CN103408779A - 耐碱玻璃纤维增强复合树脂材料 - Google Patents

耐碱玻璃纤维增强复合树脂材料 Download PDF

Info

Publication number
CN103408779A
CN103408779A CN2013103751402A CN201310375140A CN103408779A CN 103408779 A CN103408779 A CN 103408779A CN 2013103751402 A CN2013103751402 A CN 2013103751402A CN 201310375140 A CN201310375140 A CN 201310375140A CN 103408779 A CN103408779 A CN 103408779A
Authority
CN
China
Prior art keywords
glass fibre
resistant glass
composite resin
resin material
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013103751402A
Other languages
English (en)
Inventor
庄红芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU QIDI ALLOY CO Ltd
Original Assignee
JIANGSU QIDI ALLOY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU QIDI ALLOY CO Ltd filed Critical JIANGSU QIDI ALLOY CO Ltd
Priority to CN2013103751402A priority Critical patent/CN103408779A/zh
Publication of CN103408779A publication Critical patent/CN103408779A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

耐碱玻璃纤维增强复合树脂材料,将高分子纳米纤维膜置于透明树脂稀溶液中,充分浸润,干燥即得到强透光纳米纤维增强复合树脂,其特征在于:纤维膜的厚度为15-160μm,其质量百分含量为2-60%,树脂稀溶液的浓度为3-15%,浸润时间为8-18小时。本发明采用的浸润法,设备、工艺简单,易于成型,适合于大量制备。复合材料中纤维含量高,可以高达40%,透光率良好且力学性能尤其是拉伸强度、抗张强度、模量优异。

Description

耐碱玻璃纤维增强复合树脂材料
技术领域
本发明涉及纳米复合材料领域,具体涉及具有高透光率的耐碱玻璃纤维增强复合树脂材料。
背景技术
玻璃纤维有80%左右用于以各种形式增强高分子材料。在树脂基材复合材料中,目前也在发展天然纤维、碳纤维和芳纶纤维等一些化学纤维作为增强基材,但玻璃纤维仍占有85%的绝对优势份额。这也就成为玻纤增强基材的开发重点。某种意义上说,抓好玻纤增强基材的发展是抓好我国玻纤工业发展的主要途径。
发明内容
本发明的目在于提供一种具有高透光率的耐碱玻璃纤维增强复合树脂,解决高抗冲击光学树脂眼镜片的抗冲击性。
本发明采用的技术方案是:耐碱玻璃纤维增强复合树脂,将高分子纳米纤维膜置于透明树脂稀溶液中,充分浸润,干燥即得到强透光纳米纤维增强复合树脂,纤维膜的厚度为15-160μm,其质量百分含量为2-60%,树脂稀溶液的浓度为3-15%,浸润时间为8-18小时。
所述的浸润配方是由12.3-—20.5%的成膜组分.0.3—1%的润滑组分、0.4—1%的抗静电组分、0.5—1%硅烷偶联组分与80—84.4%的水组成,经过反复试验和筛选,确定了稳定的浸润剂配方。
所述的高分子纳米纤维为纤维素纳米纤维、尼龙纳米纤维、聚碳酸酯纳米纤维、玻璃纳米纤维或碳纳米纤维。
所述的透明树脂为聚乙烯醇、大豆分离蛋白、丙烯酸树脂、环氧树脂或聚碳酸酯。
本发明采用的浸润法,设备、工艺简单,易于成型,适合于大量制备。复合材料中纤维含量高,可以高达40%,透光率良好且力学性能尤其是拉伸强度、抗张强度、模量优异。
具体实施方式
耐碱玻璃纤维增强复合树脂,将高分子纳米纤维膜置于透明树脂稀溶液中,充分浸润,干燥即得到强透光纳米纤维增强复合树脂。纤维膜的厚度为15-160μm,其质量百分含量为2-60%,树脂稀溶液的浓度为3-15%,浸润时间为8-18小时。高分子纳米纤维为纤维素纳米纤维、尼龙纳米纤维、聚碳酸酯纳米纤维、玻璃纳米纤维或碳纳米纤维。透明树脂为聚乙烯醇、大豆分离蛋白、丙烯酸树脂、环氧树脂或聚碳酸酯。
用本发明生产的抗冲击光学树脂眼镜片,其测验结果:
依据QB2506 镜片检验结果:
Figure 2013103751402100002DEST_PATH_IMAGE002

Claims (4)

1.耐碱玻璃纤维增强复合树脂材料,将高分子纳米纤维膜置于透明树脂稀溶液中,充分浸润,干燥即得到强透光纳米纤维增强复合树脂,其特征在于:纤维膜的厚度为15-160μm,其质量百分含量为2-60%,树脂稀溶液的浓度为3-15%,浸润时间为8-18小时。
2.根据权利要求1所述的耐碱玻璃纤维增强复合树脂材料,其特征在于:所述的浸润配方是由12.3-—20.5%的成膜组分.0.3—1%的润滑组分、0.4—1%的抗静电组分、0.5—1%硅烷偶联组分与80—84.4%的水组成,经过反复试验和筛选,确定了稳定的浸润剂配方。
3.根据权利要求1所述的耐碱玻璃纤维增强复合树脂材料,其特征在于:所述的高分子纳米纤维为纤维素纳米纤维、尼龙纳米纤维、聚碳酸酯纳米纤维、玻璃纳米纤维或碳纳米纤维。
4.根据权利要求1所述的耐碱玻璃纤维增强复合树脂材料,其特征在于:所述的透明树脂为聚乙烯醇、大豆分离蛋白、丙烯酸树脂、环氧树脂或聚碳酸酯。
CN2013103751402A 2013-08-26 2013-08-26 耐碱玻璃纤维增强复合树脂材料 Pending CN103408779A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013103751402A CN103408779A (zh) 2013-08-26 2013-08-26 耐碱玻璃纤维增强复合树脂材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013103751402A CN103408779A (zh) 2013-08-26 2013-08-26 耐碱玻璃纤维增强复合树脂材料

Publications (1)

Publication Number Publication Date
CN103408779A true CN103408779A (zh) 2013-11-27

Family

ID=49601827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013103751402A Pending CN103408779A (zh) 2013-08-26 2013-08-26 耐碱玻璃纤维增强复合树脂材料

Country Status (1)

Country Link
CN (1) CN103408779A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733257A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 玻纤改性耐磨型聚酰亚胺
CN106810821A (zh) * 2016-12-21 2017-06-09 东华大学 高透明度、高纳米纤维填充量协同增强的复合材料的制备方法
WO2020259393A1 (zh) * 2019-06-28 2020-12-30 国防科技大学 一种机械耐久的超疏水纳米涂层及其制备方法
CN115368867A (zh) * 2022-09-03 2022-11-22 柏仁新材料(广州)股份有限公司 一种环保uv胶及其制备方法和其在标签纸上的应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105733257A (zh) * 2014-12-10 2016-07-06 黑龙江鑫达企业集团有限公司 玻纤改性耐磨型聚酰亚胺
CN106810821A (zh) * 2016-12-21 2017-06-09 东华大学 高透明度、高纳米纤维填充量协同增强的复合材料的制备方法
WO2020259393A1 (zh) * 2019-06-28 2020-12-30 国防科技大学 一种机械耐久的超疏水纳米涂层及其制备方法
CN115368867A (zh) * 2022-09-03 2022-11-22 柏仁新材料(广州)股份有限公司 一种环保uv胶及其制备方法和其在标签纸上的应用

Similar Documents

Publication Publication Date Title
Kumaresan et al. Effect of fiber orientation on mechanical properties of sisal fiber reinforced epoxy composites
CN103408779A (zh) 耐碱玻璃纤维增强复合树脂材料
Hossain et al. Effect of chemical treatment on physical, mechanical and thermal properties of ladies finger natural fiber
RU2013139854A (ru) Эпоксидная полимерная композиция для армированных волокнами композитных материалов, препрег и армированный волокнами композитный материал
CN108102147B (zh) 一种芳纶纳米纤维/细菌纤维素复合膜的制备方法
Kim et al. Development of aligned-hemp yarn-reinforced green composites with soy protein resin: Effect of pH on mechanical and interfacial properties
ATE544734T1 (de) Schlichte für hochleistungsglasfasern und verbundmaterialien, die diese einbinden
Kommula et al. Mechanical properties, water absorption, and chemical resistance of Napier grass fiber strand–reinforced epoxy resin composites
Guduri et al. Effect of alkali treatment on the flexural properties of Hildegardia fabric composites
Santmarti et al. Transparent poly (methyl methacrylate) composites based on bacterial cellulose nanofiber networks with improved fracture resistance and impact strength
CN101186109A (zh) 一种具有高透光率的纳米纤维增强复合树脂的制备
Graupner et al. Cellulose Fiber‐Reinforced PLA versus PP
CN105601129A (zh) 玄武岩纤维增强型浸润剂
Lee et al. Improvement in mechanical properties of glass fiber fabric/PVC composites with chopped glass fibers and coupling agent
Guan et al. ZnS/Bacterial Cellulose/Epoxy Resin (ZnS/BC/E56) nanocomposites with good transparency and flexibility
Park et al. Carbon fiber-reinforced plastics based on epoxy resin toughened with core shell rubber impact modifiers
Chen et al. OPTICALLY TRANSPARENT BIOCOMPOSITES: POLYMETHYLMETHACRYLATE REINFORCED WITH HIGH-PERFORMANCE CHITIN NANOFIBERS.
CN103787593B (zh) 一种耐碱性玻璃纤维的制备方法
CN102453295A (zh) 具有高透光率的纳米纤维增强复合树脂
Cheng et al. Effect of rare earth elements surface treatment on tensile properties of aramid fiber‐reinforced epoxy composites
KR102408611B1 (ko) 강화 투명복합소재 및 그 제조 방법
Kaviti et al. Effect of dual resin on mechanical properties of juteglass fibre reinforced hybrid composite
Gashawtena et al. Fabrication and Characterization of Natural Fiber-Polymer Composites for Prosthesis Socket Application
Zaman et al. Comparative experimental studies on the mechanical and degradation properties of natural fibers reinforced polypropylene composites
Bai et al. Mechanical and chemical properties of bamboo/glass fibers reinforced polyester hybrid composites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20131127

WD01 Invention patent application deemed withdrawn after publication