CN103411754A - 反射式聚光光伏聚光器光斑强度分布测量方法 - Google Patents

反射式聚光光伏聚光器光斑强度分布测量方法 Download PDF

Info

Publication number
CN103411754A
CN103411754A CN201310312690XA CN201310312690A CN103411754A CN 103411754 A CN103411754 A CN 103411754A CN 201310312690X A CN201310312690X A CN 201310312690XA CN 201310312690 A CN201310312690 A CN 201310312690A CN 103411754 A CN103411754 A CN 103411754A
Authority
CN
China
Prior art keywords
reflection
reflecting plate
reflector
intensity distribution
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310312690XA
Other languages
English (en)
Other versions
CN103411754B (zh
Inventor
范多旺
王成龙
范多进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Dacheng Vacuum Technology Co Ltd
Lanzhou Dacheng Technology Co Ltd
Original Assignee
Lanzhou Dacheng Vacuum Technology Co Ltd
Lanzhou Dacheng Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Dacheng Vacuum Technology Co Ltd, Lanzhou Dacheng Technology Co Ltd filed Critical Lanzhou Dacheng Vacuum Technology Co Ltd
Priority to CN201310312690.XA priority Critical patent/CN103411754B/zh
Publication of CN103411754A publication Critical patent/CN103411754A/zh
Application granted granted Critical
Publication of CN103411754B publication Critical patent/CN103411754B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及反射式聚光光伏,特别涉及反射式聚光光伏聚光器光斑强度分布测量方法。一种反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于包括如下步骤:(1)将旋转抛物反射面分割为一定面积的反射元;(2)使用探测器记录太阳光经各反射元反射后在反射板上的成像为像元;(3)将各像元叠加,得到反射式聚光器反射板上的光强分布。本发明的优点是本发明为高倍反射式聚光光伏提供了一种简单且便于操作的光斑均匀性测量的方法,使得高能流密度光斑的均匀性测量成为可能,使得高能流密度光斑光强的空间分布测量成为可能。

Description

反射式聚光光伏聚光器光斑强度分布测量方法
技术领域
本发明涉及反射式聚光光伏,特别涉及反射式聚光光伏聚光器光斑强度分布测量方法。
背景技术
聚光光伏系统是由定日器、聚光电池组件和聚光器及相关动力和散热装置构成,采用聚焦的方式将太阳光的光能密度大大提高(400倍以上),使太阳能电池转换效率提高,在小面积电池芯片上获得大的电流。太阳光的聚焦可采用菲涅尔透镜或抛物面反射镜,太阳能聚光电池的散热采用大面积的散热片自然冷却,或用循环水冷却将热量二次利用。
用于聚光光伏系统的高倍聚光方式主要有反射和透射两种。实用的高倍聚光光伏发电系统(HCPV)的聚光倍数为500×~1200×,商业化高倍聚光光伏发电系统效率在23%~28%之间。菲涅尔透镜易于设计和模拟而且成本较低,是被聚光光伏系统普遍采用的主要因素。然而要满足高倍聚光系统要求,实现长期抵御环境侵蚀,菲涅尔透镜的制造还面临着一系列挑战。目前有多种工艺技术制造菲涅尔透镜,如对有机玻璃(PMMA)进行注塑和热压以及玻璃上涂覆硅凝胶(SOG)等,这些都需要较复杂的工艺制作过程。透光率、光斑均匀性、焦距、工艺一致性、像差、抗紫外光老化、抗风沙能力等都是成为考验菲涅尔透镜在高倍聚光光伏发电系统中应用的性能指标。
从市场层面讲,随着聚光光伏技术进一步成熟和生产规模的进一步扩大,预计未来几年内其综合成本即可低于晶硅和薄膜电池。若要每度电降至0.1$元以下,就要求安装好的系统费用从现在的5-8$/W降至2$/W,芯片的造价从8-10$/cm2降至3-5$/cm2
利用大型抛物镜面镜来做反射光学系统被认为是大幅度降低聚光器制造成本的有效途径,正逐步在热电联产(集成PV+太阳热能)系统中采用,成为高倍聚光光伏系统发展的热点。
基于III-V族半导体多结砷化镓太阳能电池具有最高的光电转换效率(理论效率68%,实验室效率41%),比硅太阳能电池高近50%左右,具有比硅高得多的耐高温特性,在高辐照度下仍具有高的光电转换效率,因此被高倍聚光光伏技术所采用。
反射式高倍聚光光伏系统用三节砷化镓电池阵列由电池芯片串联构成,系统输出电流受限于电流最小的电池芯片,因此对电池阵列表面的光斑进行均匀化处理非常必要。因此聚光光斑在反射板的光强分布测量将极为必要。
由于高倍反射式聚光器在靶面汇聚光能流密度较大,现有的探测器不能直用于直接测量。因此急需探索一种用于高能流密度光场强度分布测量的方法。
发明内容
本发明针对现有技术不足,发明了一种反射式聚光光伏聚光器光斑强度分布测量方法。
为实现上述目的,本发明采取的技术方案为:一种反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于包括如下步骤:(1)将旋转抛物反射面分割为一定面积的反射元;(2)使用探测器记录太阳光经各反射元反射后在反射板上的成像为像元;(3)将各像元叠加,得到反射式聚光器反射板上的光强分布。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的反射元的面积需小于反射板的面积。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的记录太阳光经各反射元反射后在反光板上的像元时,所述的探测器固定于旋转抛物反射面的最低点。探测器固定于旋转抛物面的顶点,也就是最低点,在所有反射元的测量过程中,始终在同一位置。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的记录太阳光经各反射元反射后在反射板上的像元时,所述的探测器始终与反射板成固定角度。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的记录太阳光经某一反射元反射后在反射板上的像元时,需将其它反射元完全遮挡。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的记录太阳光经某一反射元反射后在反射板上的像元时,需调整旋转抛物反射面,使太阳光垂直旋转抛物面反射镜的开口截面入射到反射式聚光器反射板上。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的各像元叠加为各像元的权重叠加,每个像元的权重为对应的反射元中心与反射板中心连线与反射板法线之间夹角的余弦。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的反射板为平面反射镜。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的反射元在反射板截面上的投影面积均相等且小于反射板的面积。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的探测器为数码照相机或CCD成像仪。
所述的反射式聚光光伏聚光器光斑强度分布测量方法,所述的探测器采集的反射光为经靶面反射后的垂直反射光。
本发明的有益效果是:本发明为高倍反射式聚光光伏提供了一种简单且便于操作的光斑均匀性测量的方法,使得高能流密度光斑的均匀性测量成为可能,使得高能流密度光斑光强的空间分布测量成为可能。
附图说明
图1:本发明测量原理示意图;
图2:反射元界面投影示意图;
图3:相对强度分布图。
图中:1.旋转抛物面反射镜;2.探测器;3.反射板;4.反射元。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
实施例:见图1,一种反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于包括如下步骤:(1)将旋转抛物反射面分割为一定面积的反射元;(2)使用探测器记录太阳光经各反射元反射后在反射板上的成像为像元;(3)将各像元叠加,得到反射式聚光器反射板上的光强分布。
所述的反射元的面积需小于反射板的面积。
所述的记录太阳光经各反射元反射后在反光板上的像元时,所述的探测器固定于旋转抛物反射面的最低点。探测器固定于旋转抛物面的顶点,也就是最低点,在所有反射元的测量过程中,始终在同一位置。
所述的记录太阳光经各反射元反射后在反射板上的像元时,所述的探测器始终与反射板成固定角度。
所述的记录太阳光经某一反射元反射后在反射板上的像元时,需将其它反射元完全遮挡。
所述的记录太阳光经某一反射元反射后在反射板上的像元时,需调整旋转抛物反射面,使太阳光垂直旋转抛物面反射镜的开口截面入射到反射式聚光器反射板上。
所述的各像元叠加为各像元的权重叠加,每个像元的权重为对应的反射元中心与反射板中心连线与反射板法线之间夹角的余弦。
所述的反射板为平面反射镜。
所述的反射元在反射板截面上的投影面积均相等且小于反射板的面积。
所述的探测器为数码照相机或CCD成像仪。
所述的探测器采集的反射光为经靶面反射后的垂直反射光。
实验例:见图1,一种反射式聚光光伏聚光器光斑强度分布测量方法,
旋转抛物面反射镜1聚光器的开口截面为3.2m直径的圆。
探测器2为市售数码相机。安装在旋转抛物面反射器的最低点,即最大剖面面型抛物线顶点处。
反射板3为普通平面反射镜,镜面尺寸为200mm×200mm,镜面反射率为93%。
反射板3距离旋转抛物面反射镜1的开口截面2.77m。
按照如下步骤进行太阳光经过旋转抛物面反射镜1反射后在反射板3上的光强分布的测量:
(1)将旋转抛物反射面1按照其在开口截面上的投影分割为100mm×100mm的反射元4;
(2)使用数码相机2记录太阳光经各反射元反射后在反射板3上的成像为像元4;
(3)将各像元叠加,得到反射式聚光器反射板上的光强分布。
进行步骤(2)记录太阳光经各反射元反射后在反光板3上的像元时,数码相机2安装在旋转抛物面反射镜1的最低点,即最大剖面面型抛物线顶点处,且在所有反射元的测量过程中,始终在同一位置。
进行步骤(2)时,记录太阳光经各反射元反射后在反射板3上的像元时,数码相机镜头平面始终与反射板3平行,且反射板3成像在相机视野中心。
进行步骤(2)时,数码相机采集的反射光为经靶面反射后的垂直反射光。
进行步骤(2)时,记录太阳光经某一反射元反射后在反射板3上的像元时,需将其它反射元完全遮挡。
进行步骤(2)时,记录太阳光经某一反射元反射后在反射板3上的像元4时,需调整旋转抛物面反射镜1的反射面,使太阳光垂直旋转抛物面反射镜1的开口截面入射到反射式聚光器反射板3上。
进行步骤(3)时,所述的各像元4叠加为各像元的权重叠加,每个像元的权重为对应的反射元中心与反射板中心连线与反射板法线之间夹角θ的余弦。
由于旋转抛物面反射镜聚光器的材料一致,因此分割后的反射元的反射率均相同,在进行步骤(3)像元叠加时,考虑到太阳入射光由于天气因素产生的瞬间变化,只将权重叠加。
图3是试验例中入射光经旋转抛物面反射镜在反光板上汇聚后的相对强度分布图。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

1.一种反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于包括如下步骤:(1)将旋转抛物反射面分割为一定面积的反射元;(2)使用探测器记录太阳光经各反射元反射后在反射板上的成像为像元;(3)将各像元叠加,得到反射式聚光器反射板上的光强分布。
2.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的反射元的面积需小于反射板的面积。
3.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的记录太阳光经各反射元反射后在反光板上的像元时,所述的探测器固定于旋转抛物反射面的最低点。
4.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的记录太阳光经各反射元反射后在反射板上的像元时,所述的探测器始终与反射板成固定角度为θ。
5.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的记录太阳光经某一反射元反射后在反射板上的像元时,需将其它反射元完全遮挡。
6.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的记录太阳光经某一反射元反射后在反射板上的像元时,需调整旋转抛物反射面,使太阳光垂直旋转抛物面反射镜的开口截面入射到反射式聚光器反射板上。
7.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的各像元叠加为各像元的权重叠加,每个像元的权重为对应的反射元中心与反射板中心连线与反射板法线之间夹角的余弦。
8.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的反射板为平面反射镜。
9.如权利要求1所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的反射元在反射器开口截面上的投影面积均相等且小于反射板的面积。
10.如权利要求3所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的探测器为数码照相机或CCD成像仪。
11.如权利要求4所述的反射式聚光光伏聚光器光斑强度分布测量方法,其特征在于所述的探测器采集的反射光为经靶面反射后的垂直反射光。
CN201310312690.XA 2013-07-24 2013-07-24 反射式聚光光伏聚光器光斑强度分布测量方法 Active CN103411754B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310312690.XA CN103411754B (zh) 2013-07-24 2013-07-24 反射式聚光光伏聚光器光斑强度分布测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310312690.XA CN103411754B (zh) 2013-07-24 2013-07-24 反射式聚光光伏聚光器光斑强度分布测量方法

Publications (2)

Publication Number Publication Date
CN103411754A true CN103411754A (zh) 2013-11-27
CN103411754B CN103411754B (zh) 2018-06-26

Family

ID=49604781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310312690.XA Active CN103411754B (zh) 2013-07-24 2013-07-24 反射式聚光光伏聚光器光斑强度分布测量方法

Country Status (1)

Country Link
CN (1) CN103411754B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822772A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种对太阳能聚光器光斑形状的测试方法及测试平台
CN103940591A (zh) * 2014-04-17 2014-07-23 湘电集团有限公司 一种碟式太阳能聚光器聚焦精度的检测装置
CN107843337A (zh) * 2017-12-20 2018-03-27 彭忠祥 一种太阳能聚光光斑相对光强分布测量系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JP2002257684A (ja) * 2001-02-28 2002-09-11 Optowave Laboratory Inc 縮退ファーフィールドパターン測定方法および測定装置
CN1465968A (zh) * 2002-06-24 2004-01-07 中国科学院光电技术研究所 一种动态范围和测量精度可调的哈特曼波前传感器
CN101907490A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 基于二维细分法的微小光斑强度分布测量方法
JP2012073261A (ja) * 2011-11-02 2012-04-12 Seiwa Electric Mfg Co Ltd 光学特性測定装置
CN102879181A (zh) * 2012-09-26 2013-01-16 山东威特人工环境有限公司 太阳能抛物面聚光镜聚光精度检测装置及其方法
CN103090966A (zh) * 2013-02-01 2013-05-08 北京航空航天大学 一种采用单一光电探测器的激光光强分布精确测量系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6438617A (en) * 1987-08-04 1989-02-08 Yaskawa Denki Seisakusho Kk Measuring apparatus of light distribution
JP2002257684A (ja) * 2001-02-28 2002-09-11 Optowave Laboratory Inc 縮退ファーフィールドパターン測定方法および測定装置
CN1465968A (zh) * 2002-06-24 2004-01-07 中国科学院光电技术研究所 一种动态范围和测量精度可调的哈特曼波前传感器
CN101907490A (zh) * 2010-08-24 2010-12-08 哈尔滨工业大学 基于二维细分法的微小光斑强度分布测量方法
JP2012073261A (ja) * 2011-11-02 2012-04-12 Seiwa Electric Mfg Co Ltd 光学特性測定装置
CN102879181A (zh) * 2012-09-26 2013-01-16 山东威特人工环境有限公司 太阳能抛物面聚光镜聚光精度检测装置及其方法
CN103090966A (zh) * 2013-02-01 2013-05-08 北京航空航天大学 一种采用单一光电探测器的激光光强分布精确测量系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103822772A (zh) * 2014-03-11 2014-05-28 华中科技大学 一种对太阳能聚光器光斑形状的测试方法及测试平台
CN103940591A (zh) * 2014-04-17 2014-07-23 湘电集团有限公司 一种碟式太阳能聚光器聚焦精度的检测装置
CN103940591B (zh) * 2014-04-17 2016-08-24 湘电集团有限公司 一种碟式太阳能聚光器聚焦精度的检测装置
CN107843337A (zh) * 2017-12-20 2018-03-27 彭忠祥 一种太阳能聚光光斑相对光强分布测量系统

Also Published As

Publication number Publication date
CN103411754B (zh) 2018-06-26

Similar Documents

Publication Publication Date Title
Jaaz et al. Design and development of compound parabolic concentrating for photovoltaic solar collector
Ju et al. A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR)
Liu et al. Thermodynamic and optical analysis for a CPV/T hybrid system with beam splitter and fully tracked linear Fresnel reflector concentrator utilizing sloped panels
Yang et al. Design and experimental study of a cost-effective low concentrating photovoltaic/thermal system
Li Design and development of a lens-walled compound parabolic concentrator-a review
CN102280511B (zh) 一种密集阵列式聚光太阳能光伏装置
CN107919848B (zh) 一种环形线性菲涅尔高倍聚光器
CN101788708A (zh) 集光方法、集光系统以及光能转换装置
KR101997761B1 (ko) 집광형 및 평판형 하이브리드 태양전지를 이용한 태양광 및 태양열 복합발전시스템 및 발전방법
CN103888050A (zh) 一种聚光反射式光伏模组的发电、供热联产装置
Huang et al. An annular compound parabolic concentrator used in tower solar thermal power generation system
CN103411754B (zh) 反射式聚光光伏聚光器光斑强度分布测量方法
CN101719748A (zh) 一种余热发电的太阳能聚光发电装置
CN204794873U (zh) 高聚光光伏发电热电联产系统及其组元结构
CN102638199B (zh) 一种太阳能点聚光光伏发电装置
CN202918219U (zh) 高倍聚光光伏发电供热系统
Mo et al. Performance of a passively cooled Fresnel lens concentrating photovoltaic module
CN104917453B (zh) 高聚光光伏发电热电联产系统及其组元结构
CN111464131B (zh) 抗风型防冻高聚光光伏-光热太阳能综合利用系统
CN106169909A (zh) 一种太阳能聚光机构
CN202996871U (zh) 一种聚光反射式光伏模组的发电、供热联产装置
Jaffré et al. Design and characterization of a curved linear Fresnel lens concentrating photovoltaic and thermal system
CN202652109U (zh) 一种太阳能点聚光光伏发电装置
CN202652108U (zh) 一种太阳能线聚光光伏发电装置
Benítez et al. Free-form Köhler nonimaging optics for photovoltaic concentration

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant