CN103411594A - Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit - Google Patents
Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit Download PDFInfo
- Publication number
- CN103411594A CN103411594A CN2013102943570A CN201310294357A CN103411594A CN 103411594 A CN103411594 A CN 103411594A CN 2013102943570 A CN2013102943570 A CN 2013102943570A CN 201310294357 A CN201310294357 A CN 201310294357A CN 103411594 A CN103411594 A CN 103411594A
- Authority
- CN
- China
- Prior art keywords
- pass filter
- resonator
- circuit
- frequency
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 28
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 230000010363 phase shift Effects 0.000 claims description 9
- 239000003990 capacitor Substances 0.000 claims description 8
- 238000001914 filtration Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 4
- 238000010168 coupling process Methods 0.000 claims description 4
- 238000005859 coupling reaction Methods 0.000 claims description 4
- 238000013139 quantization Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 abstract description 4
- 238000007493 shaping process Methods 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract description 2
- 238000004088 simulation Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 230000003321 amplification Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 1
Images
Landscapes
- Gyroscopes (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种用于微机械陀螺检测模态的闭环控制电路,属于利用科氏效应的制导或控制装置领域。The invention relates to a closed-loop control circuit for micromechanical gyroscopes to detect modes, and belongs to the field of guidance or control devices utilizing the Coriolis effect.
背景技术Background technique
微机械陀螺是一种重要的惯性传感器,具有外形尺寸小、重量轻、功耗低、成本低等优点,使用微机械陀螺实现的惯性仪表广泛的用于各种运动物体的姿态及位置信息检测,特别是在精确制导武器、无人机等军事领域更是对高精度的微型惯性传感器提出了明确的需求。但是传统的微机械陀螺精度无法达到惯导级水平,通常需要借助额外的控制系统来对其控制或者对误差进行补偿,从而提高精度。微机械陀螺检测模态的闭环控制系统通常有两种:模拟闭环控制系统和数字闭环控制系统。模拟闭环控制系统存在系统参数易受外界因素的影响,系统实现难度大等缺点。而数字闭环控制可以有效的解决中心质量块容易吸附到电极上的问题,系统实现简单,稳定性好等优点,所以微机械陀螺检测模态的数字闭环控制系统一直是研究的热点和重点。2005年,英国南安普顿大学的董云峰,Michael Kraft等人提出了微机械陀螺检测模态的6阶连续带通ΣΔΜ闭环控制电路,不仅大大降低了采样频率,使得系统更加易于实现,而且提高了系统的信噪比(SNR)和带宽等。其原理框图参照图3,信号的提取采用电荷放大器5,然后信号依次经过全差分放大电路9、相位补偿电路10、谐振器a18、谐振器b19、数字转换电路12输出脉宽密度调制数字信号b(t)控制模拟开关13将反馈控制电压Vfb加载到反馈控制电极上,整个闭环控制系统对于系统噪声具有6阶整形能力,提高了SNR,但是该控制系统存在一些问题:Micromechanical gyroscope is an important inertial sensor, which has the advantages of small size, light weight, low power consumption, and low cost. The inertial instrument realized by using micromechanical gyroscope is widely used in the attitude and position information detection of various moving objects. , especially in military fields such as precision-guided weapons and unmanned aerial vehicles, there is a clear demand for high-precision miniature inertial sensors. However, the precision of traditional micro-mechanical gyroscopes cannot reach the level of inertial navigation, and it is usually necessary to use an additional control system to control it or compensate for errors, so as to improve the accuracy. There are usually two types of closed-loop control systems for micromechanical gyro detection modes: analog closed-loop control systems and digital closed-loop control systems. The analog closed-loop control system has the disadvantages that the system parameters are easily affected by external factors, and the system is difficult to realize. The digital closed-loop control can effectively solve the problem that the central mass is easily adsorbed to the electrode, and the system has the advantages of simple implementation and good stability. Therefore, the digital closed-loop control system of the micromechanical gyro detection mode has always been a research focus and focus. In 2005, Dong Yunfeng, Michael Kraft and others from the University of Southampton in the United Kingdom proposed a 6-order continuous band-pass ΣΔΜ closed-loop control circuit for micro-mechanical gyroscope detection mode, which not only greatly reduces the sampling frequency, makes the system easier to implement, but also improves System signal-to-noise ratio (SNR) and bandwidth, etc. Refer to Figure 3 for its functional block diagram. The signal is extracted using a
(1)系统提取出的有效陀螺信号的SNR仍然不是非常高;(2)系统输出的脉宽密度调制数字信号b(t)并不是最终的角速度信号。(1) The SNR of the effective gyro signal extracted by the system is still not very high; (2) The pulse width density modulated digital signal b(t) output by the system is not the final angular velocity signal.
发明内容Contents of the invention
为克服现有技术中存在的问题,本发明提出了一种用于微机械陀螺检测模态的8阶连续带通ΣΔ闭环控制系统,能够进一步的提高检测陀螺信号的信噪比SNR,并且直接输出模拟角速度信号Ω(t)。In order to overcome the problems existing in the prior art, the present invention proposes an 8-order continuous band-pass ΣΔ closed-loop control system for the micromechanical gyroscope detection mode, which can further improve the signal-to-noise ratio (SNR) of the detected gyroscope signal, and directly Output analog angular velocity signal Ω(t).
参阅图2,MEMS陀螺结构4的检测模态可以等效为公共电极1,固定电极2,固定电极3组成,公共电极1与固定电极2、固定电极3之间的电容变化引起充放电电流变化,产生变化电流信号i(t)。Referring to Figure 2, the detection mode of the
参阅图4,本发明提出的MEMS陀螺8阶连续带通ΣΔΜ闭环控制电路,由电荷放大器5,高通滤波器6,二极管7,低通滤波器8,全差分放大电路9,相位补偿电路10,谐振电路11,数字转换电路12,模拟开关13,带通滤波器14,解调器15,低通滤波器16组成。变化的电流信号i(t)经过频率为f1的高频载波Vc(t)调制到高频段,Vc(t)加载到MEMS陀螺结构4的质量块上,也即为等效的公共电极1上;调制信号经过电荷放大器5后,将电流信号转换为电压信号Vi(t);电荷放大器5的反馈电容采用可变电容用于调节两路全差分信号Vi(t)和Vi'(t)的匹配性,使得其幅值相等,相位相反;Vi(t)和Vi'(t)经过高通滤波器6将驱动模态耦合信号Vd'(t)滤除得到Vi2(t)和V'i2(t),高通滤波器6的截止频率fc1满足:fc1>fx,其中fx为MEMS陀螺驱动模态的谐振频率也即耦合信号Vd'(t)的频率;Vi2(t)和V'i2(t)再经过由二极管7和低通滤波器8组成的解调电路进行解调和滤波,低通滤波器8的截止频率fc2满足:fy<fc2<f1,其中,fy为陀螺检测模态的谐振频率;解调和滤波后的信号进入增益为G1的全差分放大电路9对其做进一步的全差分放大得到Vi3(t)和V'i3(t);相位补偿电路10对Vi3(t)和V'i3(t)进行一定的相位移动使得整个闭环控制回路的相移不等于2n,因为根据闭环系统自激振荡的条件:如果满足闭环控制系统的相移等于2n,闭环增益大于1,整个闭环系统将会自激振荡;移相后得到信号Vi4(t)和V'i4(t)进入谐振电路11,谐振电路11包括串联的完全相同的三个谐振器a17、谐振器b18和谐振器c19,谐振器a17、谐振器b18和谐振器c19的谐振中心频率f2等于fx,且谐振器a17、谐振器b18和谐振器c19在f2处的增益为10-20dB,在其他频率范围内的增益均小于0dB;经过谐振电路11之后的信号Vi5(t)和V'i5(t)进入数字转换电路12,其包括比较器20和D触发器21,比较器20对Vi5(t)和V'i5(t)两路全差分信号进行比较,产生高低电平的数字比较信号b'(t),D触发器21对b'(t)进行采样和量化,最终输出数字脉宽密度调制信号b(t);b(t)一路用于控制模拟开关13将反馈电压Vfb加载到陀螺检测模态的反馈电极上;另一路经过带通滤波器14将[fy-BW,fy+BW]频率范围外的量化噪声去除,其中BW为陀螺的带宽;带通滤波之后的信号进入解调器15,与驱动信号Vd(t)进行解调,再通过低通滤波器16处理得到角速度信号Ω(t),低通滤波器16的截止频率fc3满足:fc3>BW。Referring to Fig. 4, the MEMS gyroscope 8-order continuous band-pass ΣΔΜ closed-loop control circuit that the present invention proposes, by
本发明的有益效果是:第一,谐振器a17、谐振器b18和谐振器c19与陀螺检测模态一起在整个闭环电路中对噪声具有8阶整形作用;第三,脉宽密度调制数字信号b(t),通过带通滤波器14,解调器15,低通滤波器16的处理得到模拟角速度信号Ω(t)。The beneficial effects of the present invention are: first, the resonator a17, the resonator b18 and the resonator c19 together with the gyro detection mode have an 8-order shaping effect on the noise in the entire closed-loop circuit; third, the pulse width density modulated digital signal b (t), through the band-
附图说明Description of drawings
图1是本发明所针对的MEMS陀螺检测模态的电学模型示意图;Fig. 1 is the electrical model schematic diagram of the MEMS gyroscope detection mode that the present invention is aimed at;
图2是本发明所针对的MEMS陀螺结构示意图;Fig. 2 is the MEMS gyroscope structure schematic diagram that the present invention is aimed at;
图3是现有技术中董云峰等人提出的6阶连续带通ΣΔΜ闭环控制电路示意图;Fig. 3 is the schematic diagram of the 6-order continuous bandpass ΣΔΜ closed-loop control circuit proposed by people such as Dong Yunfeng in the prior art;
图4是本发明提出的8阶连续带通ΣΔΜ闭环控制电路示意图;Fig. 4 is the schematic diagram of the 8-order continuous band-pass ΣΔΜ closed-loop control circuit that the present invention proposes;
图5是实施例中8阶连续带通ΣΔΜ闭环控制电路示意图;Fig. 5 is a schematic diagram of an 8-order continuous band-pass ΣΔΜ closed-loop control circuit in an embodiment;
图中:In the picture:
1-公共电极;2-固定电极I;3-固定电极II;4-微机械陀螺结构;5-电荷放大器;6-高通滤波器;7-二极管;8-低通滤波器;9-全差分放大电路;10-相位补偿电路;11-谐振电路;12-数字转换电路;13-模拟开关;14-带通滤波器;15-解调器;16-低通滤波器;17-谐振器a;18-谐振器b;19-谐振器c;20-比较器;21-D触发器;22-反馈电极AI;23-反馈电极AII;24-检测电极AI;25-检测电极AII;1-common electrode; 2-fixed electrode I; 3-fixed electrode II; 4-micromechanical gyro structure; 5-charge amplifier; 6-high-pass filter; 7-diode; 8-low-pass filter; 9-full differential Amplifying circuit; 10-phase compensation circuit; 11-resonant circuit; 12-digital conversion circuit; 13-analog switch; 14-bandpass filter; 15-demodulator; 16-low-pass filter; 17-resonator a ;18-resonator b; 19-resonator c; 20-comparator; 21-D trigger; 22-feedback electrode AI; 23-feedback electrode AII; 24-detection electrode AI; 25-detection electrode AII;
具体实施方式Detailed ways
实施例一:Embodiment one:
本实施例中所针对的微机械陀螺如图2所示,驱动和检测模态梳齿中心电容Co=3.43e-13F,驱动模态的谐振频率fx=4.30KHz为,检测模态的谐振频率fy=4.33KHz,带宽BW=50Hz,mx=my=2×10-6Kg。The micromechanical gyroscope targeted in this embodiment is shown in Figure 2, the drive and detection mode comb center capacitance C o =3.43e-13F, the resonant frequency f x =4.30KHz of the drive mode is, and the detection mode Resonance frequency f y =4.33KHz, bandwidth BW=50Hz, m x = my =2×10 -6 Kg.
其检测模态的6阶连续带通ΣΔΜ闭环控制电路参阅图5,整个电路系统由全差分电荷放大器5,高通滤波器6,二极管7,低通滤波器8,全差分放大电路9,相位补偿电路10,谐振电路11,数字转换电路12,模拟开关13,带通滤波器14,解调器15,低通滤波器16组成;首先外加驱动电压使得陀螺在驱动模态上谐振,谐振位移为x(t)=a1sin(ωxt+φ),其中ωx=2πfx=2π·4300,当有角速度Ω(t)输入时,由于科里奥利力的作用,陀螺的质量块在检测模态上产生位移y(t),导致检测电极AI24和检测电极AII25电容变化,例如检测电极AI24电容增大,检测电极AII25电容减小,引起充放电电流变化,该变化电流信号i(t)被Vc(t)=10sin(2πf1t)调制到高频段,其中f1=2MHz,Vc(t)加载到陀螺的质量块上。该调制信号经过电荷放大器5,将电流信号转换为全差分电压信号Vi(t)和Vi'(t);其中一路电荷放大器5上的反馈电容为可变电容Cf,调节Cf使得Vi(t)和Vi'(t)幅值相等;然后Vi(t)和Vi'(t)经过高通滤波器6将驱动耦合信号Vd'(t)=a2sin(ωxt+φ)滤除,高通滤波器6的截止频率fc1=100KHz;滤除驱动耦合信号之后得到Vi2(t)和V'i2(t),Vi2(t)和V'i2(t)经过由二极管7和低通滤波器8组成解调电路进行解调和滤波,其中低通滤波器8的截止频率fc2=10KHz;解调和滤波后的两路信号进入增益G1=200的全差分放大电路9对其做进一步的全差分放大得到Vi3(t)和V'i3(t);相位补偿电路10对Vi3(t)和V'i3(t)进行的相位移动,使得整个闭环控制回路的相移总和不等于2nπ,防止闭环回路自激振荡,提高系统的稳定性;移相后的信号Vi4(t)和V'i4(t)进入谐振电路11,谐振电路11包括谐振器a17、谐振器b18和谐振器c19;谐振器a17、谐振器b18和谐振器c19具有相同的结构,均包括串联的两个全差分运算放大器,谐振器a17的第一个全差分运算放大器A1的反向输入端一路经过电阻R1连到第二个全差分运算放大器A2的反向输出端,另一路依次串联连接一个电容C1、电阻R2和电容C2,连到A2的正向输出端;谐振器a17的A1的正向输入端一路经过电阻R1'连到A2的正向输出端,另一路依次串联连接一个电容C1'、电阻R'2和电容C'2,连到A2的反向输出端;谐振器a17的A1的正向输出端,连入谐振器b18的第一个全差分运算放大器A1'的负向输入端,谐振器a17的A1的负向输出端,连入谐振器b18的A1'的正向输入端;谐振器b18的A1'的正向输出端,连入谐振器c19的第一个全差分运算放大器A''1的负向输入端,谐振器b18的A1'的负向输出端,连入谐振器c19的A1''的正向输入端;其中R1=R2=R1'=R'2=1.68kΩ,C1=C2=C1'=C'2=22nF,谐振器a17、谐振器b18和谐振器c19的谐振中心频率
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102943570A CN103411594A (en) | 2013-07-12 | 2013-07-12 | Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102943570A CN103411594A (en) | 2013-07-12 | 2013-07-12 | Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103411594A true CN103411594A (en) | 2013-11-27 |
Family
ID=49604622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102943570A Pending CN103411594A (en) | 2013-07-12 | 2013-07-12 | Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103411594A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106289212A (en) * | 2016-09-21 | 2017-01-04 | 南京理工大学 | Integrated measurement and control unit for silicon microphony fork gyroscope |
CN106370170A (en) * | 2016-08-29 | 2017-02-01 | 南京理工大学 | Silicon micro-machined gyroscope mechanical-electrical combined band-pass sigma-delta closed-loop detection loop parameter acquisition method |
CN107504964A (en) * | 2017-09-22 | 2017-12-22 | 中国科学院上海微系统与信息技术研究所 | Self-clock digital micromachined gyroscope ∑△M closed-loop detection circuit system |
CN109470228A (en) * | 2018-10-30 | 2019-03-15 | 北京时代民芯科技有限公司 | A kind of MEMS dish gyroscope based on embedded differential electrode and preparation method thereof |
CN111220139A (en) * | 2019-12-30 | 2020-06-02 | 南京理工大学 | A MEMS multi-loop gyro force balance mode measurement and control circuit system |
CN112504258A (en) * | 2020-11-05 | 2021-03-16 | 东南大学 | Quartz hemispherical resonant gyroscope self-adaptive control circuit and method based on full-angle mode |
CN114353775A (en) * | 2021-12-02 | 2022-04-15 | 上海航天控制技术研究所 | Micromechanical gyroscope integrated circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005075939A1 (en) * | 2004-02-04 | 2005-08-18 | Bae Systems Plc | Method for reducing bias error in a vibrating structure gyroscope |
CN1766528A (en) * | 2005-11-11 | 2006-05-03 | 中北大学 | Differential Micromachined Gyroscope with Higher Sensitivity and Bandwidth |
CN102297689A (en) * | 2011-07-22 | 2011-12-28 | 上海交通大学 | Electrostatically driven piezoelectric detection closed loop controlled micro-solid modal gyro |
CN102620726A (en) * | 2012-04-04 | 2012-08-01 | 西北工业大学 | Double-closed-loop control circuit of micromechanical gyroscope |
-
2013
- 2013-07-12 CN CN2013102943570A patent/CN103411594A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005075939A1 (en) * | 2004-02-04 | 2005-08-18 | Bae Systems Plc | Method for reducing bias error in a vibrating structure gyroscope |
CN1766528A (en) * | 2005-11-11 | 2006-05-03 | 中北大学 | Differential Micromachined Gyroscope with Higher Sensitivity and Bandwidth |
CN102297689A (en) * | 2011-07-22 | 2011-12-28 | 上海交通大学 | Electrostatically driven piezoelectric detection closed loop controlled micro-solid modal gyro |
CN102620726A (en) * | 2012-04-04 | 2012-08-01 | 西北工业大学 | Double-closed-loop control circuit of micromechanical gyroscope |
Non-Patent Citations (1)
Title |
---|
闫子健等: "基于Krylov子空间投影法的MEMS宏建模方法", 《传感器技术学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106370170A (en) * | 2016-08-29 | 2017-02-01 | 南京理工大学 | Silicon micro-machined gyroscope mechanical-electrical combined band-pass sigma-delta closed-loop detection loop parameter acquisition method |
CN106289212A (en) * | 2016-09-21 | 2017-01-04 | 南京理工大学 | Integrated measurement and control unit for silicon microphony fork gyroscope |
CN107504964A (en) * | 2017-09-22 | 2017-12-22 | 中国科学院上海微系统与信息技术研究所 | Self-clock digital micromachined gyroscope ∑△M closed-loop detection circuit system |
CN109470228A (en) * | 2018-10-30 | 2019-03-15 | 北京时代民芯科技有限公司 | A kind of MEMS dish gyroscope based on embedded differential electrode and preparation method thereof |
CN111220139A (en) * | 2019-12-30 | 2020-06-02 | 南京理工大学 | A MEMS multi-loop gyro force balance mode measurement and control circuit system |
CN111220139B (en) * | 2019-12-30 | 2022-04-01 | 南京理工大学 | Micro-electro-mechanical multi-ring gyro force balance mode measurement and control circuit system |
CN112504258A (en) * | 2020-11-05 | 2021-03-16 | 东南大学 | Quartz hemispherical resonant gyroscope self-adaptive control circuit and method based on full-angle mode |
CN114353775A (en) * | 2021-12-02 | 2022-04-15 | 上海航天控制技术研究所 | Micromechanical gyroscope integrated circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102621884B (en) | MEMS gyro 6-order continuous band-pass sigma-delta closed-loop control circuit | |
CN102620726B (en) | Double-closed-loop control circuit of micromechanical gyroscope | |
CN103411594A (en) | Micro-machine gyroscope detection modal 8th-order series band-pass sigma-delta closed control circuit | |
CN102707088B (en) | High-order continuous low-pass sigma-delta closed-loop control circuit of micro-mechanical accelerometer | |
CN108253952B (en) | A zero-bias self-calibration MEMS gyroscope and its zero-bias self-calibration method | |
CN201688848U (en) | Interface circuit of dual mass vibration type silicon micromechanical gyroscope | |
CN101860338B (en) | Closed-loop driving circuit for micromechanical resonance structure | |
CN104567849B (en) | A kind of silicon micro mechanical linearly coupled formula gyro and its bandwidth broadning method | |
CN102759365B (en) | Bias stability improving method and device for silicon micromechanical gyroscope | |
CN103162681B (en) | Method and device for testing signals used for micromechanical gyroscope | |
CN106289212B (en) | Integrated measurement and control unit for silicon micro tuning fork gyroscope | |
CN103389084B (en) | Based on the resonance type optical fiber gyro of two coupled fiber ring resonator coherence effect | |
CN105758402A (en) | Closed-loop detection system of silicon micromachined gyro | |
CN108562383A (en) | Static excitation/piezoresistive detection silicon micro resonance type pressure sensor closed loop autonomous system | |
CN105892293A (en) | Silicon micro-machined gyroscope digital driving closed loop control system | |
CN109029409B (en) | A parametric amplification method and device in a tunable gate structure micromachined gyroscope | |
CN111024056B (en) | A closed-loop control method for bandwidth expansion of MEMS gyroscope with high dynamic input | |
CN109029437B (en) | Three-freedom closed-loop gyro digital interface circuit | |
CN111220139A (en) | A MEMS multi-loop gyro force balance mode measurement and control circuit system | |
CN118960707A (en) | MEMS four-mass gyroscope driving circuit system based on electromechanical amplitude modulation technology | |
CN106323263B (en) | Silicon micro-gyroscope electric-mechanic control system band logical sigma-delta closed-loop detection circuit | |
Iqbal et al. | Analysis of parasitic feed-through capacitance in MEMS gyroscope with push pull configuration | |
CN112797968B (en) | Gyro bandwidth expansion method, device and system under force balance closed loop detection | |
CN116380120A (en) | Closed-loop Detection System of Small Frequency Difference Mode Separation Silicon Micro Gyroscope | |
CN114353775B (en) | Micromechanical gyroscope integrated circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131127 |