CN103335652A - Dining room path navigation system and method of robot - Google Patents
Dining room path navigation system and method of robot Download PDFInfo
- Publication number
- CN103335652A CN103335652A CN2013102532037A CN201310253203A CN103335652A CN 103335652 A CN103335652 A CN 103335652A CN 2013102532037 A CN2013102532037 A CN 2013102532037A CN 201310253203 A CN201310253203 A CN 201310253203A CN 103335652 A CN103335652 A CN 103335652A
- Authority
- CN
- China
- Prior art keywords
- robot
- restaurant
- control module
- coordinate points
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 37
- 230000033001 locomotion Effects 0.000 claims abstract description 20
- 230000001133 acceleration Effects 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 14
- 230000005855 radiation Effects 0.000 claims description 9
- 238000001514 detection method Methods 0.000 description 21
- 230000006870 function Effects 0.000 description 11
- 239000000779 smoke Substances 0.000 description 11
- 238000012545 processing Methods 0.000 description 9
- 230000003993 interaction Effects 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 7
- 238000004891 communication Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 239000004973 liquid crystal related substance Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000013139 quantization Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Images
Landscapes
- Manipulator (AREA)
Abstract
本发明属于机器人路径导航技术领域,公开了一种机器人的餐厅路径导航系统及导航方法。该机器人的餐厅路径导航系统包括:控制模块、触摸屏和步进电机;其中,所述控制模块分别连接触摸屏和步进电机;所述触摸屏用于显示餐厅坐标点;用于确定机器人初始位置对应的餐厅坐标点;用于从机器人初始位置对应的餐厅坐标点开始,依次输入多个顺序相邻的餐厅坐标点;用于输入停留数据;用于将所述路径数据和停留数据发送至控制模块;所述控制模块用于根据所述路径数据和停留数据生成对应的脉冲信号,用于将所述脉冲信号发送至步进电机中;所述步进电机用于根据脉冲信号驱动机器人的轮毂,使机器人运动。
The invention belongs to the technical field of robot path navigation, and discloses a robot restaurant path navigation system and a navigation method. The restaurant path navigation system of the robot includes: a control module, a touch screen and a stepping motor; wherein, the control module is connected to the touch screen and the stepping motor respectively; the touch screen is used to display the coordinate points of the restaurant; Restaurant coordinate point; used to start from the restaurant coordinate point corresponding to the initial position of the robot, and sequentially input a plurality of sequentially adjacent restaurant coordinate points; used to input stay data; used to send the path data and stay data to the control module; The control module is used to generate a corresponding pulse signal according to the path data and the stay data, and is used to send the pulse signal to the stepper motor; the stepper motor is used to drive the hub of the robot according to the pulse signal, so that robot movement.
Description
技术领域technical field
本发明属于机器人路径导航技术领域,特别涉及一种机器人的餐厅路径导航系统及导航方法。The invention belongs to the technical field of robot route navigation, and in particular relates to a robot restaurant route navigation system and a navigation method.
背景技术Background technique
随着科技的进一步发展,机器人技术开始逐渐进入人们的视野,而在目前的机器人系统中,通常采用视觉伺服控制系统完成导航,但是对于环境比较规则和接触对象比较多的场景,一方面视觉伺服控制系统稳定度不高,另一方面视觉伺服控制成本较高。With the further development of science and technology, robot technology has gradually entered people's field of vision. In the current robot system, the visual servo control system is usually used to complete the navigation. The stability of the control system is not high, and on the other hand, the cost of visual servo control is relatively high.
发明内容Contents of the invention
本发明的目的在于提出一种机器人路径导航系统及导航方法。本发明具有障碍物检测、人物辨别、阻行提示音、工作提示音以及壁障提示等功能The purpose of the present invention is to propose a robot path navigation system and navigation method. The present invention has the functions of obstacle detection, person identification, blocking prompt sound, work prompt sound and barrier prompt, etc.
为实现上述技术目的,本发明采用如下技术方案予以实现。In order to achieve the above-mentioned technical purpose, the present invention adopts the following technical solutions to achieve.
技术方案一:Technical solution one:
一种机器人的餐厅路径导航系统,其特征在于,包括:控制模块、触摸屏和步进电机;其中,所述控制模块分别连接触摸屏和步进电机;A restaurant path navigation system for a robot, characterized in that it includes: a control module, a touch screen and a stepping motor; wherein the control module is connected to the touch screen and the stepping motor respectively;
所述触摸屏用于显示餐厅坐标点;用于根据机器人在餐厅中的初始位置,确定机器人初始位置对应的餐厅坐标点;用于从机器人初始位置对应的餐厅坐标点开始,依次输入多个顺序相邻的餐厅坐标点;用于输入停留数据;用于将路径数据和停留数据发送至控制模块;所述餐厅坐标点共有m*n个,m为餐厅坐标点的列数,n为餐厅坐标点的行数,m和n均为大于1的自然数;所述路径数据包括所述多个顺序相邻的餐厅坐标点和多个顺序相邻的餐厅坐标点的输入顺序;所述停留数据包括机器人停留点位置对应的餐厅坐标点和机器人停留点的停留时间;所述多个顺序相邻的餐厅坐标点包括机器人停留点位置对应的餐厅坐标点;The touch screen is used to display restaurant coordinate points; used to determine the restaurant coordinate points corresponding to the initial position of the robot according to the initial position of the robot in the restaurant; Adjacent restaurant coordinate points; used to input stay data; used to send route data and stay data to the control module; there are m*n restaurant coordinate points, m is the number of columns of restaurant coordinate points, and n is restaurant coordinate points The number of rows, m and n are all natural numbers greater than 1; the path data includes the input order of the plurality of sequentially adjacent restaurant coordinate points and the plurality of sequentially adjacent restaurant coordinate points; the stay data includes robot The restaurant coordinate point corresponding to the stay point position and the residence time of the robot stay point; the plurality of sequentially adjacent restaurant coordinate points include the restaurant coordinate point corresponding to the robot stay point position;
所述控制模块用于根据所述路径数据和停留数据生成对应的脉冲信号,用于将所述脉冲信号发送至步进电机中;The control module is used to generate a corresponding pulse signal according to the path data and the dwell data, and is used to send the pulse signal to the stepper motor;
所述步进电机用于根据脉冲信号驱动机器人的轮毂,使机器人运动。The stepper motor is used to drive the hub of the robot according to the pulse signal to make the robot move.
本发明的特点和进一步改进在于:Features of the present invention and further improvement are:
所述一种机器人的餐厅路径导航系统,还包括:霍尔传感器、角速度传感器和加速度传感器,所述控制模块分别连接霍尔传感器、角速度传感器和加速度传感器;The restaurant path navigation system of the robot also includes: a Hall sensor, an angular velocity sensor and an acceleration sensor, and the control module is connected to the Hall sensor, the angular velocity sensor and the acceleration sensor respectively;
所述霍尔传感器用于在机器人运动的过程中测量机器人的瞬时线速度,用于将机器人的瞬时线速度发送至控制模块;所述角速度传感器用于在机器人运动的过程中测量机器人的瞬时角速度,用于将机器人的瞬时角速度发送至控制模块;所述加速度传感器用于在机器人运动的过程中测量机器人的加速度,用于将机器人的加速度发送至控制模块;所述控制模块用于根据机器人的瞬时线速度、瞬时角速度和加速度,并用于采用航姿推算定位法获得机器人的位置和角度。The Hall sensor is used to measure the instantaneous linear velocity of the robot during the movement of the robot, and is used to send the instantaneous linear velocity of the robot to the control module; the angular velocity sensor is used to measure the instantaneous angular velocity of the robot during the movement of the robot , used to send the instantaneous angular velocity of the robot to the control module; the acceleration sensor is used to measure the acceleration of the robot during the movement of the robot, and is used to send the acceleration of the robot to the control module; the control module is used to The instantaneous linear velocity, instantaneous angular velocity and acceleration are used to obtain the position and angle of the robot using the dead reckoning positioning method.
所述一种机器人的餐厅路径导航系统,还包括分别连接控制模块的至少两个超声波传感器,其中,至少一个超声波传感器位于机器人前部,至少一个超声波传感器位于机器人的左侧;位于机器人前部的超声波传感器用于检测位于机器人前方的障碍物;位于机器人左侧的超声波传感器用于检测位于机器人左侧的障碍物。The restaurant route navigation system of the robot also includes at least two ultrasonic sensors respectively connected to the control module, wherein at least one ultrasonic sensor is located at the front of the robot, and at least one ultrasonic sensor is located at the left side of the robot; The ultrasonic sensor is used to detect obstacles located in front of the robot; the ultrasonic sensor located on the left side of the robot is used to detect obstacles located on the left side of the robot.
所述一种机器人的餐厅路径导航系统,还包括分别连接控制模块的至少两个热释电传感器,所述至少两个热释电传感器均用于检测机器人前方是否有人体辐射的红外线。The restaurant route navigation system for a robot further includes at least two pyroelectric sensors respectively connected to the control module, and the at least two pyroelectric sensors are both used to detect whether there is infrared radiation radiated by a human body in front of the robot.
技术方案二:Technical solution two:
一种机器人的餐厅路径导航方法,基于权利要求1所述的一种机器人路径导航系统,包括以下步骤:A restaurant path navigation method for a robot, based on a robot path navigation system according to claim 1, comprising the following steps:
S1:在触摸屏中显示餐厅坐标点,根据机器人在餐厅中的初始位置,确定机器人初始位置对应的餐厅坐标点;从机器人初始位置对应的餐厅坐标点开始,依次将多个顺序相邻的餐厅坐标点输入至触摸屏;并将停留数据输入至触摸屏;触摸屏将路径数据和停留数据发送至控制模块;所述餐厅坐标点共有m*n个,m为餐厅坐标点的列数,n为餐厅坐标点的行数,m和n均为大于1的自然数;所述路径数据包括所述多个顺序相邻的餐厅坐标点以及将多个顺序相邻的餐厅坐标点输入至触摸屏的先后顺序;所述停留数据包括机器人停留点位置对应的餐厅坐标点和机器人停留点位置对应的停留时间;所述多个顺序相邻的餐厅坐标点包括机器人停留点位置对应的餐厅坐标点;S1: Display the restaurant coordinate points on the touch screen, and determine the restaurant coordinate points corresponding to the initial position of the robot according to the initial position of the robot in the restaurant; Input the point to the touch screen; and input the stay data to the touch screen; the touch screen sends the path data and the stay data to the control module; there are m*n coordinate points in the restaurant, m is the number of columns of the coordinate points in the restaurant, and n is the coordinate point in the restaurant The number of rows, m and n are all natural numbers greater than 1; the path data includes the plurality of sequentially adjacent restaurant coordinate points and the order in which the plurality of sequentially adjacent restaurant coordinate points are input to the touch screen; The stay data includes the restaurant coordinate point corresponding to the robot stay point position and the stay time corresponding to the robot stay point position; the plurality of sequentially adjacent restaurant coordinate points include the restaurant coordinate point corresponding to the robot stay point position;
S2:控制模块根据所述路径数据和停留数据生成对应的脉冲信号,将所述脉冲信号发送至步进电机中;S2: The control module generates a corresponding pulse signal according to the path data and the dwell data, and sends the pulse signal to the stepping motor;
S3:步进电机根据脉冲信号驱动机器人的轮毂,使机器人运动。机器人会按照停留数据进行停留。S3: The stepper motor drives the hub of the robot according to the pulse signal to make the robot move. The robot will stay according to the stay data.
本发明的特点和进一步改进在于:Features of the present invention and further improvement are:
在步骤S3中,每隔设定时间,所述控制模块采用航姿推算定位法获得机器人的位置和角度,然后对机器人的位置和角度进行校正;所述控制模块采用航姿推算定位法获得机器人的位置和角度的过程如下:在机器人运动的过程中,利用霍尔传感器测量机器人的瞬时线速度,将机器人的瞬时线速度发送至控制模块;In step S3, every set time, the control module uses the dead reckoning positioning method to obtain the position and angle of the robot, and then corrects the position and angle of the robot; the control module uses the dead reckoning positioning method to obtain the position and angle of the robot The process of the position and angle of the robot is as follows: During the movement of the robot, the Hall sensor is used to measure the instantaneous linear velocity of the robot, and the instantaneous linear velocity of the robot is sent to the control module;
在机器人运动的过程中,利用角速度传感器测量机器人的瞬时角速度,将机器人的瞬时角速度发送至控制模块;During the movement of the robot, the angular velocity sensor is used to measure the instantaneous angular velocity of the robot, and the instantaneous angular velocity of the robot is sent to the control module;
在机器人运动的过程中,利用加速度传感器测量机器人的加速度,将机器人的加速度发送至控制模块;During the movement of the robot, the acceleration sensor is used to measure the acceleration of the robot, and the acceleration of the robot is sent to the control module;
控制模块获取机器人的瞬时线速度、瞬时角速度和加速度,采用航姿推算定位法获得机器人的位置和角度。The control module obtains the instantaneous linear velocity, instantaneous angular velocity and acceleration of the robot, and obtains the position and angle of the robot by the dead reckoning positioning method.
在步骤S3中,在机器人运动的过程中,当机器人前方存在障碍物时,利用位于机器人前部的超声波传感器获取机器人前方的障碍物分布信息,将障碍物分布信息发送至控制模块;控制模块依次向步进电机发送中断信号、右转信号和直行信号,步进电机首先停止工作,然后控制机器人完成右转操作,然后控制机器人直行;In step S3, during the movement of the robot, when there is an obstacle in front of the robot, the ultrasonic sensor located at the front of the robot is used to obtain the obstacle distribution information in front of the robot, and the obstacle distribution information is sent to the control module; the control module sequentially Send interrupt signal, right turn signal and straight forward signal to the stepper motor, the stepper motor stops working first, then controls the robot to complete the right turn operation, and then controls the robot to go straight;
在机器人直行的过程中,利用位于机器人左侧的超声波传感器获取机器人左侧的障碍物分布信息;当机器人左侧不存在障碍物时,控制模块依次向步进电机发送中断信号、左转信号和直行信号,步进电机首先停止工作,然后控制机器人完成左转操作,然后控制机器人直行。When the robot is going straight, use the ultrasonic sensor on the left side of the robot to obtain the obstacle distribution information on the left side of the robot; when there is no obstacle on the left side of the robot, the control module sends an interrupt signal, a left turn signal and Go straight signal, the stepper motor first stops working, then controls the robot to complete the left turn operation, and then controls the robot to go straight.
在步骤S3中,在机器人运动的过程中,利用至少两个热释电红外线传感器检测机器人前方是否有人体辐射的红外线;当至少一个热释电红外线传感器检测到机器人前方存在人体辐射的红外线时,将检测到的人体辐射信号发送至控制模块;控制模块发送中断信号至步进电机,并发送避让语音信号至语音模块;步进电机停止工作,语音模块根据避让语音信号发出避让语音;所述避让语音预先设定在语音模块中;当所有热释电红外线传感器均检测不到人体辐射的红外线时,控制模块接收不到人体辐射信号,控制模块发送直行信号至步进电机,步进电机控制机器人继续向前直行。In step S3, during the movement of the robot, at least two pyroelectric infrared sensors are used to detect whether there is infrared radiation radiated by the human body in front of the robot; when at least one pyroelectric infrared sensor detects that there is infrared radiation radiated by the human body in front of the robot, The detected human body radiation signal is sent to the control module; the control module sends an interrupt signal to the stepper motor, and sends an avoidance voice signal to the voice module; the stepper motor stops working, and the voice module sends out an avoidance voice according to the avoidance voice signal; the avoidance The voice is pre-set in the voice module; when all the pyroelectric infrared sensors cannot detect the infrared rays radiated by the human body, the control module cannot receive the human body radiation signal, and the control module sends a straight signal to the stepper motor, and the stepper motor controls the robot Continue straight ahead.
本发明的有益效果为:可通过触摸屏来预设机器人行进轨道,可对机器人在行进与定位过程中任意路径点设置合理的停留时间,可以提供合适的语音提示服务和负载物品重量,从而完成相应的服务任务,例如送水,送咖啡,送饭菜等。并且具有障碍物检测、人物辨别、阻行提示音、工作提示音以及壁障提示等功能。The beneficial effects of the present invention are: the robot's travel track can be preset through the touch screen, a reasonable dwell time can be set for any path point in the process of the robot's travel and positioning, and appropriate voice prompt service and load weight can be provided, thereby completing the corresponding tasks. Service tasks, such as water delivery, coffee delivery, food delivery, etc. And it has functions such as obstacle detection, person identification, blocking sound, work sound and barrier prompt.
附图说明Description of drawings
图1为一种机器人的餐厅路径导航系统的结构图;Fig. 1 is a structural diagram of a restaurant path navigation system of a robot;
图2为第二单片机的工作流程图;Fig. 2 is the workflow diagram of the second single-chip microcomputer;
图3为机器人的位置和角度示意图。Figure 3 is a schematic diagram of the position and angle of the robot.
具体实施方式Detailed ways
下面结合附图对本发明作进一步说明:The present invention will be further described below in conjunction with accompanying drawing:
随着社会的发展,人力资源质量及成本的提升,一些基础性的服务工作渐渐变得少有人愿意做,于是便要求有更高级的服务类机械电子产品来代替人完成更加普遍的服务工作,同时要求成本不得过高,系统适应性好,系统稳定性高,具有良好的人机交互以及较为合适的提示设置等。With the development of society, the quality of human resources and the cost increase, some basic service work is gradually becoming less and less willing to do, so more advanced service mechanical and electronic products are required to replace people to complete more common service work. At the same time, it is required that the cost should not be too high, the system has good adaptability, high system stability, good human-computer interaction and more appropriate prompt settings, etc.
作为民用基础服务行业的机器人,其视觉伺服控制系统稳定性有待进一步提高,并且视觉伺服控制系统具有复杂度高、成本高等缺点,本发明提出了一种基于人辅助路径规划的半智能路径规划系统,首先利用人在触摸屏输入的信息构建先验地图,接着基于航迹推算算法和路径分析算法进行特定地图的特定路径行驶。并且在行驶过程中一方面依赖多种类型的传感器保障机器人系统的安全和外界的安全,另一方面通过无线传输的方法实时传回机器人的各项信息,同时实时的在上位机方面进行路径的显示和信息的处理,本发明进一步使得机器人应用于基础服务行业的可能性大幅提高,可靠性进一步增强。As a robot in the civil basic service industry, the stability of its visual servo control system needs to be further improved, and the visual servo control system has the disadvantages of high complexity and high cost. This invention proposes a semi-intelligent path planning system based on human-assisted path planning , first use the information input by people on the touch screen to construct a priori map, and then use the dead reckoning algorithm and path analysis algorithm to drive a specific route on a specific map. And in the process of driving, on the one hand, rely on various types of sensors to ensure the safety of the robot system and the safety of the outside world; For display and information processing, the present invention further greatly improves the possibility of the robot being applied to the basic service industry, and further enhances the reliability.
本发明以餐饮服务行业为背景,以餐厅等一般比较规则的环境为目标使用区域进行机器人系统的设计,一般而言餐厅的环境满足以下条件:第一,座位分布较为规则,一般布局采用点阵式布局,选定参考点后可以用整数坐标表示绝大部分的餐桌位置以及重要参考事物的位置。第二,餐厅场景对象较为固定,一般只需对人和物进行辨别和处理,不确定因素较少,只需完成承载物品、运送物品等确定动作。第三,便于设置较为明确的语音提示。The present invention takes the catering service industry as the background, and uses restaurants and other generally more regular environments as the target area to design the robot system. Generally speaking, the restaurant environment meets the following conditions: First, the seat distribution is relatively regular, and the general layout adopts a dot matrix. After the reference point is selected, integer coordinates can be used to represent most of the table positions and the positions of important reference objects. Second, the objects in the restaurant scene are relatively fixed. Generally, it only needs to identify and process people and objects, and there are few uncertain factors. It only needs to complete certain actions such as carrying objects and transporting objects. Third, it is convenient to set a relatively clear voice prompt.
如图1所示为一种机器人的餐厅路径导航系统的结构图,在本发明实施例中,一种机器人的餐厅路径导航系统,包括:控制模块、触摸屏、步进电机、多个热释电红外线传感器传感器、多个超声波传感器、霍尔传感器、角速度传感器、加速度传感器和语音模块,将控制模块分为第一单片机和第二单片机,可以降低成本,第一单片机和第二单片机通过RS232串口进行连接,第二单片机分别连接语音模块和触摸屏,第一单片机分别连接步进电机、多个热释电红外线传感器传感器、多个超声波传感器、霍尔传感器、角速度传感器和加速度传感器。As shown in Figure 1, it is a structural diagram of a restaurant path navigation system for a robot. In an embodiment of the present invention, a restaurant path navigation system for a robot includes: a control module, a touch screen, a stepping motor, and a plurality of pyroelectric Infrared sensor sensor, multiple ultrasonic sensors, Hall sensor, angular velocity sensor, acceleration sensor and voice module, divide the control module into the first single-chip microcomputer and the second single-chip microcomputer, which can reduce the cost, the first single-chip microcomputer and the second single-chip microcomputer through the RS232 serial port connection, the second single-chip microcomputer is respectively connected to the voice module and the touch screen, and the first single-chip microcomputer is respectively connected to the stepping motor, a plurality of pyroelectric infrared sensor sensors, a plurality of ultrasonic sensors, Hall sensors, angular velocity sensors and acceleration sensors.
本发明实施例还设置有GPS芯片、上位机、烟雾传感器、温度传感器和太阳能电池板;GPS芯片、烟雾传感器和温度传感器均设置在机器人上,太阳能电池板连接第一单片机,上位机通过无线信道与机器人实现信息交互。The embodiment of the present invention is also provided with a GPS chip, a host computer, a smoke sensor, a temperature sensor, and a solar panel; the GPS chip, the smoke sensor, and a temperature sensor are all arranged on the robot, the solar panel is connected to the first single-chip microcomputer, and the host computer passes through a wireless channel. Realize information interaction with the robot.
本发明实施例中,第二单片机采用STC12LE5A60S2单片机,触摸屏采用TFT6448BS-5.7总线型液晶显示器,TFT6448BS-5.7总线型液晶显示器是专门针对单片机用户而设计的液晶显示器(带触摸屏),它采用分辨率为640*480的5.7英寸真彩TFT屏,能够提供一个简单的高速8位总线与STC12LE5A60S2单片机连接,支持256色显示。可以直接与MCS51系列单片机、MCS96系列单片机、MC68单片机、ARM处理器以及数字信号处理单元(DSP)相连。在TFT6448BS-5.7总线型液晶显示器中可以直接输入X、Y坐标,无须计算地址。该总线型液晶显示器具有低功耗、轻薄(高度8.5mm)、宽温(-30度到70度)、亮度可调节(可通过软件调节8种亮度)等特点。将其20个引脚定义如下:1号引脚5V—液晶屏逻辑电源5V,2号引脚5V—液晶屏逻辑电源5V,3号引脚D0—数据总线INOUT3.3/5V,4号引脚A0—地址线0IN3.3/5V,5号引脚D1—数据总线INOUT3.3/5V,6号引脚A1—地址线1IN3.3/5V,7号引脚D2—数据总线INOUT3.3/5V,8号引脚CSJ—片选信号,低电平对屏操作有效IN3.3/5V,9号引脚D3—数据总线INOUT3.3/5V,10号引脚GND—液晶屏逻辑地0V,11号引脚D4—数据总线INOUT3.3/5V,12号引脚GND—液晶屏逻辑地0V,13号引脚D5—数据总线INOUT3.3/5V,14号引脚GND—液晶屏逻辑地0V,15号引脚D6—数据总线INOUT3.3/5V,16号引脚GND—液晶屏逻辑地0V,17号引脚D7—数据总线INOUT3.3/5V,18号引脚RDJ—读操作信号,低电平有效IN3.3/5V,19号引脚WRJ—写操作信号,低电平有效IN3.3/5V,20号引脚—NC。In the embodiment of the present invention, the second single-chip microcomputer adopts STC12LE5A60S2 single-chip microcomputer, and the touch screen adopts TFT6448BS-5.7 bus-type liquid crystal display, and TFT6448BS-5.7 bus-type liquid crystal display is a liquid crystal display (with touch screen) specially designed for single-chip microcomputer users, and it adopts a resolution of The 640*480 5.7-inch true-color TFT screen can provide a simple high-speed 8-bit bus to connect with the STC12LE5A60S2 microcontroller, and supports 256-color display. It can be directly connected with MCS51 series MCU, MCS96 series MCU, MC68 MCU, ARM processor and digital signal processing unit (DSP). In the TFT6448BS-5.7 bus-type liquid crystal display, X and Y coordinates can be directly input without calculating the address. This bus-type liquid crystal display has the characteristics of low power consumption, light and thin (height 8.5mm), wide temperature (-30 degrees to 70 degrees), adjustable brightness (8 kinds of brightness can be adjusted by software), etc. Its 20 pins are defined as follows: Pin 1 5V—LCD screen logic power supply 5V, Pin 2 5V—LCD screen logic power supply 5V, Pin 3 D0—data bus INOUT 3.3/5V, pin 4 Pin A0—address line 0IN3.3/5V, pin 5 D1—data bus INOUT3.3/5V, pin 6 A1—address line 1IN3.3/5V, pin 7 D2—data bus INOUT3.3 /5V, pin 8 CSJ—chip select signal, low level is effective for screen operation IN3.3/5V, pin 9 D3—data bus INOUT3.3/5V, pin 10 GND—logic ground of LCD screen 0V, 11th pin D4—data bus INOUT3.3/5V, 12th pin GND—LCD logic ground 0V, 13th pin D5—data bus INOUT3.3/5V, 14th pin GND—LCD Logic ground 0V, No. 15 pin D6—data bus INOUT3.3/5V, No. 16 pin GND—LCD logic ground 0V, No. 17 pin D7—data bus INOUT3.3/5V, No. 18 pin RDJ— Read operation signal, low-level active IN3.3/5V, No. 19 pin WRJ—write operation signal, low-level active IN3.3/5V, No. 20 pin-NC.
本发明实施例中,在触摸屏中显示餐厅坐标点,本发明实施例中,餐厅坐标点共有16*8个,即餐厅坐标点的行数为8,餐厅坐标点的列数为16;然后根据机器人在餐厅中的初始位置,确定机器人初始位置对应的餐厅坐标点;假设机器人在一次巡行时需要进行10次停留,在每次停留时,用餐者可以取下相应的物品,那么需要将停留数据输入到触摸屏中;根据10个停留点的位置和餐厅的布局,从机器人初始位置对应的餐厅坐标点开始,依次将多个顺序相邻的餐厅坐标点输入至触摸屏(通过手写和触摸笔输入到触摸屏中),在上述多个顺序相邻的餐厅坐标点中,每个餐厅坐标点周围(即每个餐厅坐标点的上、下、左、右)至少有一个相邻的餐厅坐标点;然后将停留数据输入至触摸屏(通过手写和触摸笔输入到触摸屏中);停留数据的前10个数据为10个停留点的位置对应的餐厅坐标点,后10个数据为10个停留点的停留时间,在停留数据中,第i个数据和i+10个数据相对应;触摸屏将路径数据和停留数据发送至第二单片机。路径数据包括所述多个顺序相邻的餐厅坐标点以及将多个顺序相邻的餐厅坐标点输入至触摸屏的先后顺序。第二单片机对上述路径数据和停留数据进行加工,将加工后的数据发送至第一单片机。In the embodiment of the present invention, the restaurant coordinate point is displayed on the touch screen. In the embodiment of the present invention, there are 16*8 restaurant coordinate points, that is, the number of rows of the restaurant coordinate point is 8, and the column number of the restaurant coordinate point is 16; then according to The initial position of the robot in the restaurant, determine the restaurant coordinate point corresponding to the initial position of the robot; assuming that the robot needs to stop 10 times during a tour, and diners can take off the corresponding items during each stop, then the stay data needs to be Input to the touch screen; according to the positions of the 10 stay points and the layout of the restaurant, starting from the restaurant coordinate point corresponding to the initial position of the robot, input a plurality of sequentially adjacent restaurant coordinate points to the touch screen (by handwriting and touch pen input to In the touch screen), among the above-mentioned sequentially adjacent restaurant coordinate points, there is at least one adjacent restaurant coordinate point around each restaurant coordinate point (that is, the upper, lower, left, and right sides of each restaurant coordinate point); then Input the stay data to the touch screen (input into the touch screen by handwriting and touch pen); the first 10 data of the stay data are the restaurant coordinate points corresponding to the positions of the 10 stay points, and the last 10 data are the stay time of the 10 stay points , in the stay data, the i-th data corresponds to the i+10 data; the touch screen sends the path data and the stay data to the second single-chip microcomputer. The path data includes the plurality of sequentially adjacent restaurant coordinate points and the order in which the plurality of sequentially adjacent restaurant coordinate points are input to the touch screen. The second single-chip microcomputer processes the path data and the stay data, and sends the processed data to the first single-chip microcomputer.
本发明实施例中,如图2所示为第二单片机的工作流程图,第二单片机开机后,首先对SPI接口、触摸屏接口(第二单片机与触摸屏连接的接口)和SCI接口进行初始化,然后利用循环扫描法建立二维坐标系,二维坐标和餐厅的结构对应,机器人的初始位置对应的坐标为原点;然后再进行触摸检测和串口信息检测,触摸检测用于判断触摸屏是否有数据发送至第二单片机,如果没有,则继续进行触摸检测,如果有,则对来自触摸屏的数据进行加工,将加工后的数据通过RS232串口发送至第一单片机,同时将加工后的数据通过蓝牙无线数据传输方式发送至上位机,然后返回继续进行触摸检测;串口信息检测主要用于检测是否有来自第一单片机的语音信号(包括开机语音信号、避让语音信号或送达语音信号),如果没有,则继续进行串口信息检测,如果有,则将语音信号发送至语音模块,同时将语音信号通过蓝牙无线数据传输方式发送至上位机,然后返回继续进行串口信息检测。In the embodiment of the present invention, as shown in Figure 2, it is the working flow diagram of the second single-chip microcomputer. After the second single-chip microcomputer is turned on, at first the SPI interface, the touch screen interface (the interface connecting the second single-chip microcomputer and the touch screen) and the SCI interface are initialized, and then Use the circular scanning method to establish a two-dimensional coordinate system. The two-dimensional coordinates correspond to the structure of the restaurant, and the coordinates corresponding to the initial position of the robot are the origin; then touch detection and serial port information detection are performed. Touch detection is used to determine whether there is data sent to the touch screen. The second single-chip microcomputer, if there is no touch detection, then continue to touch detection, if there is, process the data from the touch screen, send the processed data to the first single-chip microcomputer through the RS232 serial port, and at the same time transmit the processed data through Bluetooth wireless data transmission Send it to the host computer by way, and then return to continue touch detection; the serial port information detection is mainly used to detect whether there is a voice signal from the first microcontroller (including power-on voice signal, avoidance voice signal or delivery voice signal), if not, continue Perform serial port information detection, if there is, send the voice signal to the voice module, and at the same time send the voice signal to the host computer through Bluetooth wireless data transmission, and then return to continue serial port information detection.
第二单片机对路径数据加工的过程为:触摸屏上生成的餐厅坐标点总共有128个,将这些餐厅坐标点分别编号0,1…127(按照从左至右、从下至上的方式编号),按照多个顺序相邻的餐厅坐标点输入至触摸屏的先后顺序,将多个顺序相邻的餐厅坐标点的编号标记为ADD_num[j],j为大于或等于0的整数;第二单片机对相邻的餐厅坐标点进行以下求差运算:The process of the second MCU processing the path data is as follows: there are 128 restaurant coordinate points generated on the touch screen, and these restaurant coordinate points are respectively numbered 0, 1...127 (numbered from left to right and from bottom to top), According to the order in which multiple sequentially adjacent restaurant coordinate points are input to the touch screen, the numbering of multiple sequentially adjacent restaurant coordinate points is marked as ADD_num[j], where j is an integer greater than or equal to 0; Neighboring restaurant coordinate points perform the following difference calculation:
N=ADD_num[j+1]-ADD_num[j],所得差值N分为四个数值,分别为:1,-1,16,-16。根据这四个差值做如下定义:N=ADD_num[j+1]-ADD_num[j], the resulting difference N is divided into four values, namely: 1, -1, 16, -16. According to these four differences, the following definitions are made:
若N=1,则定义右转标志位加1,定义向前直走标志位清零,定义向后直走标志位清零,定义起始(0->16)标志位赋1。判断:如果右转标志位等于1,则执行先右转,再向右直走一步;否则,直接直走一步。If N=1, add 1 to the right turn flag, clear the forward straight flag, clear the backward straight flag, and assign 1 to the start (0->16) flag. Judgment: If the right turn flag is equal to 1, turn right first, and then go straight to the right; otherwise, go straight one step.
若N=-1,定义左转标志位加1,定义起始(0->16)标志位赋1。判断:如果左转标志位等于1且向前直走标志位不等于0,则向前直走标志位清零,执行先左转,再向左直走一步;如果左转标志位等于1且向后直走标志位不等于0,则向后直走标志位清零,执行先右转,再向右直走一步;如果左转标志位不等于1,执行向前直走一步。If N=-1, add 1 to the left turn flag, and assign 1 to the start (0->16) flag. Judgment: If the left-turn flag is equal to 1 and the straight-forward flag is not equal to 0, then the straight-forward flag is cleared, and the execution is to turn left first, and then go straight to the left; if the left-turn flag is equal to 1 and If the flag bit of going straight backward is not equal to 0, then the flag bit of going straight backward is cleared to 0, and the execution is to turn right first, and then go straight one step to the right; if the flag bit of left turn is not equal to 1, it is executed to go straight one step forward.
若N=16,判断:如果起始(0->16)标志位等于1,向前直走标志位加1,右转标志位清零,左转标志位清0。如果右转标志位等于1,则执行先左转,再向左直走一步;否则,直接直走一步;如果起始(0->16)标志位不等于1,直接直走一步。If N=16, judge: if the start (0->16) flag is equal to 1, add 1 to the straight forward flag, clear the right turn flag to 0, and clear the left turn flag to 0. If the right turn flag is equal to 1, turn left first, and then go straight to the left; otherwise, go straight one step; if the start (0->16) flag is not equal to 1, go straight one step.
若N=-16,向后直走标志位加1,判断:如果向后直走标志位等于1且向前直走标志位不等于0,则向前直走标志位清零,执行先右转,再向有直走一步;如果向后直走标志位等于1且向后直走标志位不等于0,则向后直走标志位清零,执行先左转,再向左直走一步;如果向后直走标志位不等于1,执行向前直走一步。If N=-16, add 1 to the flag of going straight backward, and judge: if the flag of going straight backward is equal to 1 and the flag of going straight forward is not equal to 0, then the flag of going straight forward is cleared, and the execution is right first Turn, and then go straight one step; if the flag of going straight backward is equal to 1 and the flag of going straight backward is not equal to 0, then the flag of going straight backward is cleared, and the execution is to turn left first, and then go straight to the left one step ; If the flag bit of going straight backward is not equal to 1, go straight one step forward.
本发明实施例中,语音模块采用ISD1760语音芯片或ISD-4004语音芯片,ISD-4004语音芯片体积小,采用CMOS技术,内含振荡器、防混淆滤波器、平滑滤波器、音频放大器、自动静噪及高密度多电平闪烁存贮陈列,可分段录放,掉电储存时间久,音质好,操作方便,其ISP接口与单片机兼容,并且录音时间可最长可达16分钟,故本发明实施例采用其搭建多址语音提醒模块。语音芯片所有操作必须由第二单片机控制,操作命令可通过串行通信接口(SPI接口或Microwire串行接口)送入。语音芯片采用多电平直接模拟量存储技术,每个采样值直接存贮在片内闪烁存贮器中,能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和"金属声"。其采样频率可为4.0kHz、5.3kHz、6.4kHz或8.0kHz,采样频率越低,录放时间越长,而音质则有所下降。In the embodiment of the present invention, the voice module adopts the ISD1760 voice chip or the ISD-4004 voice chip. The ISD-4004 voice chip is small in size and adopts CMOS technology. Noise and high-density multi-level flashing storage display, segmented recording and playback, long storage time after power failure, good sound quality, easy operation, its ISP interface is compatible with single-chip microcomputer, and the recording time can be up to 16 minutes, so the present invention The embodiment uses it to build a multi-address voice reminder module. All operations of the voice chip must be controlled by the second single-chip microcomputer, and the operation commands can be sent through the serial communication interface (SPI interface or Microwire serial interface). The voice chip adopts multi-level direct analog storage technology, and each sampling value is directly stored in the on-chip flash memory, which can reproduce voice, music, tone and effect sound very realistically and naturally, avoiding the general solid-state recording circuit Quantization noise and "metallic noise" due to quantization and compression. Its sampling frequency can be 4.0kHz, 5.3kHz, 6.4kHz or 8.0kHz. The lower the sampling frequency, the longer the recording and playback time, but the sound quality will decrease.
在本发明实施例中,通过录音将预设语音存于闪烁存贮器中,可在断电情况下保存100年(典型值),并可反复录音10万次。预设语音包括开机语音、避让语音和送达语音,开机语音用于提示机器人系统正在开机,避让语音用于提示位于机器人前方的行人进行避让,送达语音用于提示物品已送达,例如,开机时,第二单片机控制语音模块发出如下开机语音:“你好,机器人服务系统正在启动中…请稍候!”;当热释电红外先传感器检测到机器人前方有人体辐射的红外线时,向第一单片机发送避让语音信号,第二单片机接收到来自第一单片机的避让语音信号时,控制语音模块发出如下避让语音:“您好,请您让一下!”,待位于机器人前方的行人避让后,机器人继续向前移动;当机器人到达停留点时,机器人向用餐者或其他人提供物品,此时,第一单片机向第二单片机发送送达语音信号,第二单片机控制语音模块发出如下送达语音:“您好,您的物品已送达,请接收!”。在本发明实施例中,预设语音可以根据需要随时进行修改。In the embodiment of the present invention, the preset voice is stored in the flash memory by recording, which can be stored for 100 years (typical value) in case of power failure, and can be recorded repeatedly 100,000 times. The preset voices include power-on voice, avoidance voice and delivery voice. The power-on voice is used to prompt that the robot system is starting up, the avoidance voice is used to prompt pedestrians in front of the robot to avoid, and the delivery voice is used to prompt that the item has been delivered, for example, When starting up, the second single-chip microcomputer control voice module sends out the following start-up voice: "Hello, the robot service system is starting... please wait!"; The first single-chip microcomputer sends an avoidance voice signal, and when the second single-chip microcomputer receives the avoidance voice signal from the first single-chip microcomputer, the control voice module sends out the following avoidance voice: "Hello, please give way!" After the pedestrians in front of the robot avoid , the robot continues to move forward; when the robot reaches the stop point, the robot provides items to diners or other people. At this time, the first single-chip microcomputer sends a delivery voice signal to the second single-chip microcomputer, and the second single-chip microcomputer controls the voice module to send out the following delivery Voice: "Hello, your item has been delivered, please accept it!". In the embodiment of the present invention, the preset voice can be modified at any time as required.
本发明实施例中,第一单片机采用MC9S12XS128单片机,MC9S12XS128单片机是飞思卡尔公司xs12系列16位单片机中的一种,最高接入晶振频率为48MHz,通过锁相可超频到96MHz,其内部结构主要有单片机基本CAN功能块部分组成,基本结构包括:中央处理器单元xs12(CPU)、2个异步串行通信接口(SCI)、2个同步串行通信接口(SPI)、8通道输入捕捉/输出比较定时器、1个8通道脉宽调制模块以及49个独立数字I/O接口(其中20个具有外部中断及唤醒功能),在单片机内还拥有128KB的Flash ROM,8KB的RAM和2KB的EEPROM,CAN功能块包括两个兼容CAN2.0A/B协议的msCAN控制器,这些丰富的内部资源和外部接口资源可以满足单片机对各种数据的处理、并满足CAN网络数据的发送和接收要求,另外MC9S12XS128单片机集成了两个msCAN12模块,能够实现高低速CAN网络的网关节点功能。In the embodiment of the present invention, the first single-chip microcomputer adopts the MC9S12XS128 single-chip microcomputer, and the MC9S12XS128 single-chip microcomputer is a kind of in the xs12 series 16-bit single-chip microcomputer of Freescale Company, the highest access crystal oscillator frequency is 48MHz, and can be overclocked to 96MHz through phase-locking, and its internal structure mainly It is composed of basic CAN function blocks of single-chip microcomputer, and the basic structure includes: central processing unit xs12 (CPU), 2 asynchronous serial communication interfaces (SCI), 2 synchronous serial communication interfaces (SPI), 8-channel input capture/output Comparing timer, 1 8-channel pulse width modulation module and 49 independent digital I/O interfaces (20 of which have external interrupt and wake-up functions), also has 128KB Flash ROM, 8KB RAM and 2KB EEPROM in the microcontroller , the CAN function block includes two msCAN controllers compatible with the CAN2.0A/B protocol. These rich internal resources and external interface resources can meet the processing of various data by the microcontroller and meet the requirements for sending and receiving CAN network data. In addition MC9S12XS128 MCU integrates two msCAN12 modules, which can realize the gateway node function of high and low speed CAN network.
MC9S12XS128单片机作为机器人的主控制器,在整个机器人导航系统中承担分析处理数据(来自第二单片机的数据)、确定机器人位置、向上位机(PC)方向进行无线数据传输、自身传感器信息处理、机器人导航系统各模块之间的协调运转的功能。MC9S12XS128单片机对STC12LE5A60S2单片机发送来的停留数据进行分割,将停留数据分为10个停留点的位置对应的餐厅坐标点和10个停留点的停留时间。MC9S12XS128 single-chip microcomputer, as the main controller of the robot, is responsible for analyzing and processing data (data from the second single-chip microcomputer), determining the position of the robot, wireless data transmission in the direction of the upper computer (PC), self-sensor information processing, and robot control in the entire robot navigation system. The function of coordinating operation among the various modules of the navigation system. The MC9S12XS128 single-chip microcomputer divides the stay data sent by the STC12LE5A60S2 single-chip microcomputer, and divides the stay data into the restaurant coordinate points corresponding to the positions of the 10 stay points and the stay time of the 10 stay points.
MC9S12XS128单片机开机后,首先进行SCI接口、PWM(脉宽调制)、蓝牙接口、模数转换的初始化,然后对MC9S12XS128单片机和STC12LE5A60S2单片机之间的串口作通信校验,如果校验失败,则返回重新进行初始化操作;如果校验成功,则接收来自STC12LE5A60S2单片机的数据,然后根据来自STC12LE5A60S2单片机的数据控制步进电机,同时,启动位于机器人头部的两个热释电红外线传感器和位于机器人前部的超声波传感器,然后根据热释电红外线传感器或超声波传感器反馈回来的信息控制步进电机。MC9S12XS128单片机可将上述反馈回来的信息通过蓝牙无线传输方式发送至上位机。After the MC9S12XS128 MCU is turned on, first initialize the SCI interface, PWM (Pulse Width Modulation), Bluetooth interface, and analog-to-digital conversion, and then perform communication verification on the serial port between the MC9S12XS128 MCU and the STC12LE5A60S2 MCU. If the verification fails, return to restart Carry out the initialization operation; if the verification is successful, then receive the data from the STC12LE5A60S2 microcontroller, and then control the stepping motor according to the data from the STC12LE5A60S2 microcontroller, and at the same time, start the two pyroelectric infrared sensors on the head of the robot and the one on the front of the robot The ultrasonic sensor then controls the stepping motor according to the information fed back by the pyroelectric infrared sensor or the ultrasonic sensor. The MC9S12XS128 single-chip microcomputer can send the above-mentioned feedback information to the host computer through Bluetooth wireless transmission.
本发明实施例中,设有三个超声波传感器,这三个超声波传感器分别设置在机器人的前部、左侧和右侧,超声波传感器采用SRF06超声波传感器,该超声波传感器性能稳定,盲区为2cm,使用电压为DC5V,静态电流小于2mA,TTL电平感应角度不大于15度,探测距离为2cm-450cm,精度可达1mm;其引脚说明如下:VCC-电源电压,trig-控制端,echo-接收端,GND-地线。在机器人运动的过程中,当机器人前方2cm-450cm存在障碍物时,超声波传感器获取机器人前方的障碍物分布信息,将障碍物分布信息发送至第一单片机;第一单片机依次向步进电机发送中断信号、右转信号和直行信号,步进电机首先停止工作,然后控制机器人完成右转操作,然后控制机器人直行;在机器人直行的过程中,利用位于机器人左侧的超声波传感器获取机器人左侧的障碍物分布信息;当机器人左侧不存在障碍物时,第一单片机依次向步进电机发送中断信号、左转信号和直行信号,步进电机首先停止工作,然后控制机器人完成左转操作,然后控制机器人直行。In the embodiment of the present invention, three ultrasonic sensors are provided, and the three ultrasonic sensors are respectively arranged on the front, left and right sides of the robot. The ultrasonic sensor adopts the SRF06 ultrasonic sensor. It is DC5V, the quiescent current is less than 2mA, the TTL level sensing angle is not more than 15 degrees, the detection distance is 2cm-450cm, and the accuracy can reach 1mm; the pin description is as follows: VCC-power supply voltage, trig-control terminal, echo-receiving terminal , GND-ground. During the movement of the robot, when there are obstacles 2cm-450cm in front of the robot, the ultrasonic sensor obtains the obstacle distribution information in front of the robot, and sends the obstacle distribution information to the first single-chip microcomputer; the first single-chip microcomputer sends interrupts to the stepping motor in turn signal, right turn signal and straight ahead signal, the stepper motor stops working first, then controls the robot to complete the right turn operation, and then controls the robot to go straight; in the process of the robot going straight, use the ultrasonic sensor on the left side of the robot to obtain the obstacle on the left side of the robot Object distribution information; when there is no obstacle on the left side of the robot, the first single-chip microcomputer sends an interrupt signal, a left-turn signal and a straight-going signal to the stepper motor in sequence, and the stepper motor first stops working, and then controls the robot to complete the left-turn operation, and then controls The robot goes straight.
本发明实施例中,机器人的头部位置设置有两个热释电红外线传感器,其工作原理为:由于人和物所辐射的红外线的波长不同,第一单片机可以根据热释电红外线传感器发送的信号判断所遇障碍物的身份。只要其中一个热释电红外线传感器检测到人体辐射的红外线,第一单片机就会向第二单片机发送避让语音信号,同时,第一单片机向步进电机发送中断信号,步进电机停止工作,第二单片机控制语音模块发出避让语音;避让语音预先设定在语音模块中;当位于机器人前方的人离开后,所有热释电红外线传感器均检测不到人体辐射的红外线,第一单片机接收不到人体辐射信号时,发送直行信号至步进电机,步进电机控制机器人继续向前直行。In the embodiment of the present invention, two pyroelectric infrared sensors are installed at the head position of the robot. The signal determines the identity of the obstacle encountered. As long as one of the pyroelectric infrared sensors detects the infrared rays radiated by the human body, the first single-chip microcomputer will send an avoidance voice signal to the second single-chip microcomputer. At the same time, the first single-chip microcomputer sends an interrupt signal to the stepping motor, and the stepping motor stops working. The single-chip microcomputer controls the voice module to send out the avoidance voice; the avoidance voice is pre-set in the voice module; when the person in front of the robot leaves, all pyroelectric infrared sensors cannot detect the infrared rays radiated by the human body, and the first single-chip microcomputer cannot receive the human body radiation When the signal is signaled, a straight signal is sent to the stepper motor, and the stepper motor controls the robot to continue straight forward.
本发明实施例中,每隔设定时间,第一单片机采用航姿推算定位法获得机器人的位置和角度,然后对机器人的位置和角度进行校正;航姿推算定位法成本低且不需要外界环境信息;如图3所示为机器人的位置和角度示意图,第一单片机采用航姿推算定位法获得机器人的位置和角度的过程如下:In the embodiment of the present invention, every set time, the first single-chip microcomputer uses the dead reckoning positioning method to obtain the position and angle of the robot, and then corrects the position and angle of the robot; the dead reckoning positioning method is low in cost and does not require an external environment Information; As shown in Figure 3, it is the position and angle schematic diagram of robot, and the first single-chip microcomputer adopts attitude reckoning positioning method to obtain the position and angle process of robot as follows:
设定t时刻机器人的坐标为(xt,yt),角度为θt,可得以下运动微分方程:Set the coordinates of the robot at time t as (x t , y t ), and the angle as θ t , the following differential equation of motion can be obtained:
上式中,Vt代表机器人瞬时线速度,ωt代表机器人的瞬时角速度。In the above formula, V t represents the instantaneous linear velocity of the robot, and ω t represents the instantaneous angular velocity of the robot.
令l表示机器人的运行里程,则dl=V*dt,将其代入(1)式有Let l represent the running mileage of the robot, then dl=V*dt, substituting it into (1) formula has
(2)式两边同时积分有Integrating both sides of (2) at the same time, we have
令Δl代表机器人的步长,Δti为系统第i段步长行程花费的时间,则有Let Δl represent the step size of the robot, and Δt i be the time spent by the system at the step i step, then we have
将(4)式代入(3)式可得以下估计式Substituting formula (4) into formula (3), the following estimated formula can be obtained
实验中,起始时,Δl=0;Δt0=0,可得x0=0;y0=0;θ0=0,霍尔传感器采用CS1018、CS1028、CS2018等,在机器人的两个驱动轮毂上均匀安装了12磁钢,则轮子每运行一周输入12个脉冲,机器人开始运动后,Δl=πD/12,D为驱动轮毂的直径。In the experiment, at the beginning, Δl=0; Δt 0 =0, we can get x 0 =0; y 0 =0; θ 0 =0, the Hall sensor adopts CS1018, CS1028, CS2018, etc. 12 magnetic steels are evenly installed on the wheel hub, and the wheel will input 12 pulses every week of operation. After the robot starts to move, Δl=πD/12, where D is the diameter of the driving hub.
对于角度测量,采用村田公司出品的MB245角速度传感器和加速度传感器MMA7620完成,角度最终由积分获得,计算程序如下:For angle measurement, the MB245 angular velocity sensor and the acceleration sensor MMA7620 produced by Murata are used to complete the angle measurement. The angle is finally obtained by integral. The calculation procedure is as follows:
根据得到的线度和角度值,再利用(5)式,可知里程计每隔行程Δl产生一个脉冲,系统响应此脉冲信号并计算该段行程的耗时Δt,以及该时刻的角速度,计算后得到该段行程内车辆坐标和角度的增量,最后累积得到机器人系统的瞬时位姿(即机器人的位置和角度)。According to the obtained linearity and angle values, and then using formula (5), it can be known that the odometer generates a pulse every Δl, and the system responds to this pulse signal and calculates the time-consuming Δt of this segment of travel, as well as the angular velocity at this moment. After calculation The increment of vehicle coordinates and angles in this section of the journey is obtained, and finally the instantaneous pose of the robot system (that is, the position and angle of the robot) is accumulated.
在机器人的两个驱动轮毂上均匀安装了12磁钢,则轮子每运行一周输入12个脉冲,在机器人运动的过程中,由霍尔传感器得出机器人的瞬时线速度;角速度传感器采用村田公司出品的MB245角速度传感器;加速度传感器采用MMA7620三周加速度传感器。12 magnets are evenly installed on the two driving hubs of the robot, and the wheels input 12 pulses every week of operation. During the movement of the robot, the instantaneous linear velocity of the robot is obtained by the Hall sensor; the angular velocity sensor is produced by Murata. The MB245 angular velocity sensor; the acceleration sensor uses the MMA7620 three-week acceleration sensor.
本发明实施例中,步进电机作为机器人动力部分的执行机构,其控制精度较高,能满足机器人对位置控制精度的要求;当机器人到达停留点时,第一单片机发送中断信号至步进电机,步进电机停止工作,机器人停止运动;当机器人前方有人或其他障碍物时,第一单片机均发送中断信号至步进电机,步进电机停止工作,机器人停止运动。本发明实施例中,机器人采用两个驱动轮毂差速的方式完成转向控制。In the embodiment of the present invention, the stepper motor is used as the actuator of the power part of the robot, and its control accuracy is high, which can meet the requirements of the robot for position control accuracy; when the robot reaches the stop point, the first single-chip microcomputer sends an interrupt signal to the stepper motor , the stepper motor stops working, and the robot stops moving; when there are people or other obstacles in front of the robot, the first single-chip microcomputer sends an interrupt signal to the stepping motor, the stepping motor stops working, and the robot stops moving. In the embodiment of the present invention, the robot completes steering control by means of differential speed of two driving hubs.
本发明实施例中,温度传感器采用DS18B20数字温度传感器,该数字温度传感器是DALLAS公司生产的单总线数字温度传感器,其具有微型化、低功耗、高性能、抗干扰能力强、连接电路简单等优点,特别适用于构成多点测控系统,可直接将温度转化成串行数字信号直接送给第一单片机处理。当温度超过预设温度时,第一单片机向步进电机发送中断信号,步进电机停止工作;待温度低于预设温后,第一单片机再控制步进电机开始工作。In the embodiment of the present invention, the temperature sensor adopts DS18B20 digital temperature sensor, which is a single bus digital temperature sensor produced by DALLAS company, which has miniaturization, low power consumption, high performance, strong anti-interference ability, simple connection circuit, etc. Advantages, it is especially suitable for forming a multi-point measurement and control system, and can directly convert the temperature into a serial digital signal and send it to the first single-chip microcomputer for processing. When the temperature exceeds the preset temperature, the first single-chip microcomputer sends an interrupt signal to the stepping motor, and the stepping motor stops working; when the temperature is lower than the preset temperature, the first single-chip microcomputer controls the stepping motor to start working again.
本发明实施例中,烟雾传感器感知到烟雾时,发送对应的信号至第一单片机,第一单片机判断烟雾的浓度值是否大于设定阈值,如果大于设定阈值,则通过第二单片机向语音模块发送语音信号,语音模块可以发出对应的烟雾提示语音。烟雾传感器采用MQ-2烟雾传感器,它具有信号输出指示功能,能进行双路信号输出(模拟量输出及TTL电平输出),输出有效信号为低电平(输出低电平时信号灯亮,可直接接单片机);能以模拟量输出0~5V电压(烟雾浓度越高电压越高);对液化气,天然气,城市煤气,烟雾有较好的灵敏度;具有较长的使用寿命、可靠的稳定性和快速的响应恢复特性,可作为家庭或工厂的气体泄漏监测装置,适宜于检测液化气、丁烷、丙烷、甲烷、酒精、氢气、烟雾等。In the embodiment of the present invention, when the smoke sensor senses the smoke, it sends a corresponding signal to the first single-chip microcomputer, and the first single-chip microcomputer judges whether the concentration value of the smoke is greater than the set threshold value, and if it is greater than the set threshold value, it sends a signal to the voice module through the second single-chip microcomputer. Send a voice signal, and the voice module can issue a corresponding smoke prompt voice. The smoke sensor adopts MQ-2 smoke sensor, which has signal output indication function, can carry out dual signal output (analog output and TTL level output), and the effective output signal is low level (the signal light is on when the output is low level, and can be directly connected to single-chip microcomputer); can
本发明实施例中,机器人携带有一颗GPS定位芯片,该定位芯片采用NMEA0813协议将GPS接收到的信息以串口的方式传递出来,因此要想获取GPS信息并在电脑端(上位机)显示出来,就要完成对NMEA0813协议的处理。该GPS定位芯片支持的NMEA0813协议包括$GPRMC(推荐定位信息),$GPVTG(地面速度信息),$GPGGA(定位信息),$GPGSA(当前卫星信息),$GPGSV(可见卫星信息),$GPGLL(地理定位信息)。其中$GPRMC和$GPGGA包括了主要的定位信息。各个数据包中的各个字段的值采用ASCII码,以’,’作为间隔。In the embodiment of the present invention, the robot carries a GPS positioning chip. The positioning chip uses the NMEA0813 protocol to transmit the information received by the GPS through a serial port. Therefore, if you want to obtain GPS information and display it on the computer (host computer), It is necessary to complete the processing of the NMEA0813 protocol. The NMEA0813 protocol supported by the GPS positioning chip includes $GPRMC (recommended positioning information), $GPVTG (ground velocity information), $GPGGA (positioning information), $GPGSA (current satellite information), $GPGSV (visible satellite information), $GPGLL (geolocation information). Among them, $GPRMC and $GPGGA include the main positioning information. The value of each field in each data packet adopts ASCII code, separated by ','.
上位机主要完成以下功能:一、实现机器人位置的同步显示;二、实现GPS信息的实时显示;三、实现机器人状态的实时显示以及上位机与机器人的实时数据交互等功能。The upper computer mainly completes the following functions: 1. Realize the synchronous display of the robot position; 2. Realize the real-time display of GPS information; 3. Realize the real-time display of the robot status and the real-time data interaction between the upper computer and the robot.
机器人各种信息的显示都依赖于上位机与机器人的数据交互,因此一个简单而行之有效的数据传输过程是必不可少的。本发明在硬件方面采用无线蓝牙数传技术完成数据的交互;机器人上使用串口通讯的方式将所发数据发送给蓝牙发送设备,通过该设备将数据发送到上位机,上位机通过软件设置将蓝牙端口映射到串口,然后通过软件读写串口完成整体的数据交换。The display of various information of the robot depends on the data interaction between the upper computer and the robot, so a simple and effective data transmission process is essential. In terms of hardware, the present invention adopts wireless bluetooth data transmission technology to complete data interaction; the robot uses serial port communication to send the sent data to the bluetooth sending device, through which the data is sent to the upper computer, and the upper computer sets the bluetooth The port is mapped to the serial port, and then the overall data exchange is completed through the software to read and write the serial port.
通过数据交互,上位机将实时获取由机器人发回的位置信息和状态信息。通过对该信息的判断和处理显示出位置信息以及机器人目前的状态(是否遇到正常、前方是否有障碍物、前方是否有人等),如果遇到异常将发出声音警报。Through data interaction, the host computer will obtain the location information and status information sent back by the robot in real time. Through the judgment and processing of the information, the location information and the current state of the robot (whether it is normal, whether there are obstacles in front, whether there are people in front, etc.), will sound an alarm if it encounters an abnormality.
本发明实施例中,还可以通过太阳能电池板为机器人导航系统(尤其是第一单片机)供电,例如,将太阳能电池板连接第一单片机,即可为第一单片机提供电源。第一单片机提供了220V的对外交流接口和USB接口,可以在室外工作时提供应急电源。In the embodiment of the present invention, the robot navigation system (especially the first single-chip microcomputer) can also be powered by the solar battery panel, for example, the first single-chip microcomputer can be powered by connecting the solar battery panel to the first single-chip microcomputer. The first single-chip microcomputer provides a 220V external AC interface and a USB interface, which can provide emergency power when working outdoors.
总而言之,在本发明可通过触摸屏来预设机器人行进轨道,然后外界可对机器人在行进与定位过程中任意路径点设置合理的停留时间、传感器检测到特定信息后的处理模式以及合适的语音提示服务和负载物品进行设置,从而完成相应的服务任务,例如送水,送咖啡、送饭菜等。在机器人的巡行过程中,机器人具有障碍物检测、人物辨别、阻行提示音、工作提示音以及壁障提示等功能,本发明中,路径设置具有相当大的可重复性。本发明还具有以下特点:一、良好的半智能路径规划服务使本发明的重复利用率增强,提高了本发明的移植性。二、较为出色的人机交互可使本发明具有较强的对象适应性,并使本发明的操作更加灵活。三、在路径点上可自由设置点停留时间从而完成各种各样的公共服务。四、带有路径上的各种检测信息,如障碍物检测、速度检测、图像辨识、人物分辨等,保证了路径行驶中机器人的可靠与安全。五、具有各种安全检测功能,如火灾检测、燃气泄漏检测和机器人电量检测等,可实现公共系统的安全预警和机器人的稳定工作。六、上位机可实时反馈回来各个机器人工作的状态和外界信息,并且处理成较容易接受的程序界面,使人容易获取信息。All in all, in the present invention, the robot's trajectory can be preset through the touch screen, and then the outside world can set a reasonable dwell time, a processing mode after the sensor detects specific information, and an appropriate voice prompt service for any path point during the robot's travel and positioning. Set up with the load items to complete the corresponding service tasks, such as water delivery, coffee delivery, meal delivery, etc. During the roving process of the robot, the robot has functions such as obstacle detection, person identification, blocking prompt sound, work prompt sound and barrier prompt. In the present invention, the path setting has considerable repeatability. The present invention also has the following characteristics: 1. Good semi-intelligent path planning service enhances the reuse rate of the present invention and improves the portability of the present invention. 2. Excellent human-computer interaction can make the present invention have stronger object adaptability and make the operation of the present invention more flexible. 3. You can freely set the stay time on the waypoint to complete various public services. 4. With various detection information on the path, such as obstacle detection, speed detection, image recognition, person identification, etc., to ensure the reliability and safety of the robot during the path driving. 5. It has various safety detection functions, such as fire detection, gas leakage detection and robot power detection, etc., which can realize the safety warning of the public system and the stable work of the robot. 6. The upper computer can feed back the working status and external information of each robot in real time, and process it into an easier-to-accept program interface, making it easy for people to obtain information.
本发明针对的是在一般较为规则的环境内的机器人导航,进行了餐厅室内导航的新尝试,首先本发明完成了以自身正方向和初始位置为零点的二维坐标系的建立,并生成了适用于绝大多数环境的初级点阵地图,且较好地完成了触摸屏信息的检测、量化编码以及语音交互;其次本发明通过第一单片机、第二单片机之间的RS232通信,完成了路径信息的编码和解码,并通过差值匹配的算法完成了对应信息的执行和翻译;最后,完成了基于无线蓝牙数传技术的机器人与上位机的实时通信。The present invention is aimed at robot navigation in a generally more regular environment, and has made a new attempt of restaurant indoor navigation. First, the present invention completes the establishment of a two-dimensional coordinate system with its own positive direction and initial position as the zero point, and generates The primary dot matrix map is suitable for most environments, and it has better completed the detection, quantization coding and voice interaction of touch screen information; secondly, the present invention completes the path information through the RS232 communication between the first single-chip microcomputer and the second single-chip microcomputer. The encoding and decoding of the corresponding information is completed through the algorithm of difference matching; finally, the real-time communication between the robot and the host computer based on the wireless Bluetooth data transmission technology is completed.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and their equivalent technologies, the present invention also intends to include these modifications and variations.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310253203.7A CN103335652B (en) | 2013-06-24 | 2013-06-24 | The dining room path guiding system of a kind of robot and air navigation aid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310253203.7A CN103335652B (en) | 2013-06-24 | 2013-06-24 | The dining room path guiding system of a kind of robot and air navigation aid |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103335652A true CN103335652A (en) | 2013-10-02 |
CN103335652B CN103335652B (en) | 2016-06-08 |
Family
ID=49243860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310253203.7A Expired - Fee Related CN103335652B (en) | 2013-06-24 | 2013-06-24 | The dining room path guiding system of a kind of robot and air navigation aid |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103335652B (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103683464A (en) * | 2013-12-17 | 2014-03-26 | 广东省自动化研究所 | EPS power system based on dual processors and control method thereof |
CN103955214A (en) * | 2014-04-11 | 2014-07-30 | 陕西科技大学 | Double-wheel upright-walking intelligent meal delivery robot |
CN103948285A (en) * | 2014-04-11 | 2014-07-30 | 陕西科技大学 | Double-wheeled upright meal delivery robot capable of storing maps |
CN104731092A (en) * | 2014-12-22 | 2015-06-24 | 南京阿凡达机器人科技有限公司 | Multi-directional barrier avoiding system of mobile robot |
CN104977323A (en) * | 2014-04-03 | 2015-10-14 | 江南大学 | Multifunctional digital alcohol testing system |
CN104991766A (en) * | 2015-06-12 | 2015-10-21 | 联想(北京)有限公司 | Control method and electronic equipment |
CN105807773A (en) * | 2016-05-13 | 2016-07-27 | 南京工程学院 | Restaurant service robot system based on iGPS and internal communication |
CN105823552A (en) * | 2016-05-06 | 2016-08-03 | 简燕梅 | Intelligent detection robot car for architectural structure vibration |
CN106054896A (en) * | 2016-07-13 | 2016-10-26 | 武汉大学 | Intelligent navigation robot dolly system |
CN106239519A (en) * | 2016-09-06 | 2016-12-21 | 上海拓础智能科技有限公司 | A kind of Intelligent navigation robot and air navigation aid thereof |
CN106695736A (en) * | 2016-07-04 | 2017-05-24 | 浙江理工大学 | Gesture identification human-simulated mechanical arm system based on multi-sensor fusion and synchronizing method |
CN107306803A (en) * | 2017-06-26 | 2017-11-03 | 安徽永牧机械集团有限公司 | A kind of robot shit remover |
CN107356902A (en) * | 2017-06-09 | 2017-11-17 | 昆明理工大学 | A kind of WiFi location fingerprint datas automatic acquiring method |
CN109087027A (en) * | 2018-08-29 | 2018-12-25 | 广州市君望机器人自动化有限公司 | Loop-type food delivery path dispatching method, device, background server and storage medium |
CN109176537A (en) * | 2018-08-09 | 2019-01-11 | 北京云迹科技有限公司 | content displaying method and device for robot |
CN109623876A (en) * | 2019-01-04 | 2019-04-16 | 平安科技(深圳)有限公司 | A kind of method for testing motion, motion detection apparatus and computer readable storage medium |
CN110065063A (en) * | 2018-01-24 | 2019-07-30 | 南京机器人研究院有限公司 | A kind of robot servo motors control method |
CN111060110A (en) * | 2020-01-07 | 2020-04-24 | 深圳市优必选科技股份有限公司 | Robot navigation method, robot navigation device and robot |
CN111459158A (en) * | 2020-03-11 | 2020-07-28 | 上海擎朗智能科技有限公司 | Robot and advancing control method thereof |
CN112230256A (en) * | 2019-07-15 | 2021-01-15 | 苏州宝时得电动工具有限公司 | Autonomous robot, positioning calibration method and device thereof, and storage medium |
CN112445964A (en) * | 2019-08-29 | 2021-03-05 | 深圳富泰宏精密工业有限公司 | Information sharing method and server |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305217A (en) * | 1990-07-03 | 1994-04-19 | Fuji Electric Co., Ltd. | Method and system for controlling automatic guided vehicle |
US20070293985A1 (en) * | 2006-06-20 | 2007-12-20 | Samsung Electronics Co., Ltd. | Method, apparatus, and medium for building grid map in mobile robot and method, apparatus, and medium for cell decomposition that uses grid map |
CN102445946A (en) * | 2011-12-02 | 2012-05-09 | 天津工业大学 | Service robot for cafeteria |
CN102699895A (en) * | 2012-06-04 | 2012-10-03 | 山东大陆科技有限公司 | Meal delivering robot and meal delivering method |
-
2013
- 2013-06-24 CN CN201310253203.7A patent/CN103335652B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5305217A (en) * | 1990-07-03 | 1994-04-19 | Fuji Electric Co., Ltd. | Method and system for controlling automatic guided vehicle |
US20070293985A1 (en) * | 2006-06-20 | 2007-12-20 | Samsung Electronics Co., Ltd. | Method, apparatus, and medium for building grid map in mobile robot and method, apparatus, and medium for cell decomposition that uses grid map |
CN102445946A (en) * | 2011-12-02 | 2012-05-09 | 天津工业大学 | Service robot for cafeteria |
CN102699895A (en) * | 2012-06-04 | 2012-10-03 | 山东大陆科技有限公司 | Meal delivering robot and meal delivering method |
Non-Patent Citations (1)
Title |
---|
于清晓: "轮式餐厅服务机器人移动定位技术研究", 《中国博士学位论文全文数据库信息科技辑》 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103683464B (en) * | 2013-12-17 | 2016-11-09 | 广东省自动化研究所 | EPS Power Supply System Based on Dual Processors and Its Control Method |
CN103683464A (en) * | 2013-12-17 | 2014-03-26 | 广东省自动化研究所 | EPS power system based on dual processors and control method thereof |
CN104977323A (en) * | 2014-04-03 | 2015-10-14 | 江南大学 | Multifunctional digital alcohol testing system |
CN103955214A (en) * | 2014-04-11 | 2014-07-30 | 陕西科技大学 | Double-wheel upright-walking intelligent meal delivery robot |
CN103948285A (en) * | 2014-04-11 | 2014-07-30 | 陕西科技大学 | Double-wheeled upright meal delivery robot capable of storing maps |
CN104731092A (en) * | 2014-12-22 | 2015-06-24 | 南京阿凡达机器人科技有限公司 | Multi-directional barrier avoiding system of mobile robot |
CN104991766A (en) * | 2015-06-12 | 2015-10-21 | 联想(北京)有限公司 | Control method and electronic equipment |
CN104991766B (en) * | 2015-06-12 | 2019-08-27 | 联想(北京)有限公司 | A kind of control method and electronic equipment |
CN105823552A (en) * | 2016-05-06 | 2016-08-03 | 简燕梅 | Intelligent detection robot car for architectural structure vibration |
CN105807773A (en) * | 2016-05-13 | 2016-07-27 | 南京工程学院 | Restaurant service robot system based on iGPS and internal communication |
CN106695736A (en) * | 2016-07-04 | 2017-05-24 | 浙江理工大学 | Gesture identification human-simulated mechanical arm system based on multi-sensor fusion and synchronizing method |
CN106054896A (en) * | 2016-07-13 | 2016-10-26 | 武汉大学 | Intelligent navigation robot dolly system |
CN106239519A (en) * | 2016-09-06 | 2016-12-21 | 上海拓础智能科技有限公司 | A kind of Intelligent navigation robot and air navigation aid thereof |
CN107356902A (en) * | 2017-06-09 | 2017-11-17 | 昆明理工大学 | A kind of WiFi location fingerprint datas automatic acquiring method |
CN107306803A (en) * | 2017-06-26 | 2017-11-03 | 安徽永牧机械集团有限公司 | A kind of robot shit remover |
CN110065063A (en) * | 2018-01-24 | 2019-07-30 | 南京机器人研究院有限公司 | A kind of robot servo motors control method |
CN109176537A (en) * | 2018-08-09 | 2019-01-11 | 北京云迹科技有限公司 | content displaying method and device for robot |
CN109176537B (en) * | 2018-08-09 | 2022-05-10 | 北京云迹科技股份有限公司 | Content display method and device for robot |
CN109087027A (en) * | 2018-08-29 | 2018-12-25 | 广州市君望机器人自动化有限公司 | Loop-type food delivery path dispatching method, device, background server and storage medium |
CN109087027B (en) * | 2018-08-29 | 2020-12-18 | 广州市君望机器人自动化有限公司 | Loop type meal delivery path scheduling method and device, background server and storage medium |
CN109623876A (en) * | 2019-01-04 | 2019-04-16 | 平安科技(深圳)有限公司 | A kind of method for testing motion, motion detection apparatus and computer readable storage medium |
CN112230256A (en) * | 2019-07-15 | 2021-01-15 | 苏州宝时得电动工具有限公司 | Autonomous robot, positioning calibration method and device thereof, and storage medium |
CN112230256B (en) * | 2019-07-15 | 2024-04-09 | 苏州宝时得电动工具有限公司 | Autonomous robot, positioning calibration method and device thereof, and storage medium |
CN112445964A (en) * | 2019-08-29 | 2021-03-05 | 深圳富泰宏精密工业有限公司 | Information sharing method and server |
CN111060110A (en) * | 2020-01-07 | 2020-04-24 | 深圳市优必选科技股份有限公司 | Robot navigation method, robot navigation device and robot |
CN111459158A (en) * | 2020-03-11 | 2020-07-28 | 上海擎朗智能科技有限公司 | Robot and advancing control method thereof |
CN111459158B (en) * | 2020-03-11 | 2023-09-15 | 上海擎朗智能科技有限公司 | Robot and travel control method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN103335652B (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103335652B (en) | The dining room path guiding system of a kind of robot and air navigation aid | |
CN107065863A (en) | A kind of guide to visitors based on face recognition technology explains robot and method | |
CN201853137U (en) | Intelligent self-tracking car control system based on photoelectric sensor | |
CN102288191A (en) | Intelligent navigating bogie | |
CN106054896A (en) | Intelligent navigation robot dolly system | |
CN105807790B (en) | Intelligent following system based on indoor hybrid positioning and following method thereof | |
CN208654640U (en) | Two-wheel balancing robot control system | |
CN108592936A (en) | A kind of service robot and its interactive voice air navigation aid based on ROS | |
CN205540268U (en) | Automatically, keep away barrier tracking dolly based on magnetic navigation | |
CN104163225A (en) | Electric bicycle simulation torque assistance sensing control system and implementation method thereof | |
CN206541196U (en) | A kind of guide to visitors based on face recognition technology explains robot | |
CN101053955A (en) | Control device for moving robot based on blue-tooth technology | |
CN103529465A (en) | Indoor and outdoor person seamless positioning device | |
CN112891162B (en) | Intelligent blind stick based on mobile wearable calculation | |
CN106956274A (en) | A kind of robot awakening method | |
CN106313043B (en) | A kind of control method of path point type walking robot system | |
CN103065540B (en) | Intelligent wrecker | |
CN105424055A (en) | Intelligent park with a small-size mobile assistant system and navigation method | |
CN107240270A (en) | Silent cop | |
CN103192394A (en) | Robot control system based on double-wheel self-balance gravity inductive control | |
CN205942440U (en) | Intelligence business office robot | |
CN202134012U (en) | A Meteorological Science Popularization Robot System | |
TWI448669B (en) | Regional personnel positioning and activity evaluation method | |
CN202150121U (en) | Parking lot car searching and positioning query system | |
CN205608527U (en) | Intelligent following system based on indoor hybrid positioning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160608 Termination date: 20170624 |
|
CF01 | Termination of patent right due to non-payment of annual fee |