CN103399006A - Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof - Google Patents

Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof Download PDF

Info

Publication number
CN103399006A
CN103399006A CN2013103213448A CN201310321344A CN103399006A CN 103399006 A CN103399006 A CN 103399006A CN 2013103213448 A CN2013103213448 A CN 2013103213448A CN 201310321344 A CN201310321344 A CN 201310321344A CN 103399006 A CN103399006 A CN 103399006A
Authority
CN
China
Prior art keywords
resistor
processor
equation
color
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103213448A
Other languages
Chinese (zh)
Other versions
CN103399006B (en
Inventor
陈龙聪
熊兴良
高斌
江奇锋
奉娇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Medical University
Original Assignee
Chongqing Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Medical University filed Critical Chongqing Medical University
Priority to CN201310321344.8A priority Critical patent/CN103399006B/en
Publication of CN103399006A publication Critical patent/CN103399006A/en
Application granted granted Critical
Publication of CN103399006B publication Critical patent/CN103399006B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明公开一种基于颜色RGB分量的尿液分析装置,其特征在于:包括处理器、串行通信单元、温度测量单元、光强控制单元和颜色传感器单元,处理器通过光强控制单元控制白色LED灯的发光强度,白色LED灯发出的光线照射到取样平台上的尿检试带中,利用颜色传感器单元获取尿检试带各个试剂区反射光的颜色RGB分量,处理器根据颜色RGB分量和温度判定出各个试剂区对应检测指标的半定量值。其显著效果是:电路结构简单,成本低,通过颜色传感器和温度检测单元的配合,利用现有精密仪器的经验数值来拟合各个检测指标的计算系数,微处理器就能利用这些系数计算出精确的检测指标,而且设备精度高,适用温度范围广。

The invention discloses a urine analysis device based on color RGB components, which is characterized in that it includes a processor, a serial communication unit, a temperature measurement unit, a light intensity control unit and a color sensor unit, and the processor controls the white color through the light intensity control unit. The luminous intensity of the LED lamp, the light emitted by the white LED lamp is irradiated into the urine test strip on the sampling platform, and the color RGB component of the reflected light of each reagent area of the urine test strip is obtained by the color sensor unit, and the processor judges it according to the color RGB component and temperature The semi-quantitative value of the detection index corresponding to each reagent area is displayed. Its remarkable effect is: the circuit structure is simple, the cost is low, through the cooperation of the color sensor and the temperature detection unit, the empirical values of the existing precision instruments are used to fit the calculation coefficients of each detection index, and the microprocessor can use these coefficients to calculate Accurate detection index, high precision equipment, wide temperature range.

Description

基于颜色RGB分量的尿液分析装置及其处理方法Urine analysis device and processing method based on color RGB components

技术领域technical field

本发明涉及到生物医学领域的尿常规检测技术,具体地说,是一种基于颜色RGB分量的尿液分析装置及其处理方法。The invention relates to urine routine detection technology in the field of biomedicine, in particular to a urine analysis device based on color RGB components and a processing method thereof.

背景技术Background technique

尿液分析是临床最常用的化验指标之一,不仅对泌尿系统疾病的诊断、疗效观察提供参考,而且对凡是能引起血液生化成分改变的其它系统疾病的诊疗也很有帮助。此外,尿液分析还可以用于安全用药检测和健康状态初评。Urinalysis is one of the most commonly used laboratory indicators in clinical practice. It not only provides references for the diagnosis and curative effect observation of urinary system diseases, but also is very helpful for the diagnosis and treatment of other system diseases that can cause changes in blood biochemical components. In addition, urinalysis can also be used for safe drug testing and initial assessment of health status.

作为传统方式而言,尿液检查往往是根据试纸条上试剂区与尿样本中生化成分反应所产生的颜色变化,定性或半定量检测尿液样本中尿胆原、胆红素、酮体、血、蛋白质、亚硝酸盐、白细胞、葡萄糖、维生素C(或微白蛋白)的含量及尿样本的比重、酸碱度等。As a traditional method, urine testing is often based on the color change produced by the reaction between the reagent area on the test strip and the biochemical components in the urine sample, qualitative or semi-quantitative detection of urobilinogen, bilirubin, and ketone bodies in the urine sample. , blood, protein, nitrite, white blood cells, glucose, vitamin C (or microalbumin) content and urine sample specific gravity, pH, etc.

随着人们生活水平的提高和健康意识的加强,大量便携式、低成本、无创检测医学仪器、设备逐渐向家庭普及,如便携式血压计;便携式血糖仪等。而随着颜色传感器和电子技术的发展,微型家用尿液分析仪在不久的将来将进入家庭,作为人们自身健康评价的一种手段。With the improvement of people's living standards and the strengthening of health awareness, a large number of portable, low-cost, non-invasive testing medical instruments and equipment are gradually popularized in families, such as portable blood pressure monitors and portable blood glucose meters. With the development of color sensors and electronic technology, miniature household urine analyzers will enter the family in the near future as a means of people's own health evaluation.

现今,尿液分析仪产品市场迎来快速发展时期,已经可以进行多个项目的检测。但尿液分析仪的关键部分是光学系统和定性或半定量分析的具体算法。其原理是:将光线照射到试纸的反应区表面产生反射光,反射光的强度与各个测试项目的反应颜色有关,通过反射光的情况分析尿液中各种物质的含量。现有的高精度尿液检测仪通常设备昂贵、结构复杂,为了使尿液分析仪能进入家庭,并满足精度要求,则需要对现有尿液分析装置进行改进或更新。Nowadays, the urine analyzer product market is ushering in a period of rapid development, and multiple items can be tested. But the key part of the urine analyzer is the optical system and the specific algorithm for qualitative or semi-quantitative analysis. Its principle is: irradiating light to the surface of the reaction zone of the test paper to generate reflected light, the intensity of the reflected light is related to the reaction color of each test item, and the content of various substances in the urine is analyzed by the reflected light. Existing high-precision urine analyzers usually have expensive equipment and complex structures. In order for urine analyzers to enter the home and meet the accuracy requirements, it is necessary to improve or update the existing urine analyzers.

发明内容Contents of the invention

针对现有技术的不足,本发明的目的之一是为了满足家用医学仪器便携式需求,提出一种基于颜色RGB分量的尿液分析装置,而为了让便携式仪器检测精度符合要求,本发明还提出了一种基于颜色RGB分量的尿液分析装置的处理方法。In view of the deficiencies in the prior art, one of the purposes of the present invention is to propose a urine analysis device based on color RGB components in order to meet the portable needs of household medical instruments, and in order to make the detection accuracy of the portable instrument meet the requirements, the present invention also proposes A processing method of a urine analysis device based on color RGB components.

其具体的技术方案如下:Its specific technical scheme is as follows:

一种基于颜色RGB分量的尿液分析装置,其关键在于:包括处理器以及连接在处理器上的串行通信单元、温度测量单元、光强控制单元和颜色传感器单元,处理器通过光强控制单元控制白色LED灯的发光强度,白色LED灯发出的光线照射到取样平台上的尿检试带中,利用颜色传感器单元获取尿检试带各个试剂区反射光的颜色RGB分量,处理器根据颜色RGB分量和温度测量单元获取的温度信息判定出各个试剂区对应检测指标的半定量值。A urine analysis device based on color RGB components, its key lies in: including a processor and a serial communication unit connected to the processor, a temperature measurement unit, a light intensity control unit and a color sensor unit, the processor controls the The unit controls the luminous intensity of the white LED lamp. The light emitted by the white LED lamp is irradiated into the urine test strip on the sampling platform, and the color sensor unit is used to obtain the color RGB components of the reflected light from each reagent area of the urine test strip. The semi-quantitative value of the detection index corresponding to each reagent area is determined by using the temperature information obtained by the temperature measurement unit.

由干化分析原理可得,在反应时间基本一定的情况下,最后试纸尿检试带各个试剂区的颜色变化情况主要与被测尿液中对应成份的浓度、温度有关,因此通过颜色传感器单元获取的各颜色分量也与被测尿液中对应成份的浓度、温度也有关。而通常用反射率来反映试剂区颜色的变化程度,所以反射率可以用颜色传感器获取的各颜色分量来反映。另外,对于具有相同浓度成分的被测尿液、在相同时间测量其颜色情况会有一定的变化。因此,要用同一反射率来反映相同浓度的被测尿液在不同温度下的颜色变化情况,这就必须考虑温度的影响,即温度也应该作为一个因素考虑。因此,反射率的值应该是四个因素的定量关系,即颜色的R、G、B分量和温度。基于此,本设计在光强控制单元保证入射光强度的基础上,利用颜色传感器单元和温度测量单元相结合,有效提高了尿液干化分析的精度,扩宽测量的温度范围。According to the principle of drying analysis, when the reaction time is basically constant, the color change of each reagent area of the final test paper urine test strip is mainly related to the concentration and temperature of the corresponding components in the tested urine, so it is obtained through the color sensor unit. Each color component is also related to the concentration and temperature of the corresponding components in the tested urine. However, the reflectance is usually used to reflect the degree of color change in the reagent area, so the reflectance can be reflected by the color components obtained by the color sensor. In addition, there will be certain changes in the color of the tested urine with the same concentration of components measured at the same time. Therefore, to use the same reflectance to reflect the color change of the measured urine at the same concentration at different temperatures, the influence of temperature must be considered, that is, temperature should also be considered as a factor. Therefore, the value of the reflectance should be a quantitative relationship of four factors, namely the R, G, B components of the color and the temperature. Based on this, on the basis of the light intensity control unit ensuring the incident light intensity, this design uses the combination of the color sensor unit and the temperature measurement unit to effectively improve the accuracy of urine drying analysis and expand the temperature range of measurement.

为了保证电路安全,防止外部电压过高而引起芯片损坏,所述处理器上连接有启停控制单元,该启停控制单元包括二极管Q2,该二极管Q2的集电极经电阻R10与3.3V电源相连,二极管Q2的基极经电阻R11与外部控制端连接,二极管Q2的发射极接地,二极管Q2的基极还经电阻R12接地,处理器的电源输入端连接在二极管Q2的集电极上。In order to ensure circuit safety and prevent chip damage caused by excessive external voltage, a start-stop control unit is connected to the processor, and the start-stop control unit includes a diode Q2, and the collector of the diode Q2 is connected to a 3.3V power supply via a resistor R10 , the base of the diode Q2 is connected to the external control terminal through the resistor R11, the emitter of the diode Q2 is grounded, the base of the diode Q2 is also grounded through the resistor R12, and the power input terminal of the processor is connected to the collector of the diode Q2.

为了保证尿检试带入射光的光线强度,所述光强控制单元包括双集成运放,该双集成运放的第1管脚经电阻R5与二极管Q1的基极连接,二极管Q1的集电极经电阻R6与电源连接,二极管Q1的发射极与双集成运放的第2管脚之间连接所述白色LED灯,双集成运放的第3管脚与第7管脚相连,双集成运放的第4管脚接地,双集成运放的第5管脚依次经过电阻R2、电阻R1与处理器的PWM输出端连接,电阻R2的一端经过电容C1接地,电阻R2的另一端经过电容C2接地,双集成运放的第7管脚还依次经过电阻R4、电阻R3接地,双集成运放的第6管脚连接在电阻R4与电阻R3之间,双集成运放的第8管脚与电源相连,双集成运放的第2管脚还经过取样电阻R7接地。In order to ensure the light intensity of the incident light of the urine test strip, the light intensity control unit includes a dual integrated operational amplifier, the first pin of the dual integrated operational amplifier is connected to the base of the diode Q1 via a resistor R5, and the collector of the diode Q1 is connected to the base of the diode Q1 via The resistor R6 is connected to the power supply, the white LED light is connected between the emitter of the diode Q1 and the second pin of the dual integrated operational amplifier, the third pin of the dual integrated operational amplifier is connected to the seventh pin, and the dual integrated operational amplifier The 4th pin of the dual integrated op amp is connected to the PWM output of the processor through the resistor R2 and the resistor R1 in turn, one end of the resistor R2 is grounded through the capacitor C1, and the other end of the resistor R2 is grounded through the capacitor C2 , the 7th pin of the dual integrated operational amplifier is also grounded through the resistor R4 and the resistor R3 in turn, the 6th pin of the dual integrated operational amplifier is connected between the resistor R4 and the resistor R3, the 8th pin of the dual integrated operational amplifier is connected to the power supply Connected, the second pin of the dual integrated op amp is grounded through the sampling resistor R7.

为了在减小处理器成本的基础上提高检测精度,所述处理器为STM32F103RB微控制芯片,在处理器上还连接有参考电压单元。In order to improve detection accuracy on the basis of reducing processor cost, the processor is an STM32F103RB micro-control chip, and a reference voltage unit is also connected to the processor.

结合上述电路结构的描述,本发明所提出的一种基于颜色RGB分量的尿液分析装置的处理方法如下:Combined with the description of the above circuit structure, the processing method of a urine analysis device based on color RGB components proposed by the present invention is as follows:

步骤1:选择尿检试带中某个试剂区的颜色RGB分量DR、DG、DB,其中DR为红色分量,DG为绿色分量,DB为蓝色分量;Step 1: Select the color RGB components D R , D G , D B of a certain reagent area in the urine test strip, where D R is the red component, D G is the green component, and D B is the blue component;

步骤2:按照等式(a)计算参考反射率y*25,等式(a)中c0、c1、c2、c3、c4、c5、c6均为系数;Step 2: Calculate the reference reflectance y* 25 according to equation (a), where c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , and c 6 are coefficients;

y*25=c0+c1DR+c2(DR)2+c3DG+c4(DG)2+c5DB+c6(DB)2     (a);y* 25 =c 0 +c 1 D R +c 2 (D R ) 2 +c 3 D G +c 4 (D G ) 2 +c 5 D B +c 6 (D B ) 2 (a);

步骤3:按照等式(b)计算实际反射率y*,等式(b)中c0'、c1'、c2'、c3'、c4'均为系数,t为温度测量单元所检测出的环境温度,y* 25为步骤2所计算出的参考反射率;Step 3: Calculate the actual reflectance y* according to equation (b), where c 0 ', c 1 ', c 2 ', c 3 ', and c 4 ' are all coefficients, and t is the temperature measurement unit The detected ambient temperature, y * 25 is the reference reflectance calculated in step 2;

y*=c0'+c1't+c2't2+c3'y*25+c4'(y*25)2     (b);y*=c 0 '+c 1 't+c 2 't 2 +c 3 'y* 25 +c 4 '(y* 25 ) 2 (b);

步骤4:根据步骤3中计算出的实际反射率y*的大小和预设的区间范围确定该试剂区对应检测指标的半定量值。Step 4: Determine the semi-quantitative value of the detection index corresponding to the reagent area according to the actual reflectance y* calculated in step 3 and the preset interval range.

作为进一步描述,等式(a)与等式(b)中的系数针对尿检试带中不同的试剂区有所不同,具体的确定方法按照以下步骤进行:As a further description, the coefficients in equation (a) and equation (b) are different for different reagent areas in the urine test strip, and the specific determination method is carried out according to the following steps:

步骤2-1:选择25±5℃范围内N个温度点,利用现有仪器测试每个温度点下尿检试带中一个试剂区的真实反射率,依次记为y25,m,m=1~N,N为大于4的正整数;Step 2-1: Select N temperature points within the range of 25±5°C, use the existing equipment to test the true reflectance of a reagent area in the urine test strip at each temperature point, and record it as y 25,m in turn, m=1 ~N, N is a positive integer greater than 4;

步骤2-2:利用颜色传感器单元获取该试剂区在每个温度点下的检测参数x0,m,x1,m,x2,m,x3,m,x4,m,x5,m,x6,m,其中:Step 2-2: Use the color sensor unit to obtain the detection parameters x 0,m ,x 1,m, x 2,m ,x 3,m ,x 4,m ,x 5, m ,x 6,m , where:

x0,m=1;x 0,m = 1;

x1,m=DR,m,即第m个温度点下的红色分量;x 1,m =D R,m , that is, the red component at the mth temperature point;

x2,m=(DR,m)2,即第m个温度点下的红色分量的平方;x 2,m =(D R,m ) 2 , that is, the square of the red component at the mth temperature point;

x3,m=DG,m,即第m个温度点下的绿色分量;x 3,m =D G,m , which is the green component at the mth temperature point;

x4,m=(DG,m)2,即第m个温度点下的绿色分量的平方;x 4,m =(D G,m ) 2 , which is the square of the green component at the mth temperature point;

x5,m=DB,m,即第m个温度点下的蓝色分量;x 5,m = D B,m , that is, the blue component at the mth temperature point;

x6,m=(DB,m)2即第m个温度点下的蓝色分量的平方;x 6,m =(D B,m ) 2 is the square of the blue component at the mth temperature point;

步骤2-3:按照等式(c)所示的方程组确定等式(a)中的系数c0、c1、c2、c3、c4、c5、c6Step 2-3: Determine the coefficients c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , c 6 in equation (a) according to the equation system shown in equation (c);

ΣΣ ii == 00 66 cc ii (( ΣΣ mm == 11 NN xx ii ,, mm xx kk ,, mm )) == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx kk ,, mm ,, kk == 11 ~~ 66 -- -- -- (( cc )) ;;

步骤2-4:按照等式(d)所示的方程组确定等式(b)中的系数c0'、c1'、c2'、c3'、c4';Step 2-4: Determine the coefficients c 0 ', c 1 ', c 2 ', c 3 ', c 4 ' in equation (b) according to the equation system shown in equation (d);

其中:in:

y0,m=1;y 0,m = 1;

y1,m=tm,即第m个温度点的温度值;y 1,m =t m , that is, the temperature value of the mth temperature point;

y2,m=(tm)2,即第m个温度点的温度值平方;y 2,m = (t m ) 2 , that is, the square of the temperature value at the mth temperature point;

y3,m=y*25,m,即第m个温度点下的参考反射率;y 3,m =y* 25,m , which is the reference reflectance at the mth temperature point;

y4,m=(y*25,m)2,即第m个温度点下的参考反射率的平方;y 4,m =(y* 25,m ) 2 , which is the square of the reference reflectance at the mth temperature point;

第m个温度点下的参考反射率:Reference reflectance at the mth temperature point:

y*25,m=c0+c1DR,m+c2(DR,m)2+c3DG,m+c4(DG,m)2+c5DB,m+c6(DB,m)2y* 25,m =c 0 +c 1 D R,m +c 2 (D R,m ) 2 +c 3 D G,m +c 4 (D G,m ) 2 +c 5 D B,m + c 6 (D B,m ) 2 .

利用该方法可以准确的确认各个检测指标的计算系数,将这些系数通过程序固化到微处理器中,即可直接计算出各个检测指标的半定量值,降低处理器的计算量,在选用处理器时所需的成本更加低廉。Using this method, the calculation coefficients of each detection index can be accurately confirmed, and these coefficients can be solidified into the microprocessor through the program, and the semi-quantitative value of each detection index can be directly calculated, reducing the calculation amount of the processor. The required cost is lower.

本发明的显著效果是:电路结构简单,成本低,通过颜色传感器和温度检测单元的配合,利用现有精密仪器的经验数值来拟合各个检测指标的计算系数,微处理器就能利用这些系数计算出精确的检测指标,而且设备精度高,适用温度范围广,可广泛应用于家庭和临床尿液检测。The remarkable effect of the present invention is: the circuit structure is simple, the cost is low, through the cooperation of the color sensor and the temperature detection unit, the empirical values of the existing precision instruments are used to fit the calculation coefficients of each detection index, and the microprocessor can use these coefficients Accurate detection indicators are calculated, and the equipment has high precision and a wide range of applicable temperatures, and can be widely used in family and clinical urine detection.

附图说明Description of drawings

图1是本发明的电路原理框图;Fig. 1 is a block diagram of circuit principle of the present invention;

图2是图1中启停控制单元的电路原理图;Fig. 2 is a schematic circuit diagram of the start-stop control unit in Fig. 1;

图3是图1中光强控制单元的电路原理图。FIG. 3 is a schematic circuit diagram of the light intensity control unit in FIG. 1 .

具体实施方式Detailed ways

下面结合附图对本发明的具体实施方式以及工作原理作进一步详细说明。The specific implementation manner and working principle of the present invention will be further described in detail below in conjunction with the accompanying drawings.

如图1所示,一种基于颜色RGB分量的尿液分析装置,包括处理器1以及连接在处理器1上的串行通信单元3、温度测量单元4、光强控制单元5和颜色传感器单元8,处理器1通过光强控制单元5控制白色LED灯6的发光强度,白色LED灯6发出的光线照射到取样平台上的尿检试带中,利用颜色传感器单元8获取尿检试带各个试剂区反射光的颜色RGB分量,处理器1根据颜色RGB分量和温度测量单元4获取的温度信息判定出各个试剂区对应检测指标的半定量值。As shown in Figure 1, a urine analysis device based on color RGB components includes a processor 1 and a serial communication unit 3 connected to the processor 1, a temperature measurement unit 4, a light intensity control unit 5 and a color sensor unit 8. The processor 1 controls the luminous intensity of the white LED lamp 6 through the light intensity control unit 5, the light emitted by the white LED lamp 6 is irradiated into the urine test strip on the sampling platform, and the color sensor unit 8 is used to obtain each reagent area of the urine test strip The color RGB components of the reflected light, the processor 1 determines the semi-quantitative value of each reagent area corresponding to the detection index according to the color RGB components and the temperature information acquired by the temperature measurement unit 4 .

实施过程中,处理器1选择高性价比的32位微处理器,型号为STM32F103RB,内带12位、1μs转换速度的A/D转换器、有128K可用于程序和数据存储的flash存储器、20K静态存储、最高频率可达72MHz,温度测量单元4通常选用18B20温度传感器,颜色传感器单元8选用TCS3104颜色传感器。一方面,处理器1通过光强控制单元5控制白色LED灯6的发光强度,保证入射光强的稳定。另一方面,处理器1用于将颜色传感器单元8以及温度测量单元4输出的模拟电压转换为相应的数字值,实现颜色和温度的采集,通过内部算法,计算出各个指标的半定量值,同时利用串行通信单元3实现与外部通讯。During the implementation process, processor 1 chooses a cost-effective 32-bit microprocessor, the model is STM32F103RB, with a 12-bit, 1μs conversion speed A/D converter, 128K flash memory for program and data storage, and 20K static Storage, the highest frequency can reach 72MHz, the temperature measurement unit 4 usually uses a 18B20 temperature sensor, and the color sensor unit 8 uses a TCS3104 color sensor. On the one hand, the processor 1 controls the luminous intensity of the white LED lamp 6 through the light intensity control unit 5 to ensure the stability of the incident light intensity. On the other hand, the processor 1 is used to convert the analog voltage output by the color sensor unit 8 and the temperature measurement unit 4 into corresponding digital values to realize the collection of color and temperature, and calculate the semi-quantitative value of each index through an internal algorithm, At the same time, the serial communication unit 3 is used to communicate with the outside.

考虑到模拟输入的电源可能波动,为了满足不同模块之间的一致性,在处理器1上还连接有参考电压单元7,该参考电压单元7选用一高精度3V参考电压芯片ADR363B,输出电压噪声峰峰值仅为6.8V,电压精度±3mV,温度系数仅为9ppm/℃。Considering that the power supply of the analog input may fluctuate, in order to meet the consistency between different modules, a reference voltage unit 7 is also connected to the processor 1. The reference voltage unit 7 selects a high-precision 3V reference voltage chip ADR363B, and the output voltage noise The peak-to-peak value is only 6.8V, the voltage accuracy is ±3mV, and the temperature coefficient is only 9ppm/℃.

如图2所示,为了保证处理器1的供电安全,所述处理器1上连接有启停控制单元2,该启停控制单元2包括二极管Q2,该二极管Q2的集电极经电阻R10与3.3V电源相连,二极管Q2的基极经电阻R11与外部控制端连接,二极管Q2的发射极接地,二极管Q2的基极还经电阻R12接地,处理器1的电源输入端连接在二极管Q2的集电极上。As shown in Figure 2, in order to ensure the safety of the power supply of the processor 1, the processor 1 is connected with a start-stop control unit 2, the start-stop control unit 2 includes a diode Q2, the collector of the diode Q2 is connected to the resistor R10 and 3.3 V power supply is connected, the base of diode Q2 is connected to the external control terminal through resistor R11, the emitter of diode Q2 is grounded, the base of diode Q2 is also grounded through resistor R12, and the power input terminal of processor 1 is connected to the collector of diode Q2 superior.

如图3所示,作为一种实施方式,所述光强控制单元5包括双集成运放AMP2,该双集成运放AMP2的第1管脚经电阻R5与二极管Q1的基极连接,二极管Q1的集电极经电阻R6与电源连接,二极管Q1的发射极与双集成运放AMP2的第2管脚之间连接所述白色LED灯6,双集成运放AMP2的第3管脚与第7管脚相连,双集成运放AMP2的第4管脚接地,双集成运放AMP2的第5管脚依次经过电阻R2、电阻R1与处理器1的PWM输出端连接,电阻R2的一端经过电容C1接地,电阻R2的另一端经过电容C2接地,双集成运放AMP2的第7管脚还依次经过电阻R4、电阻R3接地,双集成运放AMP2的第6管脚连接在电阻R4与电阻R3之间,双集成运放AMP2的第8管脚与电源相连,双集成运放AMP2的第2管脚还经过取样电阻R7接地。As shown in Figure 3, as an implementation, the light intensity control unit 5 includes a dual integrated operational amplifier AMP2, the first pin of the dual integrated operational amplifier AMP2 is connected to the base of the diode Q1 through a resistor R5, and the diode Q1 The collector of the diode Q1 is connected to the power supply through the resistor R6, the white LED light 6 is connected between the emitter of the diode Q1 and the second pin of the dual integrated operational amplifier AMP2, and the third pin of the dual integrated operational amplifier AMP2 is connected to the seventh tube The pins are connected, the fourth pin of the dual integrated operational amplifier AMP2 is grounded, the fifth pin of the dual integrated operational amplifier AMP2 is connected to the PWM output of processor 1 through the resistor R2 and the resistor R1 in turn, and one end of the resistor R2 is grounded through the capacitor C1 , the other end of the resistor R2 is grounded through the capacitor C2, the seventh pin of the dual integrated operational amplifier AMP2 is also grounded through the resistor R4 and the resistor R3 in turn, and the sixth pin of the dual integrated operational amplifier AMP2 is connected between the resistor R4 and the resistor R3 , the eighth pin of the dual integrated operational amplifier AMP2 is connected to the power supply, and the second pin of the dual integrated operational amplifier AMP2 is grounded through the sampling resistor R7.

电阻R1、电阻R2、电容C1和电容C2构成滤波器,将处理器1输出的脉冲宽度调制信号(PWM)滤波为直流信号;电阻R3、电阻R4和双集成运放AMP2内的一个集成运放构成同相比例放大器,实现将PWM信号经滤波后的直流信号放大的目的;电阻R5、电阻R6、取样电阻R7、三极管Q1及双集成运放AMP2内的一个集成运放实现电压电流转换,达到恒流控制白色LED灯6的目的。Resistor R1, resistor R2, capacitor C1 and capacitor C2 form a filter to filter the pulse width modulation signal (PWM) output by processor 1 into a DC signal; resistor R3, resistor R4 and an integrated operational amplifier in the dual integrated operational amplifier AMP2 Constitute the same-phase proportional amplifier to achieve the purpose of amplifying the DC signal after the PWM signal is filtered; resistor R5, resistor R6, sampling resistor R7, triode Q1 and an integrated operational amplifier in the dual integrated operational amplifier AMP2 realize voltage-current conversion to achieve constant Flow control white LED light 6 purpose.

根据上述设备,下面以蛋白质(PRO)的检测为例,对这种基于颜色RGB分量的尿液分析装置的处理方法进行具体描述,其处理步骤如下:According to the above equipment, taking the detection of protein (PRO) as an example, the processing method of this urine analysis device based on color RGB components is described in detail, and the processing steps are as follows:

为了检测多个指标,尿检试带通常存在多个试剂区,不同试剂区所添加的检测试剂有所不同,其颜色分量和对应的反射率也有所不同,针对蛋白质检测而言:In order to detect multiple indicators, urine test strips usually have multiple reagent areas. The detection reagents added to different reagent areas are different, and their color components and corresponding reflectances are also different. For protein detection:

首先进入步骤1:选择尿检试带中检测蛋白质的试剂区的颜色RGB分量DR、DG、DB,其中DR为红色分量,DG为绿色分量,DB为蓝色分量;First enter step 1: select the color RGB components DR , D G , and DB of the reagent area for detecting protein in the urine test strip, where DR is the red component, D G is the green component, and DB is the blue component;

然后进入步骤2:按照等式(a)计算参考反射率y*25,等式(a)中c0、c1、c2、c3、c4、c5、c6均为系数,这里应该对应于检测蛋白质的系数;Then go to step 2: Calculate the reference reflectance y* 25 according to equation (a). In equation (a), c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , and c 6 are all coefficients. Here should correspond to the coefficient of the detected protein;

y*25=c0+c1DR+c2(DR)2+c3DG+c4(DG)2+c5DB+c6(DB)2     (a);y* 25 =c 0 +c 1 D R +c 2 (D R ) 2 +c 3 D G +c 4 (D G ) 2 +c 5 D B +c 6 (D B ) 2 (a);

当计算出参考反射率y*25后进入步骤3:按照等式(b)计算实际反射率y*,等式(b)中c0'、c1'、c2'、c3'、c4'均为系数,这里的系数也是针对检测蛋白质的系数,t为温度测量单元4所检测出的环境温度,y* 25为步骤2所计算出的参考反射率;When the reference reflectance y* 25 is calculated, enter step 3: calculate the actual reflectance y* according to equation (b), in equation (b) c 0 ', c 1 ', c 2 ', c 3 ', c 4 ' are coefficients, the coefficients here are also coefficients for detecting proteins, t is the ambient temperature detected by the temperature measurement unit 4, and y * 25 is the calculated reference reflectance in step 2;

y*=c0'+c1't+c2't2+c3'y*25+c4'(y*25)2     (b);y*=c 0 '+c 1 't+c 2 't 2 +c 3 'y* 25 +c 4 '(y* 25 ) 2 (b);

根据上述的系数计算出实际反射率y*后,进入步骤4:根据步骤3中计算出的实际反射率y*的大小和预设的区间范围确定该试剂区对应检测指标的半定量值。After the actual reflectance y* is calculated according to the above coefficients, proceed to step 4: determine the semi-quantitative value of the detection index corresponding to the reagent area according to the size of the actual reflectance y* calculated in step 3 and the preset interval range.

在具体实施过程中,蛋白质(PRO)的浓度区间、反射率及半定量值关系如表1所示。In the specific implementation process, the relationship between the concentration range, reflectance and semi-quantitative value of protein (PRO) is shown in Table 1.

表1白质(PRO)的浓度区间、反射率及半定量值关系Table 1 The relationship between the concentration interval, reflectance and semi-quantitative value of white matter (PRO)

Figure BDA00003581075400101
Figure BDA00003581075400101

上述方法中等式(a)与等式(b)中的系数针对尿检试带中不同的试剂区有所不同,这里针对蛋白质(PRO)的浓度检测而言,具体介绍各个系数的确定方法。In the above method, the coefficients in equation (a) and equation (b) are different for different reagent areas in the urine test strip. Here, for the concentration detection of protein (PRO), the determination method of each coefficient is specifically introduced.

步骤2-1:选择25±5℃范围内N个温度点,这里分别选择21℃、23℃、25℃、27℃、29℃共5个温度点进行测试,利用现有仪器测试每个温度点下尿检试带中一个试剂区的真实反射率,依次记为y25,m,m=1~N,这里N=5,选用的现有仪器为德国拜耳Bayer泰利特-爱纳斯CLINITEKATLAS进行测量;Step 2-1: Select N temperature points within the range of 25±5°C. Here, 5 temperature points of 21°C, 23°C, 25°C, 27°C, and 29°C are selected for testing, and each temperature is tested with existing instruments Click on the true reflectance of a reagent area in the urine test strip, which is recorded as y 25,m in turn, m=1~N, where N=5, and the existing instrument selected is Bayer Telit-Ainas CLINITEKATLAS, Germany. Measurement;

步骤2-2:利用颜色传感器单元8获取该试剂区在每个温度点下的检测参数x0,m,x1,m,x2,m,x3,m,x4,m,x5,m,x6,m,其中:Step 2-2: Use the color sensor unit 8 to obtain detection parameters x 0,m ,x 1,m ,x 2,m ,x 3,m ,x 4,m ,x 5 of the reagent zone at each temperature point ,m ,x 6,m , where:

x0,m=1;x 0,m = 1;

x1,m=DR,m,即第m个温度点下的红色分量;x 1,m =D R,m , that is, the red component at the mth temperature point;

x2,m=(DR,m)2,即第m个温度点下的红色分量的平方;x 2,m =(D R,m ) 2 , that is, the square of the red component at the mth temperature point;

x3,m=DG,m,即第m个温度点下的绿色分量;x 3,m =D G,m , which is the green component at the mth temperature point;

x4,m=(DG,m)2,即第m个温度点下的绿色分量的平方;x 4,m =(D G,m ) 2 , which is the square of the green component at the mth temperature point;

x5,m=DB,m,即第m个温度点下的蓝色分量;x 5,m = D B,m , that is, the blue component at the mth temperature point;

x6,m=(DB,m)2即第m个温度点下的蓝色分量的平方;x 6,m =(D B,m ) 2 is the square of the blue component at the mth temperature point;

步骤2-3:按照等式(c)所示的方程组确定等式(a)中的系数c0、c1、c2、c3、c4、c5、c6Step 2-3: Determine the coefficients c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , c 6 in equation (a) according to the equation system shown in equation (c);

ΣΣ ii == 00 66 cc ii (( ΣΣ mm == 11 NN xx ii .. mm xx kk ,, mm )) == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx kk ,, mm ,, kk == 11 ~~ 66 -- -- -- (( cc )) ;;

步骤2-4:按照等式(d)所示的方程组确定等式(b)中的系数c0'、c1'、c2'、c3'、c4';Step 2-4: Determine the coefficients c 0 ', c 1 ', c 2 ', c 3 ', c 4 ' in equation (b) according to the equation system shown in equation (d);

ΣΣ jj == 00 66 cc jj ′′ (( ΣΣ mm == 11 NN ythe y jj ,, mm ythe y ll ,, mm )) == ΣΣ mm == 11 NN ythe y 2525 ,, mm ythe y ll ,, mm ,, ll == 11 ~~ 44 -- -- -- (( dd )) ;;

其中:in:

y0,m=1;y 0,m = 1;

y1,m=tm,即第m个温度点的温度值;y 1,m =t m , that is, the temperature value of the mth temperature point;

y2,m=(tm)2,即第m个温度点的温度值平方;y 2,m = (t m ) 2 , that is, the square of the temperature value at the mth temperature point;

y3,m=y*25,m,即第m个温度点下的参考反射率;y 3,m =y* 25,m , which is the reference reflectance at the mth temperature point;

y4,m=(y*25,m)2,即第m个温度点下的参考反射率的平方;y 4,m =(y* 25,m ) 2 , which is the square of the reference reflectance at the mth temperature point;

第m个温度点下的参考反射率:Reference reflectance at the mth temperature point:

y*25,m=c0+c1DR,m+c2(DR,m)2+c3DG,m+c4(DG,m)2+c5DB,m+c6(DB,m)2y* 25,m =c 0 +c 1 D R,m +c 2 (D R,m ) 2 +c 3 D G,m +c 4 (D G,m ) 2 +c 5 D B,m + c 6 (D B,m ) 2 .

根据上述方法,确定出的相应的系数后,等式(a)即为:According to the above method, after determining the corresponding coefficients, the equation (a) is:

y25*=-118.6566+0.2213DR+0.0014(DR)2+1.7419DG y 25 *=-118.6566+0.2213D R +0.0014(D R ) 2 +1.7419D G

-0.0056(DG)2-0.0398DB-0.0002(DB)2 -0.0056(D G ) 2 -0.0398D B -0.0002(D B ) 2

等式(b)即为:Equation (b) is:

y*=-8.8512+0.4278t-0.0024t2+1.0034y25*-0.0001(y25*)2y*=-8.8512+0.4278t-0.0024t 2 +1.0034y 25 *-0.0001(y 25 *) 2 .

在确定各个系数的过程中,主要采用最小二乘法多元回归的原理,用y25,m表示实际测得的第m个温度点的反射率,y*25,m为第m个温度点拟合的反射率,则其差δ25,m=|y25,m-y*25,m|,根据最小二乘法的原理要使得 Σ m = 1 N δ 25 , m 2 = Σ m = 1 N ( y 25 , m - y * 25 , m ) 2 最小,即:In the process of determining each coefficient, the principle of least squares multiple regression is mainly used, and y 25,m is used to represent the reflectance of the mth temperature point actually measured, and y* 25,m is the fitting of the mth temperature point , then its difference δ 25,m = |y 25,m -y* 25,m |, according to the principle of the least square method to make Σ m = 1 N δ 25 , m 2 = Σ m = 1 N ( the y 25 , m - the y * 25 , m ) 2 minimum, that is:

Σ m = 1 N ( y 25 , m - y * 25 , m ) 2 = Σ m = 1 N ( y 25 . m - Σ i = 0 6 c i x i . m ) 2 最小,则有: Σ m = 1 N ( the y 25 , m - the y * 25 , m ) 2 = Σ m = 1 N ( the y 25 . m - Σ i = 0 6 c i x i . m ) 2 minimum, then:

∂ [ Σ m = 1 N ( y m - Σ i = 0 6 c i x i , m ) 2 ] ∂ c k = 0 ( k = 0 , . . . , 6 ) ' 即: ∂ [ Σ m = 1 N ( the y m - Σ i = 0 6 c i x i , m ) 2 ] ∂ c k = 0 ( k = 0 , . . . , 6 ) ' Right now:

- Σ m = 1 N 2 ( y 25 , m - Σ i = 0 6 c i x i , m ) x k , m = 0 ; 整理后有: - Σ m = 1 N 2 ( the y 25 , m - Σ i = 0 6 c i x i , m ) x k , m = 0 ; After finishing there are:

Σ m = 1 N ( Σ i = 0 6 c i x i , m ) x k , m = Σ m = 1 N y 25 , m x k , m ; 其中(k=0,...,6),因为: Σ m = 1 N ( Σ i = 0 6 c i x i , m ) x k , m = Σ m = 1 N the y 25 , m x k , m ; where (k=0,...,6), because:

ΣΣ mm == 11 NN (( ΣΣ ii == 00 66 cc ii xx ii ,, mm )) xx kk ,, mm == ΣΣ mm == 11 NN (( ΣΣ ii == 00 66 cc ii xx ii ,, mm xx kk ,, mm )) == ΣΣ ii == 00 66 (( ΣΣ mm == 11 NN cc ii xx ii ,, mm xx kk ,, mm )) == ΣΣ ii == 00 66 cc ii (( ΣΣ mm == 11 NN xx ii ,, mm xx kk ,, mm ))

所以可整理为:So it can be organized as:

Σ i = 0 6 c i ( Σ m = 1 N x i , m x k , m ) = Σ m = 1 N y 25 , m x k , m ; 其中(k=0,...,6),也可写成以下7个方程: Σ i = 0 6 c i ( Σ m = 1 N x i , m x k , m ) = Σ m = 1 N the y 25 , m x k , m ; Wherein (k=0,...,6), can also be written as the following 7 equations:

ΣΣ mm == 11 NN xx 00 ,, mm xx 00 ,, mm cc 00 ++ ΣΣ mm == 11 NN xx 11 ,, mm xx 00 ,, mm cc 11 ++ ΣΣ mm == 11 NN xx 22 ,, mm xx 00 ,, mm cc 22 ++ ΣΣ mm == 11 NN xx 33 ,, mm xx 00 ,, mm cc 33 ++ ΣΣ mm == 11 NN xx 44 ,, mm xx 00 ,, mm cc 44 ++ ΣΣ mm == 11 NN xx 55 ,, mm xx 00 ,, mm cc 55 ++ ΣΣ mm == 11 NN xx 66 ,, mm xx 00 ,, mm cc 66 == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx 00 ,, mm ΣΣ mm == 11 NN xx 00 ,, mm xx 11 ,, mm cc 00 ++ ΣΣ mm == 11 NN xx 11 ,, mm xx 11 ,, mm cc 11 ++ ΣΣ mm == 11 NN xx 22 ,, mm xx 11 ,, mm cc 22 ++ ΣΣ mm == 11 NN xx 33 ,, mm xx 11 ,, mm cc 33 ++ ΣΣ mm == 11 NN xx 44 ,, mm xx 11 ,, mm cc 44 ++ ΣΣ mm == 11 NN xx 55 ,, mm xx 11 ,, mm cc 55 ++ ΣΣ mm == 11 NN xx 66 ,, mm xx 11 ,, mm cc 66 == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx 11 ,, mm .. .. .. .. .. .. .. .. .. ΣΣ mm == 11 NN xx 00 ,, mm xx 66 ,, mm cc 00 ++ ΣΣ mm == 11 NN xx 11 ,, mm xx 66 ,, mm cc 11 ++ ΣΣ mm == 11 NN xx 22 ,, mm xx 66 ,, mm cc 22 ++ ΣΣ mm == 11 NN xx 33 ,, mm xx 66 ,, mm cc 33 ++ ΣΣ mm == 11 NN xx 44 ,, mm xx 66 ,, mm cc 44 ++ ΣΣ mm == 11 NN xx 55 ,, mm xx 66 ,, mm cc 55 ++ ΣΣ mm == 11 NN xx 66 ,, mm xx 66 ,, mm cc 66 == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx 66 ,, mm

对每一项测测得的数据带入上述7个方程,解出c0,c1,…,c6,则可得多变量拟合函数Put the measured data of each item into the above 7 equations, and solve c 0 ,c 1 ,…,c 6 , then the multi-variable fitting function can be obtained

y25*=c0x0+c1x1+c2x2+c3x3+c4x4+c5x5+c6x6 y 25 *=c 0 x 0 +c 1 x 1 +c 2 x 2 +c 3 x 3 +c 4 x 4 +c 5 x 5 +c 6 x 6

同理可以拟合出y*=c0'+c1't+c2't2+c3'y*25+c4'(y*25)2中的各个系数,最终即可按照这些系数和相应的检测参数计算出实际的反射率。In the same way, each coefficient in y*=c 0 '+c 1 't+c 2 't 2 +c 3 'y* 25 +c 4 '(y* 25 ) 2 can be fitted, and finally you can follow these The coefficients and corresponding detection parameters are used to calculate the actual reflectance.

通过上述方法所计算出的反射率和高端仪器泰利特-爱纳斯CLINITEK ATLAS所测试的结果进行比较,如表2所示,可以看出,在不同浓度以及不同温度情况下,本发明所测得的反射率与现有的高端仪器所测的反射率误差较小,转化为半定量值后能够保证一致,满足家用甚至是临床需求,而且大大降低了设备成本。The reflectance calculated by the above method is compared with the result tested by the high-end instrument Telit-Ainas CLINITEK ATLAS, as shown in Table 2, it can be seen that under different concentrations and different temperatures, the measured reflectance of the present invention The obtained reflectance has a small error with the reflectance measured by existing high-end instruments, and it can be guaranteed to be consistent after being converted into a semi-quantitative value, which meets the needs of household and even clinical use, and greatly reduces the cost of equipment.

本例中仅以蛋白质的检测为例对其实施过程做了详尽描述,针对尿常规检测中的其他指标而言,如尿胆原、胆红素、酮体、亚硝酸盐、白细胞、葡萄糖等,其处理过程和原理相同,再次不再赘述。This example only takes the detection of protein as an example to describe its implementation process in detail. For other indicators in routine urine detection, such as urobilinogen, bilirubin, ketone bodies, nitrite, white blood cells, glucose, etc. , the processing process and principle are the same, and will not be described again.

表2:蛋白质在不同浓度梯度、不同温度下,反射率测试对照表Table 2: Comparison table of reflectance test of protein under different concentration gradients and different temperatures

Claims (6)

1.一种基于颜色RGB分量的尿液分析装置,其特征在于:包括处理器(1)以及连接在处理器(1)上的串行通信单元(3)、温度测量单元(4)、光强控制单元(5)和颜色传感器单元(8),处理器(1)通过光强控制单元(5)控制白色LED灯(6)的发光强度,白色LED灯(6)发出的光线照射到取样平台上的尿检试带中,利用颜色传感器单元(8)获取尿检试带各个试剂区反射光的颜色RGB分量,处理器(1)根据颜色RGB分量和温度测量单元(4)获取的温度信息判定出各个试剂区对应检测指标的半定量值。1. A urine analysis device based on color RGB components, characterized in that it includes a processor (1) and a serial communication unit (3) connected to the processor (1), a temperature measurement unit (4), a light The intensity control unit (5) and the color sensor unit (8), the processor (1) controls the luminous intensity of the white LED lamp (6) through the light intensity control unit (5), and the light emitted by the white LED lamp (6) irradiates the sampler In the urine test strip on the platform, the color sensor unit (8) is used to obtain the color RGB components of the reflected light of each reagent area of the urine test strip, and the processor (1) judges according to the color RGB components and the temperature information obtained by the temperature measurement unit (4) The semi-quantitative value of the detection index corresponding to each reagent area is displayed. 2.根据权利要求1所述的基于颜色RGB分量的尿液分析装置,其特征在于:所述处理器(1)上连接有启停控制单元(2),该启停控制单元(2)包括二极管Q2,该二极管Q2的集电极经电阻R10与3.3V电源相连,二极管Q2的基极经电阻R11与外部控制端连接,二极管Q2的发射极接地,二极管Q2的基极还经电阻R12接地,处理器(1)的电源输入端连接在二极管Q2的集电极上。2. The urine analysis device based on color RGB components according to claim 1, characterized in that a start-stop control unit (2) is connected to the processor (1), and the start-stop control unit (2) includes Diode Q2, the collector of the diode Q2 is connected to the 3.3V power supply through the resistor R10, the base of the diode Q2 is connected to the external control terminal through the resistor R11, the emitter of the diode Q2 is grounded, and the base of the diode Q2 is also grounded through the resistor R12, The power input terminal of the processor (1) is connected to the collector of the diode Q2. 3.根据权利要求1所述的基于颜色RGB分量的尿液分析装置,其特征在于:所述光强控制单元(5)包括双集成运放(AMP2),该双集成运放(AMP2)的第1管脚经电阻R5与二极管Q1的基极连接,二极管Q1的集电极经电阻R6与电源连接,二极管Q1的发射极与双集成运放(AMP2)的第2管脚之间连接所述白色LED灯(6),双集成运放(AMP2)的第3管脚与第7管脚相连,双集成运放(AMP2)的第4管脚接地,双集成运放(AMP2)的第5管脚依次经过电阻R2、电阻R1与处理器(1)的PWM输出端连接,电阻R2的一端经过电容C1接地,电阻R2的另一端经过电容C2接地,双集成运放(AMP2)的第7管脚还依次经过电阻R4、电阻R3接地,双集成运放(AMP2)的第6管脚连接在电阻R4与电阻R3之间,双集成运放(AMP2)的第8管脚与电源相连,双集成运放(AMP2)的第2管脚还经过取样电阻R7接地。3. The urine analysis device based on color RGB components according to claim 1, characterized in that: the light intensity control unit (5) includes a dual integrated operational amplifier (AMP2), and the dual integrated operational amplifier (AMP2) The first pin is connected to the base of the diode Q1 through the resistor R5, the collector of the diode Q1 is connected to the power supply through the resistor R6, and the emitter of the diode Q1 is connected to the second pin of the dual integrated operational amplifier (AMP2). White LED light (6), the 3rd pin of the dual integrated operational amplifier (AMP2) is connected to the 7th pin, the 4th pin of the dual integrated operational amplifier (AMP2) is grounded, the 5th pin of the dual integrated operational amplifier (AMP2) The pins are connected to the PWM output terminal of the processor (1) through the resistor R2 and the resistor R1 in sequence. One end of the resistor R2 is grounded through the capacitor C1, and the other end of the resistor R2 is grounded through the capacitor C2. The pins are also grounded through resistor R4 and resistor R3 in turn. The sixth pin of the dual integrated operational amplifier (AMP2) is connected between the resistor R4 and the resistor R3, and the eighth pin of the dual integrated operational amplifier (AMP2) is connected to the power supply. The second pin of the dual integrated operational amplifier (AMP2) is also grounded through the sampling resistor R7. 4.根据权利要求1-3任意一条权利要求所述的基于颜色RGB分量的尿液分析装置,其特征在于:所述处理器(1)为STM32F103RB微控制芯片,在处理器(1)上还连接有参考电压单元(7)。4. The urine analysis device based on color RGB components according to any one of claims 1-3, characterized in that: the processor (1) is a STM32F103RB micro-control chip, and the processor (1) is also A reference voltage unit (7) is connected. 5.一种如权利要求1所述的基于颜色RGB分量的尿液分析装置的处理方法,其特征在于按照以下步骤进行:5. a processing method based on the urine analysis device of color RGB component as claimed in claim 1, is characterized in that carrying out according to the following steps: 步骤1:选择尿检试带中某个试剂区的颜色RGB分量DR、DG、DB,其中DR为红色分量,DG为绿色分量,DB为蓝色分量;Step 1: Select the color RGB components D R , D G , D B of a certain reagent area in the urine test strip, where D R is the red component, D G is the green component, and D B is the blue component; 步骤2:按照等式(a)计算参考反射率y*25,等式(a)中c0、c1、c2、c3、c4、c5、c6均为系数;Step 2: Calculate the reference reflectance y* 25 according to equation (a), where c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , and c 6 are coefficients; y*25=c0+c1DR+c2(DR)2+c3DG+c4(DG)2+c5DB+c6(DB)2     (a);y* 25 =c 0 +c 1 D R +c 2 (D R ) 2 +c 3 D G +c 4 (D G ) 2 +c 5 D B +c 6 (D B ) 2 (a); 步骤3:按照等式(b)计算实际反射率y*,等式(b)中c0'、c1'、c2'、c3'、c4'均为系数,t为温度测量单元(4)所检测出的环境温度,y* 25为步骤2所计算出的参考反射率;Step 3: Calculate the actual reflectance y* according to equation (b), where c 0 ', c 1 ', c 2 ', c 3 ', and c 4 ' are all coefficients, and t is the temperature measurement unit (4) The detected ambient temperature, y * 25 is the reference reflectance calculated in step 2; y*=c0'+c1't+c2't2+c3'y*25+c4'(y*25)2     (b);y*=c 0 '+c 1 't+c 2 't 2 +c 3 'y* 25 +c 4 '(y* 25 ) 2 (b); 步骤4:根据步骤3中计算出的实际反射率y*的大小和预设的区间范围确定该试剂区对应检测指标的半定量值。Step 4: Determine the semi-quantitative value of the detection index corresponding to the reagent area according to the actual reflectance y* calculated in step 3 and the preset interval range. 6.根据权利要求5所述的基于颜色RGB分量的尿液分析装置的处理方法,其特征在于:等式(a)与等式(b)中的系数针对尿检试带中不同的试剂区有所不同,具体的确定方法按照以下步骤进行:6. The processing method of a urine analysis device based on color RGB components according to claim 5, characterized in that: the coefficients in equation (a) and equation (b) have different reagent areas in the urine test strip. The specific determination method is carried out according to the following steps: 步骤2-1:选择25±5℃范围内N个温度点,利用现有仪器测试每个温度点下尿检试带中一个试剂区的真实反射率,依次记为y25,m,m=1~N,N为大于4的正整数;Step 2-1: Select N temperature points within the range of 25±5°C, use the existing equipment to test the true reflectance of a reagent area in the urine test strip at each temperature point, and record it as y 25,m in turn, m=1 ~N, N is a positive integer greater than 4; 步骤2-2:利用颜色传感器单元(8)获取该试剂区在每个温度点下的检测参数x0,m,x1,m,x2,m,x3,m,x4,m,x5,m,x6,m,其中:Step 2-2: Use the color sensor unit (8) to obtain detection parameters x 0,m ,x 1,m ,x 2,m ,x 3,m ,x 4,m , x 5,m ,x 6,m , where: x0,m=1;x 0,m = 1; x1,m=DR,m,即第m个温度点下的红色分量;x 1,m =D R,m , that is, the red component at the mth temperature point; x2,m=(DR,m)2,即第m个温度点下的红色分量的平方;x 2,m =(D R,m ) 2 , that is, the square of the red component at the mth temperature point; x3,m=DG,m,即第m个温度点下的绿色分量;x 3,m =D G,m , which is the green component at the mth temperature point; x4,m=(DG,m)2,即第m个温度点下的绿色分量的平方;x 4,m =(D G,m ) 2 , which is the square of the green component at the mth temperature point; x5,m=DB,m,即第m个温度点下的蓝色分量;x 5,m = D B,m , that is, the blue component at the mth temperature point; x6,m=(DB,m)2即第m个温度点下的蓝色分量的平方;x 6,m =(D B,m ) 2 is the square of the blue component at the mth temperature point; 步骤2-3:按照等式(c)所示的方程组确定等式(a)中的系数c0、c1、c2、c3、c4、c5、c6Step 2-3: Determine the coefficients c 0 , c 1 , c 2 , c 3 , c 4 , c 5 , c 6 in equation (a) according to the equation system shown in equation (c); ΣΣ ii == 00 66 cc ii (( ΣΣ mm == 11 NN xx ii ,, mm xx kk ,, mm )) == ΣΣ mm == 11 NN ythe y 2525 ,, mm xx kk ,, mm ,, kk == 11 ~~ 66 -- -- -- (( cc )) ;; 步骤2-4:按照等式(d)所示的方程组确定等式(b)中的系数c0'、c1'、c2'、c3'、c4';Step 2-4: Determine the coefficients c 0 ', c 1 ', c 2 ', c 3 ', c 4 ' in equation (b) according to the equation system shown in equation (d); 其中:in: y0,m=1;y 0,m = 1; y1,m=tm,即第m个温度点的温度值;y 1,m =t m , that is, the temperature value of the mth temperature point; y2,m=(tm)2,即第m个温度点的温度值平方;y 2,m = (t m ) 2 , that is, the square of the temperature value at the mth temperature point; y3,m=y*25,m,即第m个温度点下的参考反射率;y 3,m =y* 25,m , which is the reference reflectance at the mth temperature point; y4,m=(y*25,m)2,即第m个温度点下的参考反射率的平方;y 4,m =(y* 25,m ) 2 , which is the square of the reference reflectance at the mth temperature point; 第m个温度点下的参考反射率:Reference reflectance at the mth temperature point: y*25,m=c0+c1DR,m+c2(DR,m)2+c3DG,m+c4(DG,m)2+c5DB,m+c6(DB,m)2y* 25,m =c 0 +c 1 D R,m +c 2 (D R,m ) 2 +c 3 D G,m +c 4 (D G,m ) 2 +c 5 D B,m + c 6 (D B,m ) 2 .
CN201310321344.8A 2013-07-29 2013-07-29 Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof Expired - Fee Related CN103399006B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310321344.8A CN103399006B (en) 2013-07-29 2013-07-29 Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310321344.8A CN103399006B (en) 2013-07-29 2013-07-29 Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof

Publications (2)

Publication Number Publication Date
CN103399006A true CN103399006A (en) 2013-11-20
CN103399006B CN103399006B (en) 2015-06-24

Family

ID=49562672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310321344.8A Expired - Fee Related CN103399006B (en) 2013-07-29 2013-07-29 Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof

Country Status (1)

Country Link
CN (1) CN103399006B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335658A (en) * 2014-08-15 2016-02-17 张钰昕 An application system for urine analysis using the camera function of a smart mobile device
CN105372239A (en) * 2015-12-15 2016-03-02 重庆理工大学 Optical fiber-based dry chemical analyzing device and analyzing method for urine
CN105424692A (en) * 2015-12-15 2016-03-23 重庆理工大学 Urine dry-chemistry analysis device and analysis method based on multiple monochromatic light rays and optical fibers
WO2016070456A1 (en) * 2014-11-06 2016-05-12 深圳市领治医学科技有限公司 Household urine analyzer
CN106441488A (en) * 2016-10-19 2017-02-22 杨林 Method for measuring operative bleeding amount and measuring card
WO2017121028A1 (en) * 2016-01-16 2017-07-20 深圳市华科安测信息技术有限公司 System for collecting blood glucose data in urine
CN107436294A (en) * 2016-05-26 2017-12-05 镇江索乐电子科技有限公司 A kind of quick liquid sediment Color Detecting System and its detection method
CN105352891B (en) * 2015-12-15 2018-02-16 重庆医科大学 Urine desiccation analysis method and device based on beam splitter
CN111830017A (en) * 2020-07-10 2020-10-27 山东商业职业技术学院 Device and method for obtaining comprehensive color change of color change test paper
CN112697783A (en) * 2020-12-23 2021-04-23 太原理工大学 Quantitative detection device and method for urine iodine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464460A (en) * 2007-12-19 2009-06-24 上海复星医药(集团)股份有限公司 Miniature biochemical detection instrument with internal calibartion function and its matched reagent
CN101978682A (en) * 2008-03-18 2011-02-16 富士通株式会社 Computer readable storage medium, image correction apparatus, and image correction method
CN102172011A (en) * 2008-10-02 2011-08-31 佳能株式会社 Image processing apparatus and color processing method
KR20110105928A (en) * 2010-03-22 2011-09-28 부산대학교 산학협력단 Urinary analysis method and apparatus
CN102735621A (en) * 2011-04-13 2012-10-17 广东工业大学 Fruit maturity detection method based on color sensor
CN102985806A (en) * 2012-06-14 2013-03-20 天津天合众生医疗科技有限公司 Detection device and method
CN202994794U (en) * 2012-12-18 2013-06-12 重庆医科大学 Bluetooth-based household miniature urine analyzer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101464460A (en) * 2007-12-19 2009-06-24 上海复星医药(集团)股份有限公司 Miniature biochemical detection instrument with internal calibartion function and its matched reagent
CN101978682A (en) * 2008-03-18 2011-02-16 富士通株式会社 Computer readable storage medium, image correction apparatus, and image correction method
CN102172011A (en) * 2008-10-02 2011-08-31 佳能株式会社 Image processing apparatus and color processing method
KR20110105928A (en) * 2010-03-22 2011-09-28 부산대학교 산학협력단 Urinary analysis method and apparatus
CN102735621A (en) * 2011-04-13 2012-10-17 广东工业大学 Fruit maturity detection method based on color sensor
CN102985806A (en) * 2012-06-14 2013-03-20 天津天合众生医疗科技有限公司 Detection device and method
CN202994794U (en) * 2012-12-18 2013-06-12 重庆医科大学 Bluetooth-based household miniature urine analyzer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105335658A (en) * 2014-08-15 2016-02-17 张钰昕 An application system for urine analysis using the camera function of a smart mobile device
WO2016070456A1 (en) * 2014-11-06 2016-05-12 深圳市领治医学科技有限公司 Household urine analyzer
CN105372239A (en) * 2015-12-15 2016-03-02 重庆理工大学 Optical fiber-based dry chemical analyzing device and analyzing method for urine
CN105424692A (en) * 2015-12-15 2016-03-23 重庆理工大学 Urine dry-chemistry analysis device and analysis method based on multiple monochromatic light rays and optical fibers
CN105424692B (en) * 2015-12-15 2018-02-02 重庆理工大学 Urine desiccation analytical equipment and analysis method based on more monochromatic light and optical fiber
CN105352891B (en) * 2015-12-15 2018-02-16 重庆医科大学 Urine desiccation analysis method and device based on beam splitter
WO2017121028A1 (en) * 2016-01-16 2017-07-20 深圳市华科安测信息技术有限公司 System for collecting blood glucose data in urine
CN107436294A (en) * 2016-05-26 2017-12-05 镇江索乐电子科技有限公司 A kind of quick liquid sediment Color Detecting System and its detection method
CN106441488A (en) * 2016-10-19 2017-02-22 杨林 Method for measuring operative bleeding amount and measuring card
CN111830017A (en) * 2020-07-10 2020-10-27 山东商业职业技术学院 Device and method for obtaining comprehensive color change of color change test paper
CN112697783A (en) * 2020-12-23 2021-04-23 太原理工大学 Quantitative detection device and method for urine iodine

Also Published As

Publication number Publication date
CN103399006B (en) 2015-06-24

Similar Documents

Publication Publication Date Title
CN103399006B (en) Color RGB (red, green and blue)-component-based urine analysis device and processing method thereof
CN102192887A (en) Electronic analyzer, test analysis method, and kit
WO2018041264A1 (en) Screening test paper, and verification system and method therefor
Penhaker et al. Advanced bilirubin measurement by a photometric method
CN202814866U (en) Color difference assessment system for biochemical analyzer
CN104390918A (en) Noninvasive detection system and method of diabetes and complications of diabetes
TWI262308B (en) Measuring method of double-slot biosensor
CN207366442U (en) A kind of Urine Analyzer
TWI653444B (en) Screening test paper and system and method thereof
Schlebusch et al. Analytical performance of a portable critical care blood gas analyzer
CN117288751A (en) Household novel intelligent urine detection method and device
JP2002350340A (en) Isotope gas measurement device and measurement method
Cheng et al. A low-cost compact blood enzyme analyzer based on optical sensing for point-of-care liver function testing
Joseph et al. iQuant™ Analyser: A rapid quantitative immunoassay reader
CN106769907B (en) Quantitative analyzer
CN104020283B (en) A kind of monofilm dry plate for renal function detection and preparation method
Liu et al. A portable analyzer based on a novel optical structure for urine dry-chemistry analysis
CN112485206A (en) Correction method of contact type measuring device and percutaneous jaundice instrument
TW201413234A (en) Urine analysis method and apparatus
TWM457179U (en) Urine analysis apparatus
Liu et al. Study on a novel portable urine analyzer based on optical fiber bundles
CN101368922B (en) Method for judging blood sugar concentration
Ragul et al. Non-invasive method of diagnosing health parameters using urinalysis
Santoso et al. Evaluating of a Super Bright LED as a Spectrophotometer Light Source at The Clinical Laboratory
JP3160317U (en) Test table or test cup

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624

Termination date: 20160729