CN103439474A - 用于确定储氢合金吸/放氢热力学参数的方法 - Google Patents

用于确定储氢合金吸/放氢热力学参数的方法 Download PDF

Info

Publication number
CN103439474A
CN103439474A CN2013103520107A CN201310352010A CN103439474A CN 103439474 A CN103439474 A CN 103439474A CN 2013103520107 A CN2013103520107 A CN 2013103520107A CN 201310352010 A CN201310352010 A CN 201310352010A CN 103439474 A CN103439474 A CN 103439474A
Authority
CN
China
Prior art keywords
hydrogen
bearing alloy
data
concentration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103520107A
Other languages
English (en)
Other versions
CN103439474B (zh
Inventor
程宏辉
王笃雄
黄新
李超
严凯
王昌龙
王妹婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201310352010.7A priority Critical patent/CN103439474B/zh
Publication of CN103439474A publication Critical patent/CN103439474A/zh
Application granted granted Critical
Publication of CN103439474B publication Critical patent/CN103439474B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种合金材料关键性能参数的获取方法,特别是一种用于确定储氢合金吸/放氢热力学参数的方法,首先通过储氢合金吸放氢性能测试仪进行相关测试,获得不同温度下合金吸/放氢压力-浓度等温线数据,然后对这些实验数据进行一系列自动分析处理,最终输出储氢合金吸/放氢焓变、吸/放氢熵变和在设定温度下的吉布斯自由能变数据。本发明可以大大改善工程应用中对储氢合金成分-性能筛选的效率和分析结论的可靠性,解决了以往储氢合金吸/放氢热力学参数数据分散性大,出现错误的概率大,分析测试过程繁琐,数据输出不够直观等问题。

Description

用于确定储氢合金吸/放氢热力学参数的方法
技术领域
本发明涉及一种合金材料关键性能参数的获取方法,特别是一种用于确定储氢合金吸/放氢热力学参数的方法。 
背景技术
上世纪六十年代人们发现一些合金能够快速大量地可逆吸放氢气,从而引发了世界范围内对储氢合金的研究热潮。目前储氢合金已在氢气的储运和压缩、同位素分离和储存、热泵与空调、镍氢电池、金刚石合成、氨合成、永磁体生产等众多领域得到广泛应用。在各种应用中,合金吸/放氢过程所伴随的焓变ΔH o、熵变ΔS o、吉布斯自由能变ΔG o是必须弄清的重要参数,因为它们决定了不同应用领域对储氢合金的选择,以及某个温度下,反应的方向。比如,对于热泵的应用,一般要求储氢合金吸氢焓变的范围为-29.2~-37.6 kJ/molH2;对于电池的应用,一般要求吸氢焓变的范围在-25~-50 kJ/molH2;对于燃料电池汽车储氢的应用,一般要求放氢焓变范围在15~24 kJ/molH2。由于氢化反应的熵变主要取决于分子氢向溶解氢的转变,因此不同合金的氢化反应其熵变基本相同,在-130 J/(molH2K)左右。尽管如此,对于氢增压应用,获得比较精确的熵变值仍是非常必要的。 
对于合金吸/放氢过程焓变和熵变的传统获取方法是:首先通过Sieverts装置进行步进式充放氢实验,测定合金吸/放氢静态压力-浓度等温线,然后由实验者根据测得的等温线估计出不同温度下的反应平台压,依据范特霍夫关系拟合获得焓变和熵变。由于很多环节都是人为操作完成,特别是其中的反应平台压是人为估计得到的,因此采用传统方法无法实现计算机自动分析,一方面造成分析工作量大,另一方面导致相关过程随意性强,没有比较固定的标准,所获得的数据分散性较大,出现错误的概率大大增加,不利于得出可靠的研究结论。对于吉布斯自由能变,实验者一般也是根据已经得到的焓变和熵变手工计算得到,因此上述问题也同样存在。 
发明内容
本发明的目的是提供了一种用于确定储氢合金吸/放氢热力学参数的方法,快速、高效、准确,克服了以往储氢合金吸/放氢热力学参数数据误差大,可靠性低,分析过程工作量大,无法实现计算机自动分析的缺点。 
本发明的目的是通过以下技术方案实现的,一种用于确定储氢合金吸/放氢热力学参数的方法,包括以下步骤: 
(1)称取储氢合金样品放入储氢合金吸/放氢性能测试仪的样品室中; 
(2)由低温到高温,在不同温度下,对储氢合金样品进行储氢合金吸/放氢压力-浓度等温线的测试,获得储氢合金吸/放氢压力-浓度等温线测试数据;
(3)在MATLAB软件的Workspace中建立一个包含有多列测试数据的数组,将获得的储氢合金吸/放氢压力-浓度等温线测试数据中的样品室温度、氢浓度和氢压力数据按先后顺序分别填入对应的数组中得到实验数据数组;
(4)将实验数据数组进行分割,得到对应不同温度且相互关联的储氢合金吸/放氢压力-浓度等温线数据数组;
(5)将每个储氢合金吸/放氢压力-浓度等温线数据数组中含零数据行去掉;
(6)将每个储氢合金吸/放氢压力-浓度等温线数据数组继续分割成吸氢和放氢两部分,分割点为每条储氢合金吸/放氢压力-浓度等温线的反应平衡压最大值位置;
(7)分别对每个储氢合金吸放氢压力-浓度等温线数据数组中吸氢和放氢数据进行保形插值处理,获得大量内插数据点;
(8)步骤(7)得到的内插数据点的横坐标表示氢浓度n,纵坐标表示反应平衡压p,对内插数据点进行 
Figure DEST_PATH_353964DEST_PATH_IMAGE001
微分处理获得的极大值,其极大值所对应的反应平衡压作为吸/放氢压力-浓度等温线的反应平台压,相继获得不同温度下储氢合金吸放氢压力-浓度等温线反应平台压,将不同温度下储氢合金吸放氢压力-浓度等温线反应平台压中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组;
(9)将吸/放氢过程所有测试点对应的样品室温度取平均值,该平均值作为储氢合金吸/放氢压力-浓度等温线的反应温度,将储氢合金吸/放氢压力-浓度等温线的反应温度中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组,并保证各温度数组中数据顺序与上述相关反应平台压数组中的数据顺序一致; 
(10)依据范特霍夫公式,其中
Figure DEST_PATH_757580DEST_PATH_IMAGE003
为反应平台压,
Figure DEST_PATH_862677DEST_PATH_IMAGE004
为标准大气压,R表示气体常数,T表示反应温度,回归出吸/放氢反应的焓变ΔH o、熵变ΔS o,然后根据吉布斯自由能变计算公式ΔG oH o-T·ΔS o得到吉布斯自由能变ΔG o
(11)依据Workspace建立的包含多列测试数据,以氢浓度为横坐标,以反应平衡压为纵坐标作图,其纵坐标采用自然对数坐标,得到不同温度的储氢合金吸/放氢压力-浓度等温线图,同时以1000/T为纵坐标,以对应的反应平台压的自然对数值为纵坐标作图,保证与前述等温线图的纵坐标压力值上下限相一致,同时对数据点进行范特霍夫公式拟合;
(12)输出储氢合金吸/放氢压力-浓度等温线图,范特霍夫曲线图,吸/放氢反应的焓变ΔH o、熵变ΔS o以及设定温度下吉布斯自由能变ΔG o
优选地,进行储氢合金吸/放氢压力-浓度等温线测试时,所使用样品量为1-5g。 
优选地,进行储氢合金吸放氢压力-浓度等温线测试时,样品室恒温温度选取3-6个不同温度,温度间距为10-30℃。 
优选地,MATLAB软件的Workspace中建立的测试数据数组包含有9-18列,并且按一列温度、一列氢浓度、一列氢压力的顺序排列。 
优选地,对吸氢和放氢数据分别进行保形插值处理,获得的内插数据点各为8000-10000个。 
优选地,上述步骤(4)至步骤(12)的数据处理过程均由MATLAB程序自动完成。 
优选地,上述步骤(4)至步骤(12)的数据处理过程根据数组运算法则进行,并且不存在任何循环结构。 
与现有技术相比,本发明具有以下有益效果:(1)可实现整个数据处理过程的计算机自动分析;(2)同时有数据图输出,保证分析过程的直观性;(3)这些数据图输出格式满足常规出版要求,可以直接用于研究报告和杂志论文中;(4)大大提高储氢合金吸/放氢热力学参数分析过程的效率;(5)大大提高储氢合金吸/放氢热力学参数的准确性和可靠性。 
附图说明
图1是本发明一种用于确定储氢合金吸/放氢热力学参数的方法的流程示意图; 
图2是本发明LaNi5合金的吸/放氢压力-浓度等温线图;
图3是本发明LaNi5合金的范特霍夫曲线图。
具体实施方式
下面结合附图对本发明做进一步详述: 
一种用于确定储氢合金吸/放氢热力学参数的方法,包括以下步骤:
(1)称取储氢合金样品放入储氢合金吸/放氢性能测试仪的样品室中; 
(2)由低温到高温,在不同温度下,对储氢合金样品进行储氢合金吸/放氢压力-浓度等温线的测试,获得储氢合金吸/放氢压力-浓度等温线测试数据;
(3)在MATLAB软件的Workspace中建立一个包含有多列测试数据的数组,将获得的储氢合金吸/放氢压力-浓度等温线测试数据中的样品室温度、氢浓度和氢压力数据按先后顺序分别填入对应的数组中得到实验数据数组;
(4)将实验数据数组进行分割,得到对应不同温度且相互关联的储氢合金吸/放氢压力-浓度等温线数据数组;
(5)将每个储氢合金吸/放氢压力-浓度等温线数据数组中含零数据行去掉;
(6)将每个储氢合金吸/放氢压力-浓度等温线数据数组继续分割成吸氢和放氢两部分,分割点为每条储氢合金吸/放氢压力-浓度等温线的反应平衡压最大值位置;
(7)分别对每个储氢合金吸放氢压力-浓度等温线数据数组中吸氢和放氢数据进行保形插值处理,获得大量内插数据点;
(8)步骤(7)得到的内插数据点的横坐标表示氢浓度n,纵坐标表示反应平衡压p,对内插数据点进行
Figure DEST_PATH_793724DEST_PATH_IMAGE001
微分处理获得的极大值,其极大值所对应的反应平衡压作为吸/放氢压力-浓度等温线的反应平台压,相继获得不同温度下储氢合金吸放氢压力-浓度等温线反应平台压,将不同温度下储氢合金吸放氢压力-浓度等温线反应平台压中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组;
(9)将吸/放氢过程所有测试点对应的样品室温度取平均值,该平均值作为储氢合金吸/放氢压力-浓度等温线的反应温度,将储氢合金吸/放氢压力-浓度等温线的反应温度中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组,并保证各温度数组中数据顺序与上述相关反应平台压数组中的数据顺序一致; 
(10)依据范特霍夫公式
Figure DEST_PATH_548054DEST_PATH_IMAGE002
,其中
Figure DEST_PATH_222749DEST_PATH_IMAGE003
为反应平台压,
Figure DEST_PATH_746134DEST_PATH_IMAGE004
为标准大气压,R表示气体常数,T表示反应温度,回归出吸/放氢反应的焓变ΔH o、熵变ΔS o,然后根据吉布斯自由能变计算公式ΔG oH o-T·ΔS o得到吉布斯自由能变ΔG o
(11)依据Workspace建立的包含多列测试数据,以氢浓度为横坐标,以反应平衡压为纵坐标作图,其纵坐标采用自然对数坐标,得到不同温度的储氢合金吸/放氢压力-浓度等温线图,同时以1000/T为纵坐标,以对应的反应平台压的自然对数值为纵坐标作图,保证与前述等温线图的纵坐标压力值上下限相一致,同时对数据点进行范特霍夫公式拟合;
(12)输出储氢合金吸/放氢压力-浓度等温线图,范特霍夫曲线图,吸/放氢反应的焓变ΔH o、熵变ΔS o以及设定温度下吉布斯自由能变ΔG o
进行储氢合金吸/放氢压力-浓度等温线测试时,所使用样品量为1-5g。 
进行储氢合金吸放氢压力-浓度等温线测试时,样品室恒温温度选取3-6个不同温度,温度间距为10-30℃。 
MATLAB软件的Workspace中建立的测试数据数组包含有9-18列,并且按一列温度、一列氢浓度、一列氢压力的顺序排列。 
对吸氢和放氢数据分别进行保形插值处理,获得的内插数据点各为8000-10000个。 
上述步骤(4)至步骤(12)的数据处理过程均由MATLAB程序自动完成。 
上述步骤(4)至步骤(12)的数据处理过程根据数组运算法则进行,并且不存在任何循环结构。 
实施例
制备储氢合金LaNi5,其原料金属为La 99 wt%,Ni 99.9 wt%,采用氩气保护下的真空感应熔炼,熔炼后将合金装入真空度为1 Pa的石英管中进行退火,并在1000 ℃下保温6 h后迅速淬入水中。退火样品经化学分析,以验证成分的准确性。最后,称取大约1g的样品放入储氢合金吸放氢性能测试仪的样品室中,在恒温水浴的环境中,进行40℃、60℃和80℃的吸/放氢压力-浓度等温线的测试。测试获得如下表1,表2和表3的数据中。然后打开MATLAB软件在Workspace窗口中建立名为PCT的数组,将这些等温线实测数据拷入PCT数组中,同时确定吉布斯自由能变的计算温度为T=298 K。在MATLAB的命令窗(Command window)中执行命令HSG=cal_HSG(PCT,T)后计算得到吸氢反应的焓变为ΔHo=-29.6071 kJ/molH2,熵变为ΔSo=-0.1076 kJ/(molH2K),吉布斯自由能变为ΔGo 298 K=2.4511 kJ/molH2;放氢反应的焓变为ΔHo=30.1288 kJ/molH2,熵变为ΔSo=0.1076 kJ/(molH2K),吉布斯自由能变为ΔGo 298 K= -1.9413 kJ/molH2,输出吸/放氢压力-浓度等温线图(图2)和范特霍夫曲线图(图3)。 
表1 40 ℃下LaNi5合金吸/放氢压力-浓度等温线测试数据 
表2 60 ℃下LaNi5合金吸/放氢压力-浓度等温线测试数据 
Figure 627128DEST_PATH_IMAGE002
表3 80 ℃下LaNi5合金吸/放氢压力-浓度等温线测试数据 
Figure 219915DEST_PATH_IMAGE003
 其中命令HSG=cal_HSG(PCT,T)完成如下过程: 
(1)  将PCT数组进行分割,得到对应不同恒温温度的相互关联的3个储氢合金吸/放氢压力-浓度等温线数据数组;
(2)  将每个储氢合金吸/放氢压力-浓度等温线数据数组中含零数据行去掉;
(3)  将每个储氢合金吸/放氢压力-浓度等温线数据数组继续分割成吸氢和放氢两部分,分割点为每条储氢合金吸/放氢压力-浓度等温线的反应平衡压最大值位置;
(4)  分别对每个储氢合金吸放氢压力-浓度等温线数据数组中吸氢和放氢数据进行保形插值处理,分别获得10000个内插数据点;
(5)  对所有这些内插数据点进行
Figure DEST_PATH_647783DEST_PATH_IMAGE001
微分处理,并寻找其极大值所对应的平衡压,该反应平衡压作为吸/放氢压力-浓度等温线的反应平台压,通过这种方法相继获得不同温度的储氢合金吸/放氢压力-浓度等温线反应平台压,将这些反应平台压属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组;
(6)  将每个吸/放氢过程所有测试点对应的样品室温度取平均值,该平均值作为储氢合金吸/放氢压力-浓度等温线的反应温度,将这些反应温度属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组,并保证各温度数组中数据顺序与上述相关反应平台压数组中的数据顺序一致;
(7)  然后依据范特霍夫公式和数组运算法则,回归出吸/放氢反应的焓变ΔH o、熵变ΔS o,然后根据吉布斯自由能变计算公式ΔG oH o-T·ΔS o得到设定温度下的吉布斯自由能变ΔG o
(8)  以氢浓度为横坐标,以反应平衡压为纵坐标作图,且纵坐标采用自然对数坐标,得到不同温度的储氢合金吸/放氢压力-浓度等温线图,同时以1000/T为纵坐标,以对应的反应平台压的自然对数值为纵坐标作图,保证与吸/放氢压力-浓度等温线图的纵坐标压力值上下限相一致,同时对数据点进行范特霍夫公式拟合;
(9)  最后输出储氢合金吸/放氢压力-浓度等温线图,范特霍夫曲线图,吸/放氢反应的焓变ΔH o、熵变ΔS o以及设定温度下吉布斯自由能变ΔG o
以下是上述数据处理过程的MATLAB程序: 
function HSG=cal_HSG(PCT,T)
PCT1=PCT(:,1:3);
        [i1,~]=find(PCT1==0);
        if isempty(i1)
            PCT1=PCT1;
        else
            PCT1=PCT1(1:i1-1,:);
        end
        t1=PCT1(:,1);
        c1=PCT1(:,2);
        p1=PCT1(:,3);
        [~,j1]=max(p1);
        abt1=mean(t1(1:j1));
        det1=mean(t1(j1:end));
        abHM1=c1(1:j1);
        abP1=p1(1:j1);
        abx1=linspace(abHM1(1),abHM1(end),10000);
        abfitResults1=pchip(abHM1,abP1);
        aby1 = ppval(abfitResults1, abx1);
        [~,abk1]=max(diff(abx1)./diff(log(aby1)));
        abPe1=aby1(abk1);
        deHM1=c1(j1:end);
        deP1=p1(j1:end);
        dex1=linspace(deHM1(end),deHM1(1),10000);
        defitResults1=pchip(deHM1,deP1);
        dey1 = ppval(defitResults1, dex1);
        [~,dek1]=max(diff(dex1)./diff(log(dey1)));
        dePe1=dey1(dek1);
        %PCT2
        PCT2=PCT(:,4:6);
        [i2,~]=find(PCT2==0);
        if isempty(i2)
            PCT2=PCT2;
        else
            PCT2=PCT2(1:i2-1,:);
        end
        t2=PCT2(:,1);
        c2=PCT2(:,2);
        p2=PCT2(:,3);
        [~,j2]=max(p2);
        abt2=mean(t2(1:j2));
        det2=mean(t2(j2:end));
        abHM2=c2(1:j2);
        abP2=p2(1:j2);
        abx2=linspace(abHM2(1),abHM2(end),10000);
        abfitResults2=pchip(abHM2,abP2);
        aby2 = ppval(abfitResults2, abx2);
        [~,abk2]=max(diff(abx2)./diff(log(aby2)));
        abPe2=aby2(abk2);
        deHM2=c2(j2:end);
        deP2=p2(j2:end);
        dex2=linspace(deHM2(end),deHM2(1),10000);
        defitResults2=pchip(deHM2,deP2);
        dey2 = ppval(defitResults2, dex2);
        [~,dek2]=max(diff(dex2)./diff(log(dey2)));
        dePe2=dey2(dek2);
        %PCT3
        PCT3=PCT(:,7:9);
        [i3,~]=find(PCT3==0);
        if isempty(i3)
            PCT3=PCT3;
        else
            PCT3=PCT3(1:i3-1,:);
        end
        t3=PCT3(:,1);
        c3=PCT3(:,2);
        p3=PCT3(:,3);
        [~,j3]=max(p3);
        abt3=mean(t3(1:j3));
        det3=mean(t3(j3:end));
        abHM3=c3(1:j3);
        abP3=p3(1:j3);
        abx3=linspace(abHM3(1),abHM3(end),10000);
        abfitResults3=pchip(abHM3,abP3);
        aby3 = ppval(abfitResults3, abx3);
        [~,abk3]=max(diff(abx3)./diff(log(aby3)));
        abPe3=aby3(abk3);
        deHM3=c3(j3:end);
        deP3=p3(j3:end);
        dex3=linspace(deHM3(end),deHM3(1),10000);
        defitResults3=pchip(deHM3,deP3);
        dey3 = ppval(defitResults3, dex3);
        [~,dek3]=max(diff(dex3)./diff(log(dey3)));
        dePe3=dey3(dek3);
        abt=[abt1;abt2;abt3];
        det=[det1;det2;det3];
        abPe=[abPe1;abPe2;abPe3];
        dePe=[dePe1;dePe2;dePe3];
        subplot(1,2,1);
        hold on
        plot(c1,p1,'-rs','DisplayName','40 ℃');
        plot(c2,p2,'-bo','DisplayName','60 ℃');
        plot(c3,p3,'-k>','DisplayName','80 ℃');
        set(gca,'YScale','log','FontSize',18,'FontName','times new roman');
        % Create xlabel
        xlabel('Hydrogen Content (wt.%)','FontSize',20,'FontName','Times New Roman');
        % Create ylabel
        ylabel('Pressure (MPa)','FontSize',20,'FontName','Times New Roman');
        set(gca,'YLim',[0.1 10])
        box(gca,'on');
        % Create legend
        legend2 = legend(gca,'show');
        set(legend2,'YColor',[1 1 1],'XColor',[1 1 1],...
        'Position',[0.283040364583333 0.719823340900192 0.109375 0.144770736733642]);
subplot(1,2,2);
abplot=plot(1000./(abt+273.15),log(abPe./0.101325),...
    'MarkerFaceColor',[1 0 0],...
    'MarkerEdgeColor',[1 0 0],...
    'Marker','square',...
    'LineStyle','none',...
    'DisplayName','absorption');
hold on
set(gca,'FontSize',18,'FontName','times new roman');
box(gca,'on');
% Get xdata from plot
abxdata = get(abplot, 'xdata');
% Get ydata from plot
abydata = get(abplot, 'ydata');
% Make sure data are column vectors
abxdata = abxdata(:);
abydata = abydata(:);
% Find x values for plotting the fit based on xlim
abxplot = linspace(min(abxdata)-0.1,max(abxdata)+0.1);
% Find coefficients for polynomial (order = 1)
abfit = polyfit(abxdata, abydata, 1);
% Evaluate polynomial
abyplot = polyval(abfit, abxplot);
% Plot the fit
abLine = plot(abxplot,abyplot,'DisplayName','fitting line','Color',[0 0 0]);
HSG(1,1)=-abs(abfit(1)*8.314472);
HSG(1,2)=-abs(abfit(2)*8.314472)/1000;
deplot=plot(1000./(det+273.15),log(dePe/0.101325),'MarkerFaceColor',[1 1 1],...
    'MarkerEdgeColor',[1 0 0],...
    'Marker','square',...
    'LineStyle','none',...
    'DisplayName','desorption');
% Get xdata from plot
dexdata = get(deplot, 'xdata');
% Get ydata from plot
deydata = get(deplot, 'ydata');
% Make sure data are column vectors
dexdata = dexdata(:);
deydata = deydata(:);
% Find x values for plotting the fit based on xlim
dexplot = linspace(min(dexdata)-0.1,max(dexdata)+0.1);
% Find coefficients for polynomial (order = 1)
defit = polyfit(dexdata, deydata, 1);
% Evaluate polynomial
deyplot = polyval(defit, dexplot);
% Plot the fit
deLine = plot(dexplot,deyplot,'LineStyle','--','DisplayName','fitting line',...
    'Color',[0 0 0]);
set(gca,'YLim',log([0.1 10]./0.101325),'XTickLabel',{'2.7','3','3.3'},...
    'XTick',[2.7 3 3.3]);
% Create xlabel
xlabel('1000 / \itT\rm (K^-^1)','FontSize',20,'FontName','Times New Roman');
% Create ylabel
ylabel('ln(\itp / \rmp_0)','FontSize',20,'FontName','Times New Roman');
% Create legend
legend1 = legend(gca,'show');
set(legend1,'YColor',[1 1 1],'XColor',[1 1 1],...
'Position',[0.709309895833333 0.653714054642302 0.1552734375 0.190623390005152]);
HSG(2,1)=abs(defit(1)*8.314472);
HSG(2,2)=abs(defit(2)*8.314472)/1000; 
HSG(:,3)=HSG(:,1)-T*HSG(:,2);

Claims (7)

1.一种用于确定储氢合金吸/放氢热力学参数的方法,其特征在于,所述方法包括以下步骤:
(1)称取储氢合金样品放入储氢合金吸/放氢性能测试仪的样品室中; 
(2)由低温到高温,在不同温度下,对储氢合金样品进行储氢合金吸/放氢压力-浓度等温线的测试,获得储氢合金吸/放氢压力-浓度等温线测试数据;
(3)在MATLAB软件的Workspace中建立一个包含有多列测试数据的数组,将获得的储氢合金吸/放氢压力-浓度等温线测试数据中的样品室温度、氢浓度和氢压力数据按先后顺序分别填入对应的数组中得到实验数据数组;
(4)将实验数据数组进行分割,得到对应不同温度且相互关联的储氢合金吸/放氢压力-浓度等温线数据数组;
(5)将每个储氢合金吸/放氢压力-浓度等温线数据数组中含零数据行去掉;
(6)将每个储氢合金吸/放氢压力-浓度等温线数据数组继续分割成吸氢和放氢两部分,分割点为每条储氢合金吸/放氢压力-浓度等温线的反应平衡压最大值位置;
(7)分别对每个储氢合金吸放氢压力-浓度等温线数据数组中吸氢和放氢数据进行保形插值处理,获得大量内插数据点;
(8)步骤(7)得到的内插数据点的横坐标表示氢浓度n,纵坐标表示反应平衡压p,对内插数据点进行                                                
Figure 2013103520107100001DEST_PATH_IMAGE001
微分处理获得的极大值,其极大值所对应的反应平衡压作为吸/放氢压力-浓度等温线的反应平台压,相继获得不同温度下储氢合金吸放氢压力-浓度等温线反应平台压,将不同温度下储氢合金吸放氢压力-浓度等温线反应平台压中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组;
(9)将吸/放氢过程所有测试点对应的样品室温度取平均值,该平均值作为储氢合金吸/放氢压力-浓度等温线的反应温度,将储氢合金吸/放氢压力-浓度等温线的度反应温度中属于吸氢过程的构成一个数组,属于放氢过程的构成一个数组,并保证各温度数组中数据顺序与上述相关反应平台压数组中的数据顺序一致; 
(10)依据范特霍夫公式
Figure 917797DEST_PATH_IMAGE002
,其中
Figure 2013103520107100001DEST_PATH_IMAGE003
为反应平台压,
Figure 772621DEST_PATH_IMAGE004
为标准大气压,R表示气体常数,T表示反应温度,回归出吸/放氢反应的焓变ΔH o、熵变ΔS o,然后根据吉布斯自由能变计算公式ΔG oH o-T·ΔS o得到吉布斯自由能变ΔG o
(11)依据Workspace建立的包含多列测试数据,以氢浓度为横坐标,以反应平衡压为纵坐标作图,其纵坐标采用自然对数坐标,得到不同温度的储氢合金吸/放氢压力-浓度等温线图,同时以1000/T为纵坐标,以对应的反应平台压的自然对数值为纵坐标作图,保证与前述等温线图的纵坐标压力值上下限相一致,同时对数据点进行范特霍夫公式拟合;
(12)输出储氢合金吸/放氢压力-浓度等温线图,范特霍夫曲线图,吸/放氢反应的焓变ΔH o、熵变ΔS o以及设定温度下吉布斯自由能变ΔG o
2.根据权利要求1所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:进行储氢合金吸/放氢压力-浓度等温线测试时,所使用样品量为1-5g。
3.根据权利要求1所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:进行储氢合金吸放氢压力-浓度等温线测试时,样品室恒温温度选取3-6个不同温度,温度间距为10-30℃。
4.根据权利要求1所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:MATLAB软件的Workspace中建立的测试数据数组包含有9-18列,并且按一列温度、一列氢浓度、一列氢压力的顺序排列。
5.根据权利要求1所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:对吸氢和放氢数据分别进行保形插值处理,获得的内插数据点各为8000-10000个。
6.根据权利要求1所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:步骤(4)至步骤(12)的数据处理过程均由MATLAB程序自动完成。
7.根据权利要求6所述用于确定储氢合金吸/放氢热力学参数的方法,其特征在于:步骤(4)至步骤(12)的数据处理过程根据数组运算法则进行,并且不存在任何循环结构。
CN201310352010.7A 2013-08-14 2013-08-14 用于确定储氢合金吸/放氢热力学参数的方法 Expired - Fee Related CN103439474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310352010.7A CN103439474B (zh) 2013-08-14 2013-08-14 用于确定储氢合金吸/放氢热力学参数的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310352010.7A CN103439474B (zh) 2013-08-14 2013-08-14 用于确定储氢合金吸/放氢热力学参数的方法

Publications (2)

Publication Number Publication Date
CN103439474A true CN103439474A (zh) 2013-12-11
CN103439474B CN103439474B (zh) 2015-04-22

Family

ID=49693178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310352010.7A Expired - Fee Related CN103439474B (zh) 2013-08-14 2013-08-14 用于确定储氢合金吸/放氢热力学参数的方法

Country Status (1)

Country Link
CN (1) CN103439474B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897508A (zh) * 2014-03-06 2015-09-09 中国科学院上海微系统与信息技术研究所 一种功能材料热力学参数的测试方法
CN105241902A (zh) * 2015-10-27 2016-01-13 扬州大学 一种用于储氢合金吸放氢过程的原位同步辐射x射线衍射的测试装置
CN106770396A (zh) * 2016-11-18 2017-05-31 中国工程物理研究院材料研究所 用于测定储氢材料放氢反应热力学参数的方法
CN108182340A (zh) * 2017-12-11 2018-06-19 中国科学院合肥物质科学研究院 一种高固溶性多主元合金的快速筛选方法
US11307129B2 (en) 2020-03-23 2022-04-19 Savannah River Nuclear Solutions, Llc Automatic gas sorption apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327152A (zh) * 2000-06-07 2001-12-19 信息产业部电子第十八研究所 混合稀土储氢合金氢化特性综合测试装置及测试方法
CN2727730Y (zh) * 2004-08-25 2005-09-21 中国科学院金属研究所 一种容积法储放氢性能测试装置
CN1687773A (zh) * 2005-04-27 2005-10-26 中国科学院金属研究所 一种贮氢材料压力浓度温度性能精确测试方法
US7285419B2 (en) * 2002-06-11 2007-10-23 The Board Of Trustees Of The University Of Illinois Analysis of mercury containing samples
CN101419149A (zh) * 2007-10-26 2009-04-29 中国科学院金属研究所 一种储氢合金性能测试装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1327152A (zh) * 2000-06-07 2001-12-19 信息产业部电子第十八研究所 混合稀土储氢合金氢化特性综合测试装置及测试方法
US7285419B2 (en) * 2002-06-11 2007-10-23 The Board Of Trustees Of The University Of Illinois Analysis of mercury containing samples
CN2727730Y (zh) * 2004-08-25 2005-09-21 中国科学院金属研究所 一种容积法储放氢性能测试装置
CN1687773A (zh) * 2005-04-27 2005-10-26 中国科学院金属研究所 一种贮氢材料压力浓度温度性能精确测试方法
CN101419149A (zh) * 2007-10-26 2009-04-29 中国科学院金属研究所 一种储氢合金性能测试装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
周国治等: "镁基储氢材料的热力学和动力学", 《自然杂志》, vol. 33, no. 1, 15 February 2011 (2011-02-15) *
张沛龙等: "V-7.4Zr-7.4Ti-7.4Ni 储氢合金的热力学研究", 《稀有金属材料与工程》, vol. 38, no. 4, 15 April 2009 (2009-04-15) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104897508A (zh) * 2014-03-06 2015-09-09 中国科学院上海微系统与信息技术研究所 一种功能材料热力学参数的测试方法
CN104897508B (zh) * 2014-03-06 2018-09-28 中国科学院上海微系统与信息技术研究所 一种功能材料热力学参数的测试方法
CN105241902A (zh) * 2015-10-27 2016-01-13 扬州大学 一种用于储氢合金吸放氢过程的原位同步辐射x射线衍射的测试装置
CN105241902B (zh) * 2015-10-27 2017-12-08 扬州大学 一种用于储氢合金吸放氢过程的原位同步辐射x射线衍射的测试装置
CN106770396A (zh) * 2016-11-18 2017-05-31 中国工程物理研究院材料研究所 用于测定储氢材料放氢反应热力学参数的方法
CN106770396B (zh) * 2016-11-18 2019-05-14 中国工程物理研究院材料研究所 用于测定储氢材料放氢反应热力学参数的方法
CN108182340A (zh) * 2017-12-11 2018-06-19 中国科学院合肥物质科学研究院 一种高固溶性多主元合金的快速筛选方法
CN108182340B (zh) * 2017-12-11 2023-02-24 中国科学院合肥物质科学研究院 一种高固溶性多主元合金的快速筛选方法
US11307129B2 (en) 2020-03-23 2022-04-19 Savannah River Nuclear Solutions, Llc Automatic gas sorption apparatus and method

Also Published As

Publication number Publication date
CN103439474B (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
CN103439474B (zh) 用于确定储氢合金吸/放氢热力学参数的方法
CN102830035A (zh) 测定锂电池正负极极片中微量水分含量的方法
CN109946634A (zh) 一种锂离子电池热失控环境模拟设备及方法
AU2018437833B2 (en) Method employing an experiment to measure shortest spontaneous combustion period of coal
CN108918602A (zh) 一种半导体气敏传感器性能测试系统及测试方法
CN106468644A (zh) 一种锂离子电池电芯水分含量的测试方法
Harshman et al. Evaluation of a standardized collection device for exhaled breath sampling onto thermal desorption tubes
CN102323228A (zh) 磷酸亚铁锂正极材料中二价铁和三价铁含量的测定方法
CN105092687A (zh) 一种稀有气体全组分含量在线分析方法
CN107469628B (zh) 一种去除熔盐中气态氚及其同位素的装置及方法
CN103293482A (zh) 简易扣式锂空气电池测试装置
CN204085772U (zh) 一种锂离子电池产气测试装置
CN107632012A (zh) 测定锂离子电池材料中硼、锆元素含量的方法
CN204575606U (zh) 用于电子级六氟化钨中微量杂质分析的在线分析仪
Thomann et al. Method for measuring chromium evaporation from SOFC balance-of-plant components
Naito et al. Purification of inert gas: Removal of oxygen with a metallic getter
CN111834651B (zh) 多功能型的固定式燃料电池电堆测试系统
CN103675087A (zh) 一种硫酸根中氧同位素的分析方法
Schweiger et al. NMR determination of trace water in lithium salts for battery electrolytes
CN106885885A (zh) 一种氘化铝锂活性氘含量的测定方法
Graichen et al. The Impact of a Combined Battery Thermal Management and Safety System Utilizing Polymer Mini-Channel Cold Plates on the Thermal Runaway and Its Propagation
US20200358116A1 (en) Evaluation of solid oxide fuel cell cathode materials
US11573160B2 (en) Evaluation of solid oxide fuel cell cathode materials
Yang et al. Enhancing the Storage Performance and Thermal Stability of Ni-Rich Layered Cathodes by Introducing Li2MnO3
Halpert et al. Procedure for analysis of nickel-cadmium cell materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB03 Change of inventor or designer information

Inventor after: Cheng Honghui

Inventor after: Wang Duxiong

Inventor after: Jin Chaoyang

Inventor after: Huang Xin

Inventor after: Li Chao

Inventor after: Yan Kai

Inventor after: Wang Changlong

Inventor after: Wang Meiting

Inventor before: Cheng Honghui

Inventor before: Wang Duxiong

Inventor before: Huang Xin

Inventor before: Li Chao

Inventor before: Yan Kai

Inventor before: Wang Changlong

Inventor before: Wang Meiting

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: CHENG HONGHUI WANG DUXIONG HUANG XIN LI CHAO YAN KAI WANG CHANGLONG WANG MEITING TO: CHENG HONGHUI WANG DUXIONG JIN ZHAOYANG HUANG XIN LI CHAO YAN KAI WANG CHANGLONG WANG MEITING

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150422

Termination date: 20170814

CF01 Termination of patent right due to non-payment of annual fee