CN103414839B - 一种分级-分组的秘密图像共享方法 - Google Patents

一种分级-分组的秘密图像共享方法 Download PDF

Info

Publication number
CN103414839B
CN103414839B CN201310314405.8A CN201310314405A CN103414839B CN 103414839 B CN103414839 B CN 103414839B CN 201310314405 A CN201310314405 A CN 201310314405A CN 103414839 B CN103414839 B CN 103414839B
Authority
CN
China
Prior art keywords
image
secret image
secret
sub
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310314405.8A
Other languages
English (en)
Other versions
CN103414839A (zh
Inventor
王安红
刘文杰
刘丽
李志宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Banmude Machinery Equipment Co., Ltd.
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN201310314405.8A priority Critical patent/CN103414839B/zh
Publication of CN103414839A publication Critical patent/CN103414839A/zh
Application granted granted Critical
Publication of CN103414839B publication Critical patent/CN103414839B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Image Processing (AREA)
  • Storage Device Security (AREA)

Abstract

一种分级-分组的秘密图像共享方法,属于秘密图像共享技术领域,包括发送端对秘密图像的分级分解、共享、隐藏和接收端对秘密图像的分组渐进恢复。发送端:首先采用比特位分解将秘密图像分解为不同等级的子秘密图像,然后采用Shamir的 门限方案分别将每个子秘密图像共享为一组影子图像,并将每组影子图像隐藏到不同的掩饰图像中分发给不同权限组中的不同参与者;接收端:同一权限组只有提供k个或k个以上的隐藏图像才可恢复本组子秘密图像,不同权限组将恢复的子秘密图像叠加可实现对秘密图像的渐进恢复。本发明的优点是根据实际需要可将秘密图像共享给不同管理权限的多组参与者。

Description

一种分级-分组的秘密图像共享方法
技术领域
本发明属于秘密图像共享技术领域,具体涉及一种分级-分组的秘密图像共享方法。
背景技术
随着计算机及数字多媒体的发展,越来越多的数字图像通过网络进行传输,因此,网络传输的安全性和保密性成为了越来越重要的问题,尤其是一些军事、商业等对图像信息的完整性和安全性要求较高的领域内,信息的安全性更显得尤为重要。然而数字图像数据量大、冗余度高、像素间相关性强,因此早期的对数字、数码的加密方法已不能适应对数字图像加密的要求。
秘密图像共享技术(Secret image sharing)是应用于图像的一种加密技术,即将原始的秘密图像按照一定的运算拆分成n幅似噪声的影子图像来代替原始的秘密图像在网络上进行传输,接收端只有收集到其中的k幅或更多影子图像才能恢复出原秘密图像,其中k≤n,k,n均为正整数;而少于k幅影子图像就无法恢复秘密图像的任何信息。通过该技术既能够防止秘密图像管理权利过于集中,同时在通信过程中丢失一部分信息的情况下仍能重构出原秘密图像,因此一定程度上能抵抗通信中的丢包现象,增强秘密图像的安全性和完整性。
目前的秘密图像共享方案可分为以下几类:一是注重于减小影子图像尺寸的秘密图像共享方案,这些方案考虑图像信道的特性,尽量减少要传输的秘密图像尺寸,便于在较低的通信信道下进行秘密图像传输;二是可渐进恢复的秘密图像共享方案,恢复秘密图像时随着收到影子图像个数的增加,恢复图像的质量越来越好,可以更容易更灵活的监控恢复图像的质量;三是多个秘密图像共享方案,主要是为了增加共享多个秘密的能力;四是能够恢复秘密图像和掩饰图像的可逆秘密图像共享方案等。
以上四种方案都是将一个或者多个秘密图像共享给一组人,然而在一些实际场合中,可能需要将秘密图像共享给不同管理权限的多组参与者,如一个企业中,根据参与者级别(比如董事长和总经理)的不同,允许他们拥有不同的秘密图像的管理权限;而同一组内的多个参与者,虽然具有相同的管理权限,但也需要相互制约,共同管理秘密信息,此时,上述四种方案不能适应这一场合的应用。
发明内容
本发明的目的是提供一种能够将秘密图像共享给不同管理权限的多组参与者的分级-分组的秘密图像共享方案,如图1所示,可有效地应用在一些需要分级-分组管理秘密图像的场合。
本发明是这样实施的,其特征在于操作步骤如下:
Ⅰ.发送端秘密图像的分级分解、共享、隐藏,包括下列步骤:
第一步,对秘密图像进行比特位分解形成多个不同等级的子秘密图像:
⑴.读入一幅U×V大小的秘密图像S,将其分为互不重叠的、2×2大小的图像块,从第一个图像块开始执行下列步骤(2)和(3);
⑵.如图2所示,假设第一个图像块中4个像素的值分别为d11,d12,d21,d22,将每个像素值转换为8比特二进制st1,st2,st3,st4,依次取出st1,st2,st3,st4的第一和第二比特形成8位二进制比特流st1',同理,依次取出第三和第四比特形成比特流st2'、第五和第六比特形成比特流st3'、第七和第八比特形成比特流st4';
⑶.如图3所示,分别转换二进制比特流st1',st2',st3',st4'为十进制数d1,d2,d3,d4,并将d1,d2,d3,d4作为像素值依次存入四幅子秘密图像矩阵S1,S2,S3,S4
⑷.重复步骤(2)-(3),直到秘密图像S中的所有图像块均被处理完毕,此时,原始秘密图像S被分成四个不同级别的子秘密图像S1,S2,S3,S4,其大小均为 U 2 × V 2 ;
第二步,将四幅子秘密图像分别共享为四组影子图像并隐藏到不同的掩饰图像中,以子秘密图像S1为例:
⑴.转换子秘密图像S1的每个像素为r位m进制数,并将每个像素的每位数独立存储于矩阵P中,形成大小为的矩阵P;
⑵.读入一幅H×Z大小的掩饰图像C1,其中按逐行扫描方式将每个像素依次存入列向量q中,其大小为(H×Z)×1,并进行如下操作:
a=q mod m     (1)
dv=q-a     (2)
其中,mod表示求余数运算;
⑶.如图4所示,按行依次对矩阵P中数字进行分组,每k-1个数字为一组,作为Shamir(k,n)门限方案中多项式的前k-1个系数,依次取列向量a中的数作为第k个系数,如(3)式:
fg(x)=(pj+pj+1x1+…+pj+k-2xk-2+agxk-1)mod m,     (3)
其中,pj为矩阵P中的第j个元素,j=b×(k-1)+1, 表示向上取整;g=1,2,...,H×Z;因为所以当 j = U 2 × V × r 2 + 1 , . . . , H × Z × ( k - 1 ) + 1 时,fg(x)中的系数pj取零;
⑷.根据公式(3),取x=1,2,...,n,分别计算fg(1),fg(2),...,fg(n)得到n个列向量y1,y2,...,yn
y1=fg(1),y2=fg(2),…,yn=fg(n),g=1,2,...,H×Z,     (4)
⑸.计算公式(5),并将结果存入列向量s1,...,sx,...,sn
sx=dv+yx,x=1,2,...,n     (5)
⑹.将s1,...,sx,...,sn都转换为任意大小的矩阵,分别记为ST1,...,STx,...,STn,表示n幅隐藏图像;
⑺.将隐藏图像ST1,...,STx,...,STn分发给相应管理权限组中n个不同的参与者保存,并将m的值和对应的密钥x告知每个参与者;
至此,完成子秘密图像S1的隐藏和分发过程;
同样地,将子秘密图像S2,S3,S4分别按照步骤(1)-(7)执行后分发给其对应管理权限组中n个不同的参与者保存;
Ⅱ.接收端对秘密图像和掩饰图像的恢复:
第一步,对子秘密图像和掩饰图像的恢复;根据Shamir(k,n)门限方案的思想,对同一组参与者,最少收集到其中的k个参与者提供的隐藏图像及相应密钥x才能恢复本组的子秘密图像和掩饰图像,以收集到第一组k幅隐藏图像为例:
⑴.读入收集到的k幅隐藏图像及相应密钥并按逐行扫描方式将每个隐藏图像矩阵转换为列向量大小均为(H×Z)×1,则可求得 y i t : y i t = s i t mod m , i t = i 1 , i 2 , . . . , i k ; f g ( i t ) = y i t , 其中g=1,2,...,H×Z;
⑵.分别提取中第g个(g=1,2,...,H×Z)未被处理的数用k个点构造k-1阶方程组:
f g ( x i 1 ) = ( p j + p j + 1 x i 1 1 + . . . + p j + k - 2 x i 1 k - 2 + a g x i 1 k - 1 ) mod m
f g ( x i 2 ) = ( p j + p j + 1 x i 2 1 + . . . + p j + k - 2 x i 2 k - 2 + a g x i 2 k - 1 ) mod m
……
f g ( x i k ) = ( p j + p j + 1 x i k 1 + . . . + p j + k - 2 x i k k - 2 + a g x i k k - 1 ) mod m
由上式方程组,求解出k个系数pj,pj+1,...,pj+k-2,ag,记为一组;
⑶.重复步骤(2),直到中所有数都被处理,最终得到H×Z组系数;
⑷.当j满足时,依次取每组系数的前k-1个数pj,pj+1,...,pj+k-2执行如下操作:(i)将k-1个数中每r位视为一个m进制数,并将其转换为十进制数;(ii)将得到的十进制数作为像素值按逐行排列方式依次存入矩阵中,该矩阵即为子秘密图像矩阵S1
⑸.提取每组系数的第k个数ag进行掩饰图像恢复:首先,求取dv: dv = s i 1 - y i 1 = s i 2 - y i 2 = . . . = s i t - y i t ; 然后利用ag构成列向量a来求取q:q=a+dv;最后,将列向量q转换为矩阵求得掩饰图像C1
同样地,其他组隐藏图像都按照步骤(1)-(5)执行后可得相应的子秘密图像S2,S3,S4及其对应的掩饰图像;
第二步,对秘密图像的渐进恢复:
⑴.两个或两个以上不同组的参与者提供其恢复的子秘密图像,即可采用比特位分解的逆过程恢复不同质量的原秘密图像;
⑵.当所有组均能提供其恢复的子秘密图像时,用比特位分解的逆过程可以恢复一个无损的秘密图像S。
本发明的优点及其积极效果是:
(1)秘密图像隐藏在掩饰图像中进行传输,隐藏后的图像与原掩饰图像之间的差别用人眼很难辨别出来,具有一定的迷惑性和安全性。
(2)子秘密图像和掩饰图像的恢复都是可逆的,秘密图像的恢复是一个可渐进的恢复,根据不同用户对重构图像质量的不同需求,实现渐进重构过程。随着重构的子秘密图像的不断增加,秘密图像的重构质量越好。这对实际应用中需要根据管理权限将秘密图像进行分组管理来说,具有很好的用途。
(3)该算法可以根据公司实际的需要进行扩展。比特位分解可以根据需要的级数随意进行分配,使用Shamir的(k,n)门限方案时,可以根据每组人数的多少灵活的进行扩展,具有很好的灵活性和实用性。
附图说明
图1是分级-分组的秘密图像共享方案的框图;
图2和图3是本发明中对一个2×2的图像块进行比特位分解的示意图;
图4是本发明中将一个子秘密图像S1共享并嵌入掩饰图像C1的框图;
图5是本发明中实验所用图;
图中:(a)为原秘密图像S;
(b)~(e)分别为所用的四个掩饰图像C1,C2,C3,C4
图6是本发明秘密图像的比特位分解图;
图中:(f)为原秘密图像S;
(g)~(j)为秘密图像进行比特位分解后所得子秘密图像S1,S2,S3,S4
图7是本发明中将四个子秘密图像分别共享为两个影子图像再分别嵌入到四组掩饰图像对比图;
图中:(b1)~(b2)为最高权限组所持有的隐藏图像ST1,PSNR=40.27dB;ST2,PSNR=40.42dB;
(c1)~(c2)为次高权限组所持有的隐藏图像ST3,PSNR=39.78dB;ST4,PSNR=39.77dB;
(d1)~(d2)为次低权限组所持有的隐藏图像ST5,PSNR=40.36dB;ST6,PSNR=39.86dB;
(e1)~(e2)为最低权限组所持有的隐藏图像ST7,PSNR=40.33dB;ST8,PSNR=39.76dB。
图8是本发明恢复的子秘密图像和掩饰图像;
图中:(g1)~(j1)为无失真恢复的四个子秘密图像S1,S2,S3,S4
(b3)~(e3)为无失真恢复的四个掩饰图像C1,C2,C3,C4
图9是本发明中渐进恢复的秘密图像;
图中:(a1)子秘密图像S3和S4合作恢复的秘密图像RS1,PSNR=2.12dB;
(a2)子秘密图像S2和S3合作恢复的秘密图像RS2,PSNR=3.41dB;
(a3)子秘密图像S2,S3和S4共同合作恢复的秘密图像RS3,PSNR=3.48dB;
(a4)子秘密图像S1单独恢复的秘密图像RS4,PSNR=16.18dB;
(a5)子秘密图像S1和S4合作恢复的秘密图像RS5,PSNR=16.51dB;
(a6)子秘密图像S1和S2合作恢复的秘密图像RS6,PSNR=29.03dB;
(a7)子秘密图像S1,S2和S3合作恢复的秘密图像RS7,PSNR=42.46dB;
(a8)恢复的子秘密图像S1,S2,S3和S4都参与的时候可以恢复一个无损的原始秘密图像S,PSNR=Inf;
具体实施方式
我们选择Matlab7.0作为软件平台,编程实现本发明方案的设计。实施过程是选取512×512的标准测试图像“Spoke.bmp”作为秘密图像S,选取512×512的标准测试图像“lena.bmp”,“barbara.bmp”,“peppers.bmp”和“goldhill.bmp”分别作为四个掩饰图像C1,C2,C3,C4(如附图5所示)。采用(2,2)的门限方案,m=7时嵌入子秘密图像失真最小。
具体操作步骤是:
Ⅰ.发送端秘密图像的分级分解、共享、隐藏,包括下列步骤:
第一步,对秘密图像进行比特位分解形成多个不同等级的子秘密图像:
⑴.读入一幅512×512的秘密图像S,将其分为互不重叠的、2×2大小的图像块,从第一个图像块开始执行下列步骤(2)和(3);
⑵.第一个图像块中4个像素的值为{83,161;186,73},将每个像素值转换为8比特二进制{01010011,00111101;10111010,01001001},重排后组成的四个8位二进制比特流分别为{01001001,01111100;00111010,11011001};
⑶.分别转换二进制流{01001001,01111100;00111010,11011001}为十进制数d1=73,d2=124,d3=58,d4=217,并将d1,d2,d3,d4作为像素值依次存入四幅子秘密图像矩阵S1,S2,S3,S4
⑷.重复步骤(2)-(3),直到秘密图像S中的所有图像块均被处理完毕;此时,原始秘密图像S被分成四个不同级别的子秘密图像S1,S2,S3,S4(如附图6所示),其大小均为256×256;
第二步,将四幅子秘密图像分别共享为四组影子图像并隐藏到不同的掩饰图像中,以子秘密图像S1为例:
⑴.转换子秘密图像S1的每个像素为3位7进制数,并将每个像素的每位数独立存储于矩阵P中,形成大小为256×256×3的矩阵P;
⑵.读入一幅512×512(512×512>256×256×3)大小的掩饰图像C1,按逐行扫描方式将每个像素依次存入列向量q中,其大小为(512×512)×1,并进行如下操作:
a=q mod7,
dv=q-a,
其中,mod表示求余数运算;
⑶.按行依次对矩阵P中数字进行分组,采用Shamir(2,2)的门限方案,每1个数字为一组作为多项式的第1个系数,依次取列向量a中的数作为第2个系数,如下式:
fg(x)=(pj+agx)mod7,
其中,pj为矩阵P中的第j个元素, 表示向上取整;g=1,2,...,512×512;因为512×512>256×256×3,所以当时,fg(x)中的系数pj取零;
⑷.根据(3)中公式,取x=1,2,分别计算fg(1),fg(2)并依顺序分别添加到2个列向量y1,y2中:
y1=fg(1),y2=fg(2),g=1,2,...,512×512
⑸.计算下式,并将结果存入列向量s1,s2::
sx=dv+yx,x=1,2
⑹.将s1,s2都转换为512×512的矩阵,分别记为ST1,ST2,表示2幅隐藏图像(如附图7(b1)~(b2)所示);
⑺.将隐藏图像ST1,ST2分发给最高权限组中2个不同的参与者保存,并将对应的密钥x=1,2和m=7的值告知每个参与者;
至此,完成子秘密图像S1的隐藏和分发过程;
同样地,将子秘密图像S2,S3,S4分别按照步骤(1)-(7)执行后分发给其对应管理权限组中2个不同的参与者保存(如附图7(c1)~(e2)所示);
Ⅱ.接收端对秘密图像和掩饰图像的恢复:
第一步,对子秘密图像和掩饰图像的恢复;根据Shamir(2,2)门限方案的思想,对同一组参与者,最少收集到其中的2个参与者提供的隐藏图像及相应密钥x才能恢复相应级别的子秘密图像和掩饰图像,以收集到第一组2幅隐藏图像为例:
⑴.读入收集到的2幅隐藏图像及相应密钥并按逐行扫描方式将每个隐藏图像矩阵转换为列向量大小均为(512×512)×1,则可求得 y i t : y i t = s i t mod 7 , i t = i 1 , i 2 ; f g ( i t ) = y i t , 其中g=1,2,...,512×512;
⑵.分别提取中第g个(g=1,2,...,512×512)未被处理的数用2个点构造1阶方程组:
f g ( x i 1 ) = ( p j + a g x i 1 ) mod 7 , f g ( x i 2 ) = ( p j + a g x i 2 ) mod 7 ,
由上式方程组,求解出系数pj,ag,记为一组;
⑶.重复步骤(2),直到中所有数都被处理,最终得到512×512组系数;
⑷.当j满足j≤256×256×3时,依次取每组系数的前1个数pj按逐行排序方式依次存入256×256×3的矩阵P中,将P中的数每3位视为一个7进制数并将其转换为十进制数得到矩阵,该矩阵即为子秘密图像矩阵S1(如附图8(g1)所示);
⑸.提取每组系数的第2个数ag进行掩饰图像恢复:首先,求取dv:然后利用ag构成列向量a来求取q:q=a+dv;最后,将列向量q转换为512×512的矩阵求得掩饰图像C1(如附图8(b3)所示);
同样地,其他组隐藏图像都按照步骤(1)-(5)执行后可得相应的子秘密图像S2,S3,S4(如附图8(h1)~(j1)所示)及其对应的掩饰图像(如附图8(c3)~(e3)所示);
第二步,对秘密图像的渐进恢复:
⑴.两个或两个以上不同组的参与者提供其恢复的子秘密图像,即可采用比特位分解的逆过程恢复不同质量的原秘密图像(如附图9(a1)~(a7)所示);
⑵.当所有组均能提供其恢复的子秘密图像时,用比特位分解的逆过程可以恢复一个无损的秘密图像S(如附图9(a8)所示)。
为了显示该方案与其它方案(Lin et al.,2009;Lin and Chan,2010;Guo et al.,2012)对比的优越性,在下述表1中做了对比。
表1
功能 Lin and Chan(2010) Lin(2009) Guo(2012) Ours(本发明)
无损的秘密图像
无损的掩饰图像
影子图像的质量 42dB 43dB 38dB 40dB
有意义的影子图像
渐进的特性
表1给出了比较结果,可以看出,从渐进的特性来说,本发明方案比Lin和Chan(2010)与Lin(2009)的方案稍有改进;对于无损的掩饰图像的恢复和影子图像的质量来说,本发明方案较Guo(2012)有所改进。这使得本发明方案可以实现图像的分组、分级渐进恢复的一种特性。

Claims (1)

1.一种分级-分组的秘密图像共享方法,包括发送端对秘密图像的分级分解、共享、隐藏和接收端对秘密图像的分组渐进恢复,其特征在于具体操作步骤如下:
Ⅰ.发送端秘密图像的分级分解、共享、隐藏,包括下列步骤:
第一步,对秘密图像进行比特位分解形成多个不同等级的子秘密图像:
⑴.读入一幅U×V大小的秘密图像S,将其分为互不重叠的、2×2大小的图像块,从第一个图像块开始执行下列步骤(2)和(3);
⑵.假设第一个图像块中4个像素的值分别为d11,d12,d21,d22,将每个像素值转换为8比特二进制st1,st2,st3,st4,依次取出st1,st2,st3,st4的第一和第二比特形成8位二进制比特流st1',同理,依次取出第三和第四比特形成比特流st2'、第五和第六比特形成比特流st3'、第七和第八比特形成比特流st4';
⑶.分别转换二进制比特流st1',st2',st3',st4'为十进制数d1,d2,d3,d4,并将d1,d2,d3,d4作为像素值依次存入四幅子秘密图像矩阵S1,S2,S3,S4
⑷.重复步骤(2)-(3),直到秘密图像S中的所有图像块均被处理完毕,此时,原始秘密图像S被分成四个不同级别的子秘密图像S1,S2,S3,S4,其大小均为 U 2 × V 2 ;
第二步,将四幅子秘密图像分别共享为四组影子图像并隐藏到不同的掩饰图像中,以子秘密图像S1为例:
⑴.转换子秘密图像S1的每个像素为r位m进制数,并将每个像素的每位数独立存储于矩阵P中,形成大小为的矩阵P;
⑵.读入一幅H×Z大小的掩饰图像C1,其中按逐行扫描方式将每个像素依次存入列向量q中,其大小为(H×Z)×1,并进行如下操作:
a=q mod m            (1)
dv=q-a              (2)
其中,mod表示求余数运算;
⑶.按行依次对矩阵P中数字进行分组,每k-1个数字为一组,作为Shamir(k,n)门限方案中多项式的前k-1个系数,依次取列向量a中的数作为第k个系数,如(3)式:
fg(x)=(pj+pj+1x1+…+pj+k-2xk-2+agxk-1)mod m,     (3)
其中,pj为矩阵P中的第j个元素,j=b×(k-1)+1, 表示向上取整;g=1,2,...,H×Z;因为所以当 j = U 2 × V × r 2 + 1 , . . . , H × Z × ( k - 1 ) + 1 时,fg(x)中的系数pj取零;
⑷.根据公式(3),取x=1,2,...,n,分别计算fg(1),fg(2),...,fg(n)得到n个列向量y1,y2,...,yn
y1=fg(1),y2=fg(2),…,yn=fg(n),g=1,2,...,H×Z,     (4)
⑸.计算公式(5),并将结果存入列向量s1,...,sx,...,sn
sx=dv+yx,x=1,2,...,n              (5)
⑹.将s1,...,sx,...,sn都转换为任意大小的矩阵,分别记为ST1,...,STx,...,STn,表示n幅隐藏图像;
⑺.将隐藏图像ST1,...,STx,...,STn分发给相应管理权限组中n个不同的参与者保存,并将m的值和对应的密钥x告知每个参与者;
至此,完成子秘密图像S1的隐藏和分发过程;
同样地,将子秘密图像S2,S3,S4分别按照步骤(1)-(7)执行后分发给其对应管理权限组中n个不同的参与者保存;
Ⅱ.接收端对秘密图像和掩饰图像的恢复:
第一步,对子秘密图像和掩饰图像的恢复;根据Shamir(k,n)门限方案的思想,对同一组参与者,最少收集到其中的k个参与者提供的隐藏图像及相应密钥x才能恢复本组的子秘密图像和掩饰图像,以收集到第一组k幅隐藏图像为例:
⑴.读入收集到的k幅隐藏图像及相应密钥并按逐行扫描方式将每个隐藏图像矩阵转换为列向量大小均为(H×Z)×1,则可求得 y i t = s i t mod m , it=i1,i2,...,ik;令 f g ( i t ) = y i t , 其中g=1,2,...,H×Z;
⑵.分别提取中第g个(g=1,2,...,H×Z)未被处理的数用k个点构造k-1阶方程组:
f g ( x i 1 ) = ( p j + p j + 1 x i 1 1 + . . . + p j + k - 2 x i 1 k - 2 + a g x i 1 k - 1 ) mod m f g ( x i 2 ) = ( p j + p j + 1 x i 2 1 + . . . + p j + k - 2 x i 2 k - 2 + a g x i 2 k - 1 ) mod m . . . . . . f g ( x i k ) = ( p j + p j + 1 x i k 1 + . . . + p j + k - 2 x i k k - 2 + a g x i k k - 1 ) mod m
由上式方程组,求解出k个系数pj,pj+1,...,pj+k-2,ag,记为一组;
⑶.重复步骤(2),直到中所有数都被处理,最终得到H×Z组系数;
⑷.当j满足时,依次取每组系数的前k-1个数pj,pj+1,...,pj+k-2执行如下操作:(i)将k-1个数中每r位视为一个m进制数,并将其转换为十进制数;(ii)将得到的十进制数作为像素值按逐行排列方式依次存入矩阵中,该矩阵即为子秘密图像矩阵S1
⑸.提取每组系数的第k个数ag进行掩饰图像恢复:首先,求取dv: dv = s i 1 - y i 1 = s i 2 - y i 2 = . . . = s i t - y i t ; 然后利用ag构成列向量a来求取q:q=a+dv;最后,将列向量q转换为矩阵求得掩饰图像C1
同样地,其他组隐藏图像都按照步骤(1)-(5)执行后可得相应的子秘密图像S2,S3,S4及其对应的掩饰图像;
第二步,对秘密图像的渐进恢复:
⑴.两个或两个以上不同组的参与者提供其恢复的子秘密图像,即可采用比特位分解的逆过程恢复不同质量的原秘密图像;
⑵.当所有组均能提供其恢复的子秘密图像时,用比特位分解的逆过程可以恢复一个无损的秘密图像S。
CN201310314405.8A 2013-07-25 2013-07-25 一种分级-分组的秘密图像共享方法 Active CN103414839B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310314405.8A CN103414839B (zh) 2013-07-25 2013-07-25 一种分级-分组的秘密图像共享方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310314405.8A CN103414839B (zh) 2013-07-25 2013-07-25 一种分级-分组的秘密图像共享方法

Publications (2)

Publication Number Publication Date
CN103414839A CN103414839A (zh) 2013-11-27
CN103414839B true CN103414839B (zh) 2015-09-16

Family

ID=49607822

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310314405.8A Active CN103414839B (zh) 2013-07-25 2013-07-25 一种分级-分组的秘密图像共享方法

Country Status (1)

Country Link
CN (1) CN103414839B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103761702B (zh) * 2014-01-09 2017-01-11 太原科技大学 一种基于秘密共享的图像隐藏和认证方法
CN105184731A (zh) * 2015-07-16 2015-12-23 国家电网公司 一种新的图像加密方法
CN105468985B (zh) * 2015-12-01 2018-07-03 桂林电子科技大学 秘密图像分割保护方法
CN105976303B (zh) * 2016-05-23 2019-03-01 太原科技大学 一种基于矢量量化的可逆信息隐藏和提取方法
CN106530206B (zh) * 2016-11-15 2020-01-10 深圳大学 基于光学加密和解密技术的图像加密和解密方法及装置
CN106960157B (zh) * 2017-03-15 2019-07-16 浙江大学 数字图像分辨率分级获取控制管理器的实现方法
CN108305298B (zh) * 2018-01-17 2021-06-04 湖北工业大学 一种基于数独矩阵索引的图像可恢复信息隐藏方法
CN111182171B (zh) * 2019-12-16 2022-03-15 成都信息工程大学 一种分阶段解密的图像秘密共享信息处理方法及系统
CN111953485B (zh) * 2020-08-03 2022-06-10 杭州电子科技大学 一种门限可变的秘密图像共享方法
CN112422767B (zh) * 2020-10-30 2022-07-22 国家电网有限公司大数据中心 一种基于视觉效果秘密共享方法及系统
CN113032807B (zh) * 2021-03-25 2022-07-01 绍兴图信物联科技有限公司 基于混合分形矩阵的可认证(2,3)机密图像共享方法及装置
CN113190807B (zh) * 2021-05-31 2023-05-12 中国人民武装警察部队工程大学 基于图像秘密共享的密文域可逆信息隐藏方法
CN114418818A (zh) * 2021-12-15 2022-04-29 深圳先进技术研究院 一种权限分级共享并重构秘密图像的方法和系统
CN114826564B (zh) * 2022-02-28 2023-02-21 南京信息工程大学 一种基于区块链的秘密图像共享和恢复方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4863259B2 (ja) * 2005-11-30 2012-01-25 Necソフト株式会社 視覚復号型秘密分散方法および視覚復号型秘密分散システム
CN103037223B (zh) * 2012-12-14 2015-05-20 太原科技大学 一种基于块压缩感知的秘密图像共享方法

Also Published As

Publication number Publication date
CN103414839A (zh) 2013-11-27

Similar Documents

Publication Publication Date Title
CN103414839B (zh) 一种分级-分组的秘密图像共享方法
Sprung Iwasawa theory for elliptic curves at supersingular primes: a pair of main conjectures
CN103037223B (zh) 一种基于块压缩感知的秘密图像共享方法
CN110602346B (zh) 一种基于超混沌系统的无损彩色图像加密方法
KR101197103B1 (ko) 위성압축영상 분할처리 장치 및 그 방법
CN101882992B (zh) 门限秘密信息分配、还原方法及装置
CN110120079A (zh) 基于三维Logistic映射和广义Cat映射彩色图像加密方法
Chao et al. Secret image sharing: A Boolean-operations-based approach combining benefits of polynomial-based and fast approaches
CN115580687B (zh) 基于变参数超混沌系统与s形扩散的多图像加密方法
CN106407824A (zh) 一种图像加密方法及装置
Ottaviani An invariant regarding Waring’s problem for cubic polynomials
Zywina Bounds for the Lang-Trotter conjectures
CN106127669A (zh) 基于保面积Baker映射的混沌图像加密方法
Aberbach et al. New estimates of Hilbert–Kunz multiplicities for local rings of fixed dimension
CN114157771B (zh) 基于压缩感知的非对称可逆图像隐藏方法
Qiuhua et al. Image cryptosystems based on blind source separation
Khalane et al. A parameterized halfband filterbank design for image encryption
EP1222527A1 (de) Verfahren zum erzeugen von pseudozufallszahlen und verfahren für elektronische signatur
CN114021074A (zh) 一种信息奇异值分解重构与语义信息误差矩阵验证系统
Ding et al. Participants Increasing for Shamir’s Polynomial-Based Secret Image Sharing Scheme
Curtis Homology representations of finite groups
Rana et al. Optimal decomposition of incoherent qubit channel
Liţcanu Lamé operators with finite monodromy—a combinatorial approach
Yan et al. A color image encryption scheme based on cellular neural networks and linear feedback shift registers
Ebin et al. Thomae's formula for Z^ sub n^ curves

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190828

Address after: 030000 Taiyuan Comprehensive Reform Demonstration Zone, Taiyuan Tanghuai Park, No. 13 Longsheng Street, Yunnan Special Economic Zone, Block E, 0716

Patentee after: Shanxi Banmude Machinery Equipment Co., Ltd.

Address before: 030024 Taiyuan City, Shanxi Province Wan Road, No. 66, No.

Patentee before: Taiyuan Univ. of Science & Technology

TR01 Transfer of patent right