 模糊系统的农药生产废液焚烧炉炉温最佳化系统及方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160824 Termination date: 20180922 |