CN103432906A - 改善过滤器比例缩放的方法 - Google Patents

改善过滤器比例缩放的方法 Download PDF

Info

Publication number
CN103432906A
CN103432906A CN2013101863812A CN201310186381A CN103432906A CN 103432906 A CN103432906 A CN 103432906A CN 2013101863812 A CN2013101863812 A CN 2013101863812A CN 201310186381 A CN201310186381 A CN 201310186381A CN 103432906 A CN103432906 A CN 103432906A
Authority
CN
China
Prior art keywords
performance
equipment
proportional zoom
film
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013101863812A
Other languages
English (en)
Other versions
CN103432906B (zh
Inventor
S.吉利亚
M.布兰查德
K.劳蒂奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EMD Millipore Corp
Original Assignee
Millipore Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Millipore Corp filed Critical Millipore Corp
Publication of CN103432906A publication Critical patent/CN103432906A/zh
Application granted granted Critical
Publication of CN103432906B publication Critical patent/CN103432906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/496Multiperforated metal article making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/496Multiperforated metal article making
    • Y10T29/49604Filter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明涉及改善过滤器比例缩放的方法,进一步涉及降低膜比例缩放设备的性能变化性的方法。通过指定用于安装到比例缩放设备中的所有合格生产的膜的集合的窄范围或子集,减少比例缩放设备性能的不确定性,由此降低比例缩放安全系数。在一些实施方案中,所述可比例缩放系数通过如下来降低:确定特定膜在性能分布中的位置,并相应调整所述比例缩放系数。

Description

改善过滤器比例缩放的方法
本申请是申请号为201010254453.9,申请日为2010年8月12日,发明名称为“改善过滤器比例缩放的方法”的中国专利申请的分案申请。
本申请要求2009年8月13日提交的美国临时申请No.61/274142的优先权,该临时申请的公开内容通过引用结合进来。
技术领域
本发明涉及改善过滤器比例缩放(scaling)的方法。
背景技术
过滤设备的生产商通常提供小规模尺寸调整工具(small scalesizing tool)用于对过程物流进行初始评价以及用于估计全规模过程(fullscale process)对膜面积的需求。理想地,小规模设备应该包含最小的膜面积或过滤介质以节省测试流体并同时也和它们的相应大规模设备成线性比例缩放。但是,小规模设备性能上的可变性给按比例放大要求增加了不确定性,从而导致发生潜在的过量的尺寸调整以避免出现所测试的小规模设备代表性能分布的低端的可能性。
例如,对于微过滤膜过滤器而言,有许多因素影响膜性能,包括孔尺寸分布、膜化学、膜厚度、膜孔隙率和其他因素。尽管膜生产方法经设计以对所有这些因素进行控制从而最大化均匀性和一致性,但是不可避免地对于所有这些变量而言在正常生产条件内存在某种分布。这种膜的变化性限制了设备-设备之间的性能一致性,所以限制了能够从小规模性能对大规模性能进行预测的精度。
大规模样品或者小规模过滤设备的性能通常用于估计大规模设备的尺寸调整要求。小规模设备用于尺寸调整的使用提供了显而易见的经济优势。例如,在生物流体的无菌过滤中,47mm或25mm膜盘提供了方便的形式来评价所述盘对于大规模膜设备(比如,含有数十倍直至数千倍面积的盒子)的性能。为了精确的按比例放大(scale-up),小规模设备中的膜必需能代表大规模设备中的膜。但是,如同在任何生产方法中的那样,一批膜和另一批膜在可接受的性能方面存在有限的公差。比例缩放设备中的膜可以源自所述可接受的性能范围内的任何地方。相应地,当估计全规模设备的所需尺寸调整时,膜性能方面的变化性必需得以考虑,从而导致在对比例缩放进行估计时必需使用足够的安全系数。
这能够通过考虑图1中所示的膜性能的假想分布来举例说明。在此示例中,所有膜批次的平均性能(渗透率或处理能力)被归一化为1,性能的可接受范围定义为平均值的±30%。一种常用的方法是使用小规模设备(small scale device),所述小规模设备包含从该群体中随机选择的膜,其可以在0.7-1.3之间的任何地方行使功能。相似地,大规模设备(large scale device)能够在同样0.7-1.3范围的任何地方行使功能。当从小规模设备按比例放大至大规模设备时,必须考虑小规模设备包含高端(1.3)膜而大规模设备可能包含低端(0.7)膜的可能性。也就是说,必须应用1.3/0.7=1.86的比例缩放安全系数(scaling safety factor),以确保大规模设备需求不会出现尺寸不足的情况(参加图2)。在这种情况下,全系统的最坏情况性能将得到精确估计。但是,也可能是小规模设备可能含有处于所述分布低端(0.7)的膜而所述大规模设备含有高端(1.3)膜。应用同一安全系数会导致全系统性能是(1.3/0.7)/(0.7/1.3)或3.45。结果会得到尺寸过大系数为3.45的过滤系统。这个值定义为根据下式(1)的比例缩放系数不确定性比率(scaling factor uncertaintyratio,Usf):
Usf=(Fh/Sl)/(Fl/Sh)=(Fh/Fl)*(Sh/Sl)      (1)
其中,Fh是全规模高端潜在性能,Fl是全规模低端潜在性能,Sh是比例缩放设备高端潜在性能,Sl是比例缩放设备低端潜在性能。
所以,会希望减少比例缩放设备性能的范围以降低大规模设备要求并节约成本。
发明内容
现有技术的问题通过本发明得以克服,本发明提供了减少比例缩放设备性能不确定性的范围的方法。在一些实施方案中,通过指定用于安装到比例缩放设备中的所有合格生产的膜或过滤介质的集合的窄范围或者子集,比例缩放设备性能不确定性得以减少,由此减少了比例缩放安全系数。在一些实施方案中,通过确定特定膜在性能分布内的位置并相应调整比例缩放系数(scaling factor),减少了可比例缩放系数(scalability factor)。比例缩放不确定性的减少使得成本明显节省,比如通过减少按比例放大尺寸调整要求来实现。
附图说明
图1是显示可接受范围的膜性能的假想分布图;
图2是膜性能的假想分布图,显示大规模设备和小规模设备的可能的值;
图3是膜性能的假想分布图,显示大规模设备和小规模设备的可能的值;
图4是小规模设备变化性和比例缩放系数不确定性比率的关系图;和
图5是根据实施例1的带褶皱盒子的集合的水渗透率分布图。
具体实施方式
即使材料和工艺条件尽可能保持常数,但是膜制备工艺固有地导致膜性能存在一些变化性。为此,已经建立了规程来基于性能对每批次或每卷膜在制备后进行分类或“分级”。例如,通常进行水渗透率和处理能力测试,比如通过如下进行所述测试:使用来自给定批次的膜构建膜设备,测量水渗透率,并用含有所选尺寸和浓度的颗粒的溶液来填塞膜孔来对所述设备进行尝试。测量在指定时间期间比如10分钟内的处理能力(过滤的体积)或者某流量减少量比如70%流量减少,得到相对能力值。来自所述给定批次的膜随后基于所得到的结果进行性能分级。过滤介质的性能也可以类似的表征。过滤介质是主动从溶液中分离固体和/或结合溶液中的选定物质的材料。过滤介质的类型包括:非织造织物,活性炭、活性粘土、纤维素、陶瓷、棉、硅藻土、玻璃纤维、离子交换树脂、金属、矿物、纸张、尼龙、砂子、合成纤维、Teflon、聚醚砜、聚酯、聚丙烯、聚四氟乙烯、聚偏二氟乙烯、聚偏二氯乙烯和聚砜。
在实施本文公开的方法的一些实施方案中,制备的每一批膜或过滤介质用性能来表征,建立性能分布。从该分布中,选择小的子集用于安装到比例缩放设备中。通过为比例缩放设备仅仅指定窄范围的所述分布,从小规模设备到大规模设备(其通过定义能够包含任何合格的膜或过滤介质)的比例缩放中的不确定性得以最小化。
例如,如果对小规模设备选择仅仅所述分布的中间三分之一,如图3中所示,那么小规模设备的性能是从0.9-1.1。由于大规模设备的范围是0.7-1.3,所以比例缩放安全系数(根据等式(1),其中Sh变为所述分布的所述子集内的该比例缩放设备高端潜在性能,Sl变为所述分布的所述子集内的该比例缩放设备低端潜在性能)将是(1.3/0.9)/(0.7/1.1)=2.3。在此实施例中,该方法使得和用于比例缩放设备的常规随机膜选择相比,按比例放大尺寸调整的要求节省了大约35%。
图4示出了对于数种水平的膜变化性而言,比例缩放安全系数和小规模性能范围之间的关系。现有技术由每条曲线的上端定义。本文公开的方法使得能够减少比例缩放的不确定性,如图4中的箭头所示。
在一些实施方案中,可以通过如下过程来使所述可比例缩放安全系数最小化:在该性能分布内确定小规模设备的位置(例如,使用或者代理性能量化测试或者实际性能量化测试),然后调整所述比例缩放系数以考虑所述比例缩放设备来自的所述分布的特定部分。在这种方法中,在比例缩放设备中可以使用任何膜。收集膜性能的信息,然后将此信息提供给最终的设备。当对比例缩放设备进行评价时,将该膜性能数据用于确定该比例缩放系数。例如,使用图1中的假想分布,假定特定膜具有的性能值为0.9。比例缩放系数简单地会是(0.9/0.7)=1.3。这个系数代表就全分布的低端方面对比例缩放设备进行调整。由于该比例缩放设备的性能范围已经充分定义并已知,所以Sh和Sl相同,因此等式(1)变成:
Usf=Fh/Fl       (2)
在这种情况中比例缩放系数不确定性比率变为1.3/0.7或者1.86,这代表和没有告知的膜选择相比减少46%。
实施例1
灭菌梯度膜过滤器的关键性能参数是水渗透率,其和设备的生产率相关。如下测量水渗透率:将水供给膜,保持所述膜两侧的压力差,并测量水流速度。根据下式计算渗透率:
Lp=Q/(A*ΔP)
其中Lp是水渗透率,A是膜面积,ΔP是膜两侧压力差。水渗透率通常用单位L/(m2-hr-psi)或者LMH/psi来表示。
在代表性集合的带褶皱盒子上测量水渗透率,每个盒子含有大约0.5m2的聚醚砜膜,所述膜的名义孔尺寸是0.2微米。图5示出了分布曲线。水渗透率是从大约1000LMH/psi到大约1300LMH/psi。选择在所述整个群体中所含的膜的子集,用于安装到包含0.0034m2的小规模盘设备中。所选的子集范围限制到大约1100-1200LMH/psi的膜,其构成了整个膜群体的大约一半。根据等式1,使用该群体内的任何膜的缩放比例系数不确定性比率(现有技术方法)是(1300/1000)×(1300/1000)=1.69。使用本发明的方法,缩放比例系数不确定性比率减少到(1300/1000)×(1200/1100)=1.42,这代表比例缩放系数不确定性的16%的改善,这直接转化成和现有技术相比得到了尺寸按比例减小的全尺寸系统(a proportionally smaller sized full size system)。
实施例2
基于实施例1的水渗透率分布,从整个膜群体中选择已经就水渗透率进行过表征的单一膜。由于该膜的水渗透率已知,所以可以应用等式2,比例缩放系数不确定性比率是1300/1000=1.3,代表和现有技术相比比例缩放系数不确定性有23%的改善。

Claims (2)

1.具有第一性能分布的多个膜、过滤比例缩放设备和经由比例缩放系数而与所述过滤比例缩放设备相关的全规模过滤设备的组合,所述过滤比例缩放设备包含在所述设备内的选自所述多个膜的比例缩放设备膜并且具有在所述性能分布内的已知范围的性能,其为所述第一性能分布的子集;所述全规模过滤设备包含全规模设备膜,其进行选择使得所述比例缩放系数和所述分布内的所述全规模设备高端潜在性能与所述分布的所述子集内的所述比例缩放设备高端潜在性能的乘积成正比,并且和所述分布的所述子集内的所述比例缩放设备低端潜在性能与所述分布内的所述全规模设备低端潜在性能的乘积成反比。
2.根据权利要求1所述的组合,其中所述比例缩放系数是如下前者除以后者的商值:前者是所述分布内的所述全规模设备高端潜在性能和所述分布的所述子集内的所述比例缩放设备高端潜在性能的乘积,后者是所述分布的所述子集内的所述比例缩放设备低端潜在性能和所述分布内的所述全规模设备低端潜在性能的乘积。
CN201310186381.2A 2009-08-13 2010-08-12 改善过滤器比例缩放的方法 Active CN103432906B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US27414209P 2009-08-13 2009-08-13
US61/274142 2009-08-13
US61/274,142 2009-08-13
CN201010254453.9A CN101992025B (zh) 2009-08-13 2010-08-12 改善过滤器比例缩放的方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201010254453.9A Division CN101992025B (zh) 2009-08-13 2010-08-12 改善过滤器比例缩放的方法

Publications (2)

Publication Number Publication Date
CN103432906A true CN103432906A (zh) 2013-12-11
CN103432906B CN103432906B (zh) 2015-11-18

Family

ID=43037012

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201310186381.2A Active CN103432906B (zh) 2009-08-13 2010-08-12 改善过滤器比例缩放的方法
CN201010254453.9A Active CN101992025B (zh) 2009-08-13 2010-08-12 改善过滤器比例缩放的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201010254453.9A Active CN101992025B (zh) 2009-08-13 2010-08-12 改善过滤器比例缩放的方法

Country Status (5)

Country Link
US (2) US8387256B2 (zh)
EP (1) EP2286901A1 (zh)
JP (1) JP5138744B2 (zh)
CN (2) CN103432906B (zh)
SG (2) SG169279A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387256B2 (en) 2009-08-13 2013-03-05 Emd Millipore Corporation Method for improved scaling of filters
WO2018044648A1 (en) * 2016-08-29 2018-03-08 Emd Millipore Corporation Fixed rigid wall device for compressed pleat configuration filters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065869A (zh) * 1991-02-04 1992-11-04 帝国化学工业公司 聚合物薄膜
US20020175124A1 (en) * 1999-09-14 2002-11-28 Gabriel Tkacik High-resolution virus removal methodology and filtration capsule useful therefor
US20050194317A1 (en) * 2004-03-05 2005-09-08 Norio Ikeyama Filtration devices with embedded radio frequency identification (RFID) tags
CN101266234A (zh) * 2006-11-14 2008-09-17 米利波尔公司 多孔材料的快速完整性测试

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432627B4 (de) 1994-09-14 2008-09-25 Sartorius Stedim Biotech Gmbh Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern
DE4432628B4 (de) 1994-09-14 2008-01-10 Sartorius Biotech Gmbh Dead-End-Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern
SE512540C2 (sv) * 1998-06-22 2000-04-03 Umetri Ab Metod och anordning för kalibrering av indata
EP1140328B1 (en) 1998-12-17 2006-09-20 Millipore Corporation Method for manufacturing a hollow fiber separation module
JP2000218139A (ja) * 1999-01-28 2000-08-08 Shinko Pantec Co Ltd 膜分離装置及びその性能予測方法並びにその性能予測装置と記録媒体
JP2005128788A (ja) * 2003-10-23 2005-05-19 Hiromitsu Takahane 分離膜モジュールのシミュレーション方法、シミュレーション装置、プログラムおよび該プログラムを記録したコンピュータ読み取り可能な記憶媒体
JP4863488B2 (ja) * 2006-12-25 2012-01-25 独立行政法人産業技術総合研究所 透過細孔を識別する方法
US7972493B2 (en) * 2007-07-27 2011-07-05 Gore Enterprise Holdings, Inc. Filter wash for chloralkali process
SG157290A1 (en) * 2008-05-09 2009-12-29 Millipore Corp Method for reducing performance variability of multi-layer filters
US8387256B2 (en) * 2009-08-13 2013-03-05 Emd Millipore Corporation Method for improved scaling of filters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1065869A (zh) * 1991-02-04 1992-11-04 帝国化学工业公司 聚合物薄膜
US20020175124A1 (en) * 1999-09-14 2002-11-28 Gabriel Tkacik High-resolution virus removal methodology and filtration capsule useful therefor
US20050194317A1 (en) * 2004-03-05 2005-09-08 Norio Ikeyama Filtration devices with embedded radio frequency identification (RFID) tags
CN101266234A (zh) * 2006-11-14 2008-09-17 米利波尔公司 多孔材料的快速完整性测试

Also Published As

Publication number Publication date
SG169279A1 (en) 2011-03-30
US8904641B2 (en) 2014-12-09
US8387256B2 (en) 2013-03-05
US20130140224A1 (en) 2013-06-06
EP2286901A1 (en) 2011-02-23
JP5138744B2 (ja) 2013-02-06
SG10201403185QA (en) 2014-09-26
CN101992025A (zh) 2011-03-30
CN103432906B (zh) 2015-11-18
CN101992025B (zh) 2013-06-19
US20110185552A1 (en) 2011-08-04
JP2011045876A (ja) 2011-03-10

Similar Documents

Publication Publication Date Title
Fane et al. The relationship between membrane surface pore characteristics and flux for ultrafiltration membranes
Bouazizi et al. Removal of dyes by a new nano–TiO2 ultrafiltration membrane deposited on low-cost support prepared from natural Moroccan bentonite
Lee et al. Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions
Alhadidi et al. Silt density index and modified fouling index relation, and effect of pressure, temperature and membrane resistance
US20120318754A1 (en) Fine fiber filter media and processes
Alhadidi et al. The influence of membrane properties on the Silt Density Index
Islam et al. Microfiltration membrane characterization by gas-liquid displacement porometry: Matching experimental pore number distribution with liquid permeability and bulk porosity
CN101992025B (zh) 改善过滤器比例缩放的方法
US10449497B2 (en) Methods of making graphene oxide nanofilters
Basumatary et al. Removal of trivalent metal ions from aqueous solution via cross-flow ultrafiltration system using zeolite membranes
Agboola et al. Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions
Iritani et al. Analysis of clogging behaviors of diatomaceous ceramic membranes during membrane filtration based upon specific deposit
Connell et al. Effect of particle shape on crossflow filtration flux
Vela et al. Crossflow ultrafiltration of cake forming solutes: a non-steady state model
Abdelrasoul et al. Impact of operating conditions on fouling probability and cake height in ultrafiltration of latex solution
Nahrstedt et al. New insights into silt density index and modified fouling index measurements
Keller et al. Measuring hydraulic layer resistance and correlated effects in colloidal fouling of salt-retaining membranes
CN109289530A (zh) 一种平板陶瓷膜反清洗临界时间的判定方法
Gane et al. Surface patterning increases fluid sorption efficiency in porous reactive coatings: a model for optimised surface-flow filtration
Worrel et al. Enhancement of track-etched membrane performance via stretching
US11148070B2 (en) Systems and methods of nanofiltration using graphene oxide
Hernández et al. Metal Oxide Membranes
Sun et al. Filtration with multiple species of particles
Cheng et al. Flux analysis by modified osmotic-pressure model for laminar ultrafiltration of macromolecular solutions
Wakeman Filter media: Testing for liquid filtration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant