CN103412175A - 光子晶体光纤电流磁场传感器及其制备和测量方法 - Google Patents
光子晶体光纤电流磁场传感器及其制备和测量方法 Download PDFInfo
- Publication number
- CN103412175A CN103412175A CN2013103426586A CN201310342658A CN103412175A CN 103412175 A CN103412175 A CN 103412175A CN 2013103426586 A CN2013103426586 A CN 2013103426586A CN 201310342658 A CN201310342658 A CN 201310342658A CN 103412175 A CN103412175 A CN 103412175A
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- crystal fiber
- electric wire
- fiber
- field sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 129
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 238000003466 welding Methods 0.000 claims abstract description 14
- 238000005253 cladding Methods 0.000 claims abstract description 12
- 238000001514 detection method Methods 0.000 claims abstract description 5
- 239000013307 optical fiber Substances 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 238000005452 bending Methods 0.000 abstract description 3
- 238000012546 transfer Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000036039 immunity Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Landscapes
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
Abstract
本发明公开了一种光子晶体光纤电流磁场传感器及其制备和测量方法。制备时先将两段单模光纤中间熔接一小段光子晶体光纤,由于熔接时光子晶体光纤部分空气孔洞塌缩,因而当光传到光子晶体光纤时会激发出芯模和包层模传输形成模式干涉;然后将光子晶体光纤、单模光纤和电线伸直,将两段单模光纤粘在电线上,电线固定在夹具上制成一个电流磁场传感器。测量时将电线上通入直流电,与电线垂直方向加上磁场,因此由于安培力的作用电线会带动光子晶体光纤发生弯曲。由于光子晶体光纤包层模对弯曲十分敏感,因而光谱仪上检测的干涉条纹会随外加电流磁场的变化发生明显的改变,从而实现对电流磁场的传感检测。
Description
技术领域
本发明涉及光电子技术领域,具体涉及光纤传感器的研究与制备。更具体而言,是利用安培力使电线带动光子晶体光纤发生弯曲,从而制备出一种光子晶体光纤电流磁场传感器。
背景技术
光纤传感是20世纪70年代问世的一门新技术,它是以光作为信息载体,以光纤作为信息传输介质的一种传感技术。由于光纤传感器相对于传统传感器而言具有体积小重量轻,不受电磁干扰,高灵敏度等优点,因而自20世纪70年代低损耗光纤问世以来,它逐步成为新一代传感器的研发方向之一,展现出非常好的应用前景。近十年来,随着科技的进步和研究的深入,传统的光纤在结构和性能上已不能满足人们的需求,因此大量新型的光子晶体光纤不断的被研制出来,在光纤技术领域引起了新的革命。光子晶体光纤是一种新型波导,与常规光纤相比,光子晶体光纤由于引进了微结构,因而具有独特的光学性质,在传感方面有着十分重要的作用。
现代工业中很多领域都需要对电流磁场进行监测,比如在智能电网中必须对电流进行监测以优化电能配置,减少电缆负荷量。由于传统的电流磁场传感器体积重量大,易受电磁干扰,不易与光通讯网络整合等缺点,因此新型光纤电流磁场传感器的研发与应用已成为当今全球的一个热点,有着不可替代的作用。
发明内容
本发明的目的是:利用安培力使电线带动光子晶体光纤发生弯曲,从而制备出一种光子晶体光纤电流磁场传感器,能够方便地应用在各种领域。本发明的另外一个目的是提供该传感器的制备和测量方法。
本发明的技术方案是:
光子晶体光纤电流磁场传感器,包括光子晶体光纤、单模光纤和电线,光子晶体光纤的两端分别连接一段单模光纤,单模光纤固定在电线上,电线固定在夹具上;所述光子晶体光纤与电线紧靠在一起。所述光子晶体光纤为由固体芯和空气包层组成的光纤,长度为5毫米到50毫米。电线可以用铜线或铝线。
上述光子晶体光纤电流磁场传感器的制备方法,包括如下步骤:首先用光纤切割刀将单模光纤和光子晶体光纤的端面切平;然后采用电弧熔接的方法将两段单模光纤分别和光子晶体光纤的两个端面熔接起来,熔接后光子晶体光纤部分空气孔洞塌缩;最后将光子晶体光纤、单模光纤和电线拉直,将两段单模光纤粘接在电线上,光子晶体光纤与电线紧靠但不与电线粘在一起。
为了保证熔接后光子晶体光纤部分空气孔洞塌缩形成模式干涉,空气孔洞塌缩区域在100微米到300微米。
本发明的光子晶体光纤电流磁场传感器的测量装置包括:直流电源、电磁铁、控制装置、电线、电阻、宽带光源、光谱仪、普通单模光纤和所述光子晶体光纤电流磁场传感器;直流电源与电线、电阻串联,电磁铁与控制装置连在一起,宽带光源通过普通单模光纤连接所述光子晶体光纤电流磁场传感器一端的单模光纤,所述光子晶体光纤电流磁场传感器另一端的单模光纤再通过普通单模光纤与光谱仪连接;测量时,打开直流电源,将电线上通入直流电,同时利用电磁铁与控制装置在电线垂直方向加上磁场,检测光谱仪上的干涉条纹的改变,实现对电流磁场的传感检测。
本发明的光子晶体光纤电流磁场传感器传感原理为:由于熔接时光子晶体光纤部分空气孔洞塌缩,因而当光传到光子晶体光纤时会激发出芯模和包层模传输形成模式干涉。测量时将电线上通入直流电,与电线垂直方向加上磁场,因此由于安培力的作用电线会带动光子晶体光纤发生弯曲。由于光子晶体光纤包层模对弯曲十分敏感,因而光谱仪上检测的干涉条纹会随外加电流磁场的变化发生明显的改变,从而实现对电流磁场的传感检测。
本发明的有益效果是:
(1)首次利用光子晶体光纤制备出高灵敏度的电流磁场传感器,体积小重量轻,不受电磁干扰。
(2)相比其它传感原理的电流磁场传感器,本发明无需复杂的工艺,光路简单,制作成本低,所需光子晶体光纤很短(一般5毫米到50毫米)。
(3)该光子晶体光纤电流磁场传感器采用波长调制方式,相对于强度调制型光纤传感器,具有对光源扰动免疫力高,检测性能稳定、准确等优势,系统检测结果在稳定性与可靠性方面有很大提高。
附图说明
图1光子晶体光纤电流磁场传感器的示意图;
图2单模光纤与光子晶体光纤中的模式转变图;
图3LMA-8实芯光子晶体光纤的截面图;
图4本发明传感器在不同磁场下的透射光谱图,电流固定2A;
图5本发明传感器共振波长的转移随磁场变化的拟合图,电流固定2A;
图6本发明传感器在不同电流下的透射光谱图,磁场固定36.8mT;
图7本发明传感器共振波长的转移随电流变化的拟合图,磁场固定36.8mT;
图8本发明传感器共振波长的转移随电流磁场乘积变化的拟合图。
具体实施方式
下面结合附图和具体实施方式对本发明做更进一步的具体说明,以使本发明的特点得以清楚展现。
图1是光子晶体光纤电流磁场传感器的示意图,包括:直流电源1、电磁铁2、控制装置、电线3、电阻4、宽带光源5、光谱仪6、普通单模光纤和所述光子晶体光纤电流磁场传感器;直流电源1与电线3、电阻4连在一起,电磁铁2与控制装置连在一起,宽带光源5通过普通单模光纤连接所述光子晶体光纤电流磁场传感器一端的单模光纤,所述光子晶体光纤电流磁场传感器另一端的单模光纤再通过普通单模光纤与光谱仪6连接。
实验中首先用光纤切割刀将单模光纤和LMA-8光子晶体光纤端面切平,然后采用熔接方法将两段单模光纤分别和光子晶体光纤的两个端面熔接起来,最后将光子晶体光纤7、单模光纤8和电线3伸直,将两段单模光纤8通过粘结剂9粘在电线3上,电线3固定在夹具上。熔接的光子晶体光纤7长度一般5毫米到50毫米,实验中用的光子晶体光纤7长20毫米。因为光子晶体光纤7和单模光纤8熔接处部分空气孔洞塌缩了,所以光传播到光子晶体光纤处会激发出芯模和包层模传输,因此在光子晶体光纤7里面存在多种模式干涉,最终光谱仪6上会呈现出干涉条纹。测量时将电线3上通入直流电,与电线3垂直方向加上磁场,因此由于安培力的作用电线会带动光子晶体光纤7发生弯曲。由于光子晶体光纤包层模对弯曲十分敏感,因而光谱仪6上检测的干涉条纹会随外加电流磁场的变化发生明显的改变,从而实现对电流磁场的传感检测。
图2显示了单模光纤与光子晶体光纤中的模式转变图。其中光在单模光纤中以芯模形式传播,在光子晶体光纤中以芯模和包层模两种形式传播,因而光在光子晶体光纤中存在模式干涉。
实验中我们用的是LMA-8实芯光子晶体光纤,图3是其截面图。该光子晶体光纤包层直径125微米,芯层直径8.4微米,空气孔洞直径2.17微米,空气孔洞间隔5.3微米。
图4是该传感器在不同磁场下的透射光谱图,电流固定2A。图中显示随磁场增大,透射光谱向左移动。这是因为当磁场逐渐增大时,安培力逐渐增大,光子晶体光纤弯曲程度逐渐变大,芯模和包层模的有效折射率差逐渐变小的缘故。不过也有可能随磁场增大,透射光谱向右移动。
图5是该传感器共振波长的转移随磁场变化的拟合图,电流固定2A。该图显示了很好的线性关系,从图中可以计算出当电流为2A时,磁场传感灵敏度为-73.0pm/mT。
图6是该传感器在不同电流下的透射光谱图,磁场固定36.8mT。图中显示随电流增大,透射光谱向左移动。这是因为当电流逐渐增大时,安培力逐渐增大,光子晶体光纤弯曲程度逐渐变大,芯模和包层模的有效折射率差逐渐变小的缘故。不过也有可能随电流增大,透射光谱向右移动。
图7是该传感器共振波长的转移随电流变化的拟合图,磁场固定36.8mT。该图显示了很好的线性关系,从图中可以计算出当磁场为36.8mT时,电流传感灵敏度为-1.3nm/A。
图8是该传感器共振波长的转移随电流磁场乘积变化的拟合图。该图显示了很好的线性关系,从图中可以计算出传感灵敏度为-36.8pm/(mA·T)。
Claims (6)
1.光子晶体光纤电流磁场传感器,其特征在于,包括光子晶体光纤、单模光纤和电线,光子晶体光纤的两端分别连接一段单模光纤,单模光纤固定在电线上,电线固定在夹具上;所述光子晶体光纤与电线紧靠在一起。
2.根据权利要求1所述的光子晶体光纤电流磁场传感器,其特征在于,所述光子晶体光纤为由固体芯和空气包层组成的光纤,所述光子晶体光纤的长度为5毫米到50毫米。
3.根据权利要求1或2所述的光子晶体光纤电流磁场传感器,其特征在于,所述电线为铜线或铝线。
4.如权利要求1所述的光子晶体光纤电流磁场传感器的制备方法,其特征在于,包括如下步骤:
(1)用光纤切割刀将单模光纤和光子晶体光纤的端面切平;
(2)采用熔接方法将两段单模光纤分别和光子晶体光纤的两个端面熔接起来,熔接后光子晶体光纤部分空气孔洞塌缩;
(3)将光子晶体光纤、单模光纤和电线拉直,将两段单模光纤粘接在电线上,光子晶体光纤与电线紧靠但不与电线粘在一起。
5.根据权利要求4所述的制备方法,其特征在于,所述熔接采用电弧熔接的方法,所述空气孔洞塌缩区域在100微米到300微米。
6.如权利要求1所述的光子晶体光纤电流磁场传感器的测量方法,其特征在于,测量装置包括:直流电源、电磁铁、控制装置、电线、电阻、宽带光源、光谱仪、普通单模光纤和所述光子晶体光纤电流磁场传感器;直流电源与电线、电阻串联,电磁铁与控制装置连在一起,宽带光源通过普通单模光纤连接所述光子晶体光纤电流磁场传感器一端的单模光纤,所述光子晶体光纤电流磁场传感器另一端的单模光纤再通过普通单模光纤与光谱仪连接;
测量时,打开直流电源,将电线上通入直流电,同时利用电磁铁与控制装置在电线垂直方向加上磁场,这时安培力的作用导致电线带动光子晶体光纤发生弯曲,检测光谱仪上的干涉条纹的改变,实现对电流磁场的传感检测。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310342658.6A CN103412175B (zh) | 2013-08-07 | 2013-08-07 | 光子晶体光纤电流磁场传感器及其制备和测量方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310342658.6A CN103412175B (zh) | 2013-08-07 | 2013-08-07 | 光子晶体光纤电流磁场传感器及其制备和测量方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103412175A true CN103412175A (zh) | 2013-11-27 |
CN103412175B CN103412175B (zh) | 2015-09-23 |
Family
ID=49605201
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310342658.6A Active CN103412175B (zh) | 2013-08-07 | 2013-08-07 | 光子晶体光纤电流磁场传感器及其制备和测量方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103412175B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280602A (zh) * | 2014-10-28 | 2015-01-14 | 哈尔滨电工仪表研究所 | 一种基于电动感应技术的电流冲击测量仪表 |
CN104597311A (zh) * | 2015-01-30 | 2015-05-06 | 南京大学 | 基于石墨烯-微光纤环形谐振腔的电流传感器及测量方法 |
CN104635019A (zh) * | 2015-03-06 | 2015-05-20 | 南京大学 | 基于悬空石墨烯的高灵敏度超快光纤电流传感器及其制法 |
CN105954689A (zh) * | 2016-04-27 | 2016-09-21 | 浙江大学 | 一种基于安培力的新型微弱磁场传感器及检测方法 |
CN107121726A (zh) * | 2017-06-22 | 2017-09-01 | 武汉理工大学 | 光纤双参量传感器及其制备方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000206154A (ja) * | 1999-01-07 | 2000-07-28 | Asahi Denshi Kk | 光電流・電圧計測装置 |
US20020130651A1 (en) * | 2001-03-19 | 2002-09-19 | Applied Materials, Inc. | Eddy-optic sensor for object inspection |
CN101377527A (zh) * | 2008-10-10 | 2009-03-04 | 南开大学 | 光纤电压测量仪 |
CN101726647A (zh) * | 2009-12-04 | 2010-06-09 | 华中科技大学 | 一种基于光子晶体光纤光栅的电流传感器 |
CN102419221A (zh) * | 2011-09-07 | 2012-04-18 | 南京大学 | 非偏振干涉高灵敏度光子晶体光纤温度传感器及制法 |
-
2013
- 2013-08-07 CN CN201310342658.6A patent/CN103412175B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000206154A (ja) * | 1999-01-07 | 2000-07-28 | Asahi Denshi Kk | 光電流・電圧計測装置 |
US20020130651A1 (en) * | 2001-03-19 | 2002-09-19 | Applied Materials, Inc. | Eddy-optic sensor for object inspection |
CN101377527A (zh) * | 2008-10-10 | 2009-03-04 | 南开大学 | 光纤电压测量仪 |
CN101726647A (zh) * | 2009-12-04 | 2010-06-09 | 华中科技大学 | 一种基于光子晶体光纤光栅的电流传感器 |
CN102419221A (zh) * | 2011-09-07 | 2012-04-18 | 南京大学 | 非偏振干涉高灵敏度光子晶体光纤温度传感器及制法 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280602A (zh) * | 2014-10-28 | 2015-01-14 | 哈尔滨电工仪表研究所 | 一种基于电动感应技术的电流冲击测量仪表 |
CN104597311A (zh) * | 2015-01-30 | 2015-05-06 | 南京大学 | 基于石墨烯-微光纤环形谐振腔的电流传感器及测量方法 |
CN104597311B (zh) * | 2015-01-30 | 2017-04-19 | 南京大学 | 基于石墨烯‑微光纤环形谐振腔的电流传感器及测量方法 |
CN104635019A (zh) * | 2015-03-06 | 2015-05-20 | 南京大学 | 基于悬空石墨烯的高灵敏度超快光纤电流传感器及其制法 |
CN104635019B (zh) * | 2015-03-06 | 2017-04-12 | 南京大学 | 基于悬空石墨烯的高灵敏度超快光纤电流传感器及其制法 |
CN105954689A (zh) * | 2016-04-27 | 2016-09-21 | 浙江大学 | 一种基于安培力的新型微弱磁场传感器及检测方法 |
CN105954689B (zh) * | 2016-04-27 | 2019-01-29 | 浙江大学 | 一种基于安培力的新型微弱磁场传感器及检测方法 |
CN107121726A (zh) * | 2017-06-22 | 2017-09-01 | 武汉理工大学 | 光纤双参量传感器及其制备方法 |
CN107121726B (zh) * | 2017-06-22 | 2020-05-05 | 武汉理工大学 | 光纤双参量传感器及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN103412175B (zh) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhao et al. | Photonic crystal fiber based surface plasmon resonance chemical sensors | |
CN105277135B (zh) | 一种具有温度不敏感特性的高灵敏度光纤曲率传感结构 | |
US11112316B2 (en) | Optical fiber temperature sensor | |
CN103412175A (zh) | 光子晶体光纤电流磁场传感器及其制备和测量方法 | |
Zhao et al. | A vibration-sensing system based on SMS fiber structure | |
CN107121083A (zh) | 一种不对称粗锥结构少模光纤应变传感器 | |
CN102221679A (zh) | 一种磁流体填充光子晶体光纤f-p磁场传感器 | |
CN203287311U (zh) | 一种基于双锥型细芯单模光纤的透射式光纤湿度传感器 | |
CN100367016C (zh) | 光纤温度测量仪及其测量方法 | |
Al-Qazwini et al. | Experimental realization and performance evaluation of refractive index SPR sensor based on unmasked short tapered multimode-fiber operating in aqueous environments | |
CN105911025B (zh) | 一种分布式螺旋芯光纤表面等离子体共振传感器及其测量方法 | |
CN105092535B (zh) | 分布式表面等离子体共振光纤传感器 | |
CN103439765B (zh) | 一种全光纤型多径干涉仪 | |
CN103175807A (zh) | 一种反射型全光纤氢气传感器及其制备和测量方法 | |
Chen et al. | All-fiber modal interferometer based on a joint-taper-joint fiber structure for refractive index sensing with high sensitivity | |
CN102944328B (zh) | 折射率不敏感的温度传感器的制备方法及测量装置 | |
CN103969221A (zh) | 基于单模-细芯-多模-单模结构的光纤折射率传感器 | |
CN103823125A (zh) | 一种基于细芯光纤和磁流体的电场传感器 | |
CN111457862A (zh) | 一种方向识别的光纤spr曲率传感器及使用制作方法 | |
CN110579726A (zh) | 一种基于spr的高灵敏度磁场传感装置 | |
CN109709499B (zh) | 一种基于光纤光栅的探针式矢量磁场传感器及其制作方法 | |
Shao et al. | Large measurement-range and low temperature cross-sensitivity optical fiber curvature sensor based on Michelson interferometer | |
CN212539081U (zh) | 一种方向识别的光纤spr曲率传感器 | |
Opoku et al. | Design and numerical analysis of a circular SPR based PCF biosensor for aqueous environments | |
CN104237607B (zh) | 基于微光纤耦合器的双路检测式电流磁场传感器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |