CN103344264A - Multichannel optical fiber sensing network demodulating system - Google Patents
Multichannel optical fiber sensing network demodulating system Download PDFInfo
- Publication number
- CN103344264A CN103344264A CN 201310258276 CN201310258276A CN103344264A CN 103344264 A CN103344264 A CN 103344264A CN 201310258276 CN201310258276 CN 201310258276 CN 201310258276 A CN201310258276 A CN 201310258276A CN 103344264 A CN103344264 A CN 103344264A
- Authority
- CN
- China
- Prior art keywords
- input end
- optical fiber
- division multiplexer
- output end
- sensing network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 30
- 238000012545 processing Methods 0.000 claims abstract description 12
- 230000010287 polarization Effects 0.000 claims description 2
- 230000003287 optical effect Effects 0.000 abstract description 26
- 239000000835 fiber Substances 0.000 abstract description 17
- 238000011161 development Methods 0.000 abstract description 5
- 238000005086 pumping Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Optical Communication System (AREA)
Abstract
Description
技术领域technical field
本发明属于光纤传感及光学信号处理领域,更具体的说是一种基于光纤传感的多通道高精度网络信号解调系统。The invention belongs to the field of optical fiber sensing and optical signal processing, and more specifically relates to a multi-channel high-precision network signal demodulation system based on optical fiber sensing.
背景技术Background technique
相对于传统的机械式和电学传感,光纤传感具有诸多的优异性能,如:灵敏度高、动态范围大、抗电磁干扰、抗腐蚀、体积小、重量轻、易于复用等,这使得该技术在井下等恶劣环境和高灵敏度传感等领域(如微地震监测、安全监测等)拥有广泛的应用前景。随着光纤传感技术的发展,单点的光纤传感系统已远远不能满足要求,基于波分复用、频分复用、时分复用、空分复用、相干复用等技术的多点光纤传感网络相继被人们提出,伴随着传感网络的发展,网络信号的分析与处理也日益受到重视与发展。近年来人们提出了将上述各种复用技术进行混合以提高光纤传感网络的复用规模。在上述背景下,应用于光纤传感领域的多点传感网络及其解调系统引起了广泛关注。在该类系统中,各传感器的功率均衡和相位一致性以及网络信号的拾取与识别等问题必须得到解决。这时,解调系统必须在完成收集信号的前提下尽可能通过系统硬件的优化设计、软件关键参数的优化设计和解调算法的改进使得系统的噪声水平、动态范围、稳定性、重复性、相关性、一致性、串扰等性能尽可能得到优化,达到并超过目前光纤传感领域的要求。进一步的,通用型光纤传感网络解调系统,也应该被实现,以提高系统的兼容性,降低布网及维护成本。截止到目前,现有技术不能很好的满足上述要求。Compared with traditional mechanical and electrical sensing, fiber optic sensing has many excellent properties, such as: high sensitivity, large dynamic range, anti-electromagnetic interference, anti-corrosion, small size, light weight, easy to reuse, etc., which makes the sensor The technology has broad application prospects in harsh environments such as underground and high-sensitivity sensing (such as microseismic monitoring, safety monitoring, etc.). With the development of optical fiber sensing technology, the single-point optical fiber sensing system is far from meeting the requirements. The point fiber sensor network has been proposed one after another. With the development of the sensor network, the analysis and processing of the network signal has been paid more and more attention and developed. In recent years, it has been proposed to mix the above multiplexing technologies to increase the multiplexing scale of the optical fiber sensor network. In the above background, the multi-point sensing network and its demodulation system applied in the field of optical fiber sensing have attracted extensive attention. In this type of system, issues such as power balance and phase consistency of each sensor, and network signal pickup and identification must be resolved. At this time, the demodulation system must optimize the design of the system hardware, optimize the design of key software parameters and improve the demodulation algorithm as much as possible under the premise of completing the collection of signals to make the system's noise level, dynamic range, stability, repeatability, Correlation, consistency, crosstalk and other performances are optimized as much as possible to meet and exceed the current requirements in the field of optical fiber sensing. Furthermore, a general-purpose optical fiber sensor network demodulation system should also be implemented to improve system compatibility and reduce network deployment and maintenance costs. Up to now, the prior art cannot well meet the above requirements.
综上所述,为了解决上述面临的技术瓶颈,搭建高性能、高稳定性、实时的、兼容性高的光纤传感网络解调系统,目前迫切需要一种多通道高精度光纤传感网络解调系统。To sum up, in order to solve the above-mentioned technical bottlenecks and build a high-performance, high-stability, real-time, and highly compatible optical fiber sensor network demodulation system, there is an urgent need for a multi-channel high-precision fiber optic sensor network solution. Tune the system.
发明内容Contents of the invention
本发明的目的在于,提供一种多通道光纤传感网络解调系统,其可解决现有光纤传感网络随着传感网络规模的扩大,低开发周期、低成本的高性能高稳定的实时解调的技术问题。The purpose of the present invention is to provide a multi-channel optical fiber sensor network demodulation system, which can solve the problem of low development cycle, low cost, high performance, high stability and real-time Demodulation technical issues.
本发明提供一种多通道光纤传感网络解调系统,包括:The present invention provides a multi-channel optical fiber sensor network demodulation system, comprising:
泵浦光源;pump light source;
光波分复用器,其输入端与泵浦光源的输出端连接;An optical wavelength division multiplexer, the input end of which is connected to the output end of the pumping light source;
光隔离器,其输入端与波分复用器的第一输出端连接;An optical isolator, its input end is connected with the first output end of the wavelength division multiplexer;
迈克尔逊干涉仪,其第一输入端与光隔离器的输出端连接;Michelson interferometer, its first input end is connected with the output end of optical isolator;
光密集波分复用器,其输入端与迈克尔逊干涉仪的输出端连接;Optical dense wavelength division multiplexer, its input end is connected with the output end of Michelson interferometer;
光电探测器阵列,其输入端与光密集波分复用器的输出端连接;A photodetector array, the input of which is connected to the output of the optical dense wavelength division multiplexer;
数据采集卡,其第一输入端与光电探测器的输出端连接;A data acquisition card, the first input end of which is connected to the output end of the photodetector;
载波电路,其第一输出端与迈克尔逊干涉仪的第二输入端连接,第二输出端与数据采集卡的第二输入端连接;A carrier circuit, the first output end of which is connected to the second input end of the Michelson interferometer, and the second output end is connected to the second input end of the data acquisition card;
数据处理模块,其输入端与数据采集卡的输出端连接;Data processing module, its input end is connected with the output end of data acquisition card;
光纤激光型传感器阵列,其输入端与波分复用器的第二输出端连接。The fiber laser type sensor array, its input terminal is connected with the second output terminal of the wavelength division multiplexer.
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
该多通道高精度光纤传感网络解调系统结构简单,功耗低,搭建及维护成本低,开发周期短,可解调的波长位移分辨率高,可完成多通道同步实时的解调。The multi-channel high-precision optical fiber sensor network demodulation system has simple structure, low power consumption, low construction and maintenance costs, short development cycle, high demodulated wavelength shift resolution, and can complete multi-channel synchronous real-time demodulation.
附图说明Description of drawings
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明,其中:In order to make the purpose, technical solutions and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with specific embodiments and with reference to the accompanying drawings, wherein:
图1是本发明的结构示意图;Fig. 1 is a structural representation of the present invention;
图2是图1一实施例,显示具有多通道光纤传感网络解调系统的结构示意图。FIG. 2 is an embodiment of FIG. 1 , showing a schematic structural diagram of a demodulation system with a multi-channel optical fiber sensor network.
具体实施方式Detailed ways
请参阅图1所示,本发明提供一种多通道光纤传感网络解调系统,包括:Please refer to shown in Fig. 1, the present invention provides a kind of multi-channel optical fiber sensor network demodulation system, comprising:
泵浦光源a,用于向光纤激型传感器阵列j提供泵浦光,激发光纤激光型传感器产生激光输出,所述的泵浦光源a的数量大于等于1;The pumping light source a is used to provide pumping light to the fiber optic laser sensor array j to excite the fiber laser sensor to generate laser output, and the number of the pumping light source a is greater than or equal to 1;
光波分复用器b,其输入端与泵浦光源a的输出端连接,用于将泵浦光源a的输出光传输给光纤激光型传感器阵列j,同时接收从光纤激光型传感器阵列j输出的激光,所述的光波分复用器b的数量大于等于1,其复用中心波长与泵浦光源a和光纤激光型传感器阵列j的波长范围一致;The optical wavelength division multiplexer b, whose input end is connected to the output end of the pumping light source a, is used to transmit the output light of the pumping light source a to the fiber laser type sensor array j, and simultaneously receives the output light from the fiber laser type sensor array j Laser, the number of the optical wavelength division multiplexer b is greater than or equal to 1, and its multiplexing center wavelength is consistent with the wavelength range of the pump light source a and the fiber laser sensor array j;
光隔离器c,其输入端与波分复用器b的第一输出端连接,用于减小光纤中后向散射光对系统工作的影响,所述的光隔离器c的数量大于等于1:An optical isolator c, whose input end is connected to the first output end of the wavelength division multiplexer b, is used to reduce the influence of backscattered light in the optical fiber on the system operation, and the number of the optical isolator c is greater than or equal to 1 :
迈克尔逊干涉仪d,其第一输入端与光隔离器c的输出端连接,用于将光纤激光型传感器阵列j的波长位移信号转换为相位信号,同时产生干涉条纹输出,所述的迈克尔逊干涉仪d是带偏振控制的马赫曾德干涉仪;Michelson interferometer d, its first input end is connected with the output end of optical isolator c, is used for converting the wavelength displacement signal of fiber laser type sensor array j into phase signal, produces interference fringe output simultaneously, described Michelson Interferometer d is a Mach-Zehnder interferometer with polarization control;
光密集波分复用器e,其输入端与迈克尔逊干涉仪d的输出端连接,用于将光纤激光型光纤传感器阵列j中每个光纤激光型传感器输出的光信号分开,并且分别传给光电探测器阵列f中的每一个光电探测器;The optical dense wavelength division multiplexer e, whose input end is connected with the output end of the Michelson interferometer d, is used to separate the optical signal output by each fiber laser type sensor in the fiber laser type fiber sensor array j, and transmit them to Each photodetector in the photodetector array f;
光电探测器阵列f,其输入端与光密集波分复用器e的输出端连接,用于将接收到的光信号转换为模拟电信号;A photodetector array f, whose input terminal is connected to the output terminal of the optical dense wavelength division multiplexer e, is used to convert the received optical signal into an analog electrical signal;
数据采集卡g,其第一输入端与光电探测器f的输出端连接,用于将接收到的模拟电信号转换为数字电信号;Data acquisition card g, its first input end is connected with the output end of photodetector f, is used for converting the analog electric signal that receives into digital electric signal;
载波电路h,其第一输出端与迈克尔逊干涉仪d的第二输入端连接,第二输出端与数据采集卡g的第二输入端连接,用于对迈克尔逊干涉仪内部的PZT加载调制信号,并提供载波信号给数据采集卡g以便数据处理模块i进行数据处理,所述的载波电路h是信号发生器;Carrier circuit h, its first output terminal is connected to the second input terminal of Michelson interferometer d, and the second output terminal is connected to the second input terminal of data acquisition card g, which is used to load and modulate the PZT inside the Michelson interferometer signal, and provide a carrier signal to the data acquisition card g so that the data processing module i performs data processing, and the carrier circuit h is a signal generator;
数据处理模块i,其输入端与数据采集卡g的输出端连接,用于接收数据采集卡g输出的数字电信号并完成信号的分析、处理,所述的数据处理系统i是DSP模块、FPGA模块或PC模块;Data processing module i, its input end is connected with the output end of data acquisition card g, is used to receive the digital electric signal of data acquisition card g output and completes the analysis, processing of signal, and described data processing system i is DSP module, FPGA module or PC module;
光纤激光型传感器阵列j,其输入端与波分复用器b的第二输出端连接,所述的光纤激光型传感器阵列j的中心波长位于光密集波分复用器e的通道范围之内。The fiber laser sensor array j, its input terminal is connected to the second output terminal of the wavelength division multiplexer b, and the center wavelength of the fiber laser sensor array j is located within the channel range of the optical dense wavelength division multiplexer e .
请参阅图2所示,显示具有多通道光纤传感网络解调系统的结构示意图,其中Please refer to shown in Fig. 2, show the structure schematic diagram with multi-channel optical fiber sensing network demodulation system, wherein
所述的泵浦光源a四个;There are four pump light sources a;
所述的光波分复用器b四个,其每个光波分复用器的输入端分别与一个泵浦光源a的输出端连接;There are four optical wavelength division multiplexers b, and the input end of each optical wavelength division multiplexer is respectively connected to the output end of a pumping light source a;
所述的光隔离器c四个,其每个输入端分别与一个光波分复用器b的第一输出端连接;There are four optical isolators c, and each input end is connected to the first output end of an optical wavelength division multiplexer b;
所述的迈克尔逊干涉仪d,其每个第一输入端分别与一个光隔离器c的输出端连接;Described Michelson interferometer d, each first input end of it is respectively connected with the output end of an optical isolator c;
所述的光密集波分复用器e四个,其每个输入端分别与迈克尔逊干涉仪d的一个输出端连接;There are four optical dense wavelength division multiplexers e, each of which is connected to an output of the Michelson interferometer d;
所述的光电探测器阵列f,其输入端分别与光密集波分复用器e的一个输出端连接;Described photodetector array f, its input end is respectively connected with an output end of optical dense wavelength division multiplexer e;
所述的数据采集卡g,其第一输入端与光电探测器f的输出端连接;Described data acquisition card g, its first input end is connected with the output end of photodetector f;
所述的载波电路h,其第一输出端与迈克尔逊干涉仪d的第二输入端连接,第二输出端与数据采集卡g的第二输入端连接;Described carrier circuit h, its first output end is connected with the second input end of Michelson interferometer d, and the second output end is connected with the second input end of data acquisition card g;
所述的数据处理模块i,其输入端与数据采集卡g的输出端连接;Described data processing module i, its input end is connected with the output end of data acquisition card g;
所述的光纤激光型传感器阵列j,其输入端与波分复用器b的第二输出端连接。The input end of the fiber laser sensor array j is connected to the second output end of the wavelength division multiplexer b.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention, and are not intended to limit the present invention. Within the spirit and principles of the present invention, any modifications, equivalent replacements, improvements, etc., shall be included in the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201310258276 CN103344264A (en) | 2013-06-26 | 2013-06-26 | Multichannel optical fiber sensing network demodulating system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201310258276 CN103344264A (en) | 2013-06-26 | 2013-06-26 | Multichannel optical fiber sensing network demodulating system |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103344264A true CN103344264A (en) | 2013-10-09 |
Family
ID=49279080
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201310258276 Pending CN103344264A (en) | 2013-06-26 | 2013-06-26 | Multichannel optical fiber sensing network demodulating system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103344264A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759750A (en) * | 2014-01-23 | 2014-04-30 | 中国科学院半导体研究所 | Distributed optical fiber sensing system based on phase generated carrier technology |
CN104457960A (en) * | 2014-12-11 | 2015-03-25 | 中国科学院半导体研究所 | Distributed optical fiber sensing system based on coherent reception technology |
CN108489594A (en) * | 2018-03-14 | 2018-09-04 | 中国科学院半导体研究所 | Hybrid optical fiber sensor system based on phase generated carrier technology |
CN108731708A (en) * | 2018-04-24 | 2018-11-02 | 天津大学 | The matched multichannel low coherence interference demodulation method in the arbitrary channel of sensor can be achieved |
CN109167633A (en) * | 2018-08-14 | 2019-01-08 | 中国电子科技集团公司第三十八研究所 | Optical-fiber laser sensing network multi-channel parallel demodulating system based on FPGA |
CN115047566A (en) * | 2022-06-28 | 2022-09-13 | 东北大学 | Method for preparing space division multiplexing/demultiplexing device for multi-core optical fiber |
CN118088954A (en) * | 2024-04-23 | 2024-05-28 | 齐鲁工业大学(山东省科学院) | Oil gas pipeline leakage wave identification and monitoring system |
-
2013
- 2013-06-26 CN CN 201310258276 patent/CN103344264A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103759750A (en) * | 2014-01-23 | 2014-04-30 | 中国科学院半导体研究所 | Distributed optical fiber sensing system based on phase generated carrier technology |
CN103759750B (en) * | 2014-01-23 | 2016-05-25 | 中国科学院半导体研究所 | Based on the distributed optical fiber sensing system of phase generated carrier technology |
CN104457960A (en) * | 2014-12-11 | 2015-03-25 | 中国科学院半导体研究所 | Distributed optical fiber sensing system based on coherent reception technology |
CN104457960B (en) * | 2014-12-11 | 2017-05-24 | 中国科学院半导体研究所 | Distributed optical fiber sensing system based on coherent reception technology |
CN108489594A (en) * | 2018-03-14 | 2018-09-04 | 中国科学院半导体研究所 | Hybrid optical fiber sensor system based on phase generated carrier technology |
CN108489594B (en) * | 2018-03-14 | 2020-02-18 | 中国科学院半导体研究所 | Hybrid optical fiber sensing system based on phase-generated carrier technology |
CN108731708A (en) * | 2018-04-24 | 2018-11-02 | 天津大学 | The matched multichannel low coherence interference demodulation method in the arbitrary channel of sensor can be achieved |
CN108731708B (en) * | 2018-04-24 | 2020-04-24 | 天津大学 | Multi-channel low-coherence interference demodulation method capable of realizing arbitrary channel matching of sensor |
CN109167633A (en) * | 2018-08-14 | 2019-01-08 | 中国电子科技集团公司第三十八研究所 | Optical-fiber laser sensing network multi-channel parallel demodulating system based on FPGA |
CN115047566A (en) * | 2022-06-28 | 2022-09-13 | 东北大学 | Method for preparing space division multiplexing/demultiplexing device for multi-core optical fiber |
CN118088954A (en) * | 2024-04-23 | 2024-05-28 | 齐鲁工业大学(山东省科学院) | Oil gas pipeline leakage wave identification and monitoring system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103344264A (en) | Multichannel optical fiber sensing network demodulating system | |
CN110365415B (en) | Frequency modulation demodulation device based on fiber grating sensor array | |
CN103940362B (en) | High-precision fiber bragg grating low-frequency strain sensing demodulation system | |
CN108088655B (en) | Optical device measurement method and device based on double-sideband modulation and frequency shift | |
CN105424605B (en) | Photoacoustic spectrum measuring device and method based on low-coherence fiber differential interference non-contact vibration measurement | |
CN103940361B (en) | A kind of fiber grating low frequency strain sensing demodulating system | |
CN102359797B (en) | System and method for reducing noise of phase generated carrier (PGC) system in optical fiber hydrophone | |
CN1013710B (en) | Rongnark interferometer system | |
CN103399262A (en) | Fiber mach-zehnder interferometer-based power transformer partial discharge detection system and detection method | |
CN103954310A (en) | Large dynamic signal demodulation device and method of interferometric optical fiber sensor | |
CN105021271B (en) | A kind of optical fiber EFPI infrasonic sensors and infrasound signals detection system | |
CN108760021A (en) | Fabry-perot optical fiber acoustic vibration sensing device based on birefringece crystal and demodulation method | |
CN105444793B (en) | Optical fiber Bragg grating sensing device based on high speed pulsed laser | |
CN106404154B (en) | Optical fiber sound wave detection system | |
CN102680582A (en) | Matching fiber grating acoustic emission sensing system with temperature compensation function | |
CN110146155A (en) | A kind of Larger Dynamic range, highly sensitive fiber laser hydrophone system | |
CN101922946A (en) | An all-optical fiber positioning monitoring system | |
CN111385024A (en) | A multi-core and few-mode sensor communication fusion access transmission system | |
CN104568218A (en) | Method for increasing working distance of distributed spontaneous Raman scattering temperature sensor | |
CN102620761A (en) | Long-distance optical fiber Bragg grating sensing method and device based on self-heterodyne detection | |
CN104132677A (en) | Heterodyne interference type optical fiber sensing time division multiplexing system | |
CN102707311B (en) | Phase-shifting grating geophone and optical path of geophone | |
CN108240827A (en) | A kind of multi-parameter measurement method and device based on drawing cone polarization-maintaining fiber grating optical-electronic oscillator | |
CN101718580A (en) | Sound vibration acquisition device based on optical grating | |
CN101729145A (en) | DFB fiber laser type fiber-optic microphone and distributive array device thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20131009 |