CN103326225A - Device and method for realizing ship light - Google Patents
Device and method for realizing ship light Download PDFInfo
- Publication number
- CN103326225A CN103326225A CN2013102456279A CN201310245627A CN103326225A CN 103326225 A CN103326225 A CN 103326225A CN 2013102456279 A CN2013102456279 A CN 2013102456279A CN 201310245627 A CN201310245627 A CN 201310245627A CN 103326225 A CN103326225 A CN 103326225A
- Authority
- CN
- China
- Prior art keywords
- ship
- light
- chamber
- sub
- resonant cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 29
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 30
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 15
- 239000001569 carbon dioxide Substances 0.000 claims description 10
- 239000007789 gas Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 229910052734 helium Inorganic materials 0.000 claims description 2
- 239000001307 helium Substances 0.000 claims description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 2
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims 2
- 239000000203 mixture Substances 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000005474 detonation Methods 0.000 abstract description 8
- 230000007123 defense Effects 0.000 abstract description 3
- 238000011160 research Methods 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 239000010453 quartz Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000565 sealant Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- CPBQJMYROZQQJC-UHFFFAOYSA-N helium neon Chemical compound [He].[Ne] CPBQJMYROZQQJC-UHFFFAOYSA-N 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
Description
技术领域 technical field
本发明涉及光学工程领域,主要是采用由凹面半圆环全反镜和平面半圆环部分反射输出镜构成船形气体激光谐振腔的气体激光器来获得具有中心凹陷、边缘凸起,类似船形分布的气体激光光束的装置和方法。 The invention relates to the field of optical engineering, and mainly adopts a gas laser with a boat-shaped gas laser resonator composed of a concave semi-circular full-reflection mirror and a planar semi-circular partial reflection output mirror to obtain a ship-like distribution with a central depression and a raised edge. Apparatus and method for a gas laser beam. the
背景技术 Background technique
在研究激光爆轰波时,激光束形状影响等离子体云分布,近而影响光船对轻小物质的控制。根据自再现理论,激光束的形状与谐振腔的形状有关。常规的气体激光谐振腔由圆形放电管和圆形反射镜构成,因而激光的形状也为能量高度聚集光轴的形式。这样的激光束在爆轰时,对目标物的接触面较小,其爆轰波对目标物的控制作用类似于一根细杆,对其方向的控制作用较弱;在用作光船时,其等离子体云在垂直传播方向上是发散的,对轻小物质的承载面类似凸柱面,其承载方式为不稳定方式。 When studying laser detonation waves, the shape of the laser beam affects the distribution of the plasma cloud, which in turn affects the control of light ships on light and small matter. According to the self-reproducibility theory, the shape of the laser beam is related to the shape of the resonant cavity. The conventional gas laser resonator is composed of a circular discharge tube and a circular mirror, so the shape of the laser is also in the form of a highly concentrated optical axis. Such a laser beam has a small contact surface with the target during detonation, and the control effect of the detonation wave on the target is similar to a thin rod, and the control effect on its direction is weak; when used as a light ship , the plasma cloud diverges in the vertical propagation direction, and the bearing surface for light and small matter is similar to a convex cylinder, and its bearing mode is unstable. the
发明内容 Contents of the invention
本专利针对上述现象发明的更适宜用于爆轰和光船的方法和装置,目的在于构建和提供一种输出光束空间分布形状出现船光的气体激光器,该激光器输出的光束空间分布出现边缘凸起、中间凹陷的形状,类似船形,取名船光。本发明的装置由于采用两个半圆环反射镜和一个船形放电管构成船形气体激光谐振腔,合理设置腔参数,使输出光束空间分布形状类似船形。合理设计船光的尺寸和功率,可以实现对目标物行动方向更大尺度合理爆轰控制以及对轻小物质稳定承载。该发明可以实现微小尺寸小功率和大尺寸中高功率输出。本发明实现的小功率船光可以用于科学研究比如爆轰或输送轻小物质,中高功率船光可以用于国防比如拦截或打击等方面。 This patent invents a method and device more suitable for detonation and light boats in response to the above phenomena, the purpose of which is to construct and provide a gas laser whose output beam spatial distribution shape appears ship light, and the output beam spatial distribution of the laser has edge bulges , The shape of the depression in the middle is similar to the shape of a boat, so it is named Chuanguang. The device of the present invention adopts two semi-circular reflectors and a boat-shaped discharge tube to form a boat-shaped gas laser resonant cavity, and rationally sets the cavity parameters so that the spatial distribution shape of the output beam is similar to the boat-shaped. Reasonable design of the size and power of the ship's light can achieve a larger-scale reasonable detonation control of the target's action direction and stable carrying of light and small substances. The invention can realize low power in tiny size and medium to high power output in large size. The low-power ship light realized by the invention can be used for scientific research such as detonation or transport of light and small substances, and the medium-high power ship light can be used for national defense such as interception or strike. the
本发明的目的是由以下措施实施的:实现船光的装置为船形二氧化碳气体激光谐振腔,采用易于在异形放电区实现辉光放电的射频放电方式,激光器谐振腔的特征在于其谐振腔是船形谐振腔,由两个共旋转轴的半圆柱面和两个长条平面构成的船形放电管以及两半圆环反射镜构成,在船形放电管底部贴凹面半圆环全反射镜,在船形放电管的顶部贴平面半圆环部分反射输出镜,两半圆柱面的旋转轴为船形谐振腔的光轴,谐振腔沿光轴的任一纵剖面形成凹平谐振子腔,简称船形谐振腔的子腔,船形谐振腔可以看做是该子腔绕光轴旋转180度形成,每个子腔有自身的光轴,称为腔轴,每个子腔的输出光束为子光束,子光束的腰斑位于子腔的输出镜位置,该子光束旋转相应角度形成船形谐振腔的输出光束,即船形光束,简称船光。本发明实现的船光在小尺寸小功率情形下可以用于科学研究,比如在太空中对目标物体照射产生爆轰波从而控制目标物的运动方向,以及在太空中承载轻小物质,大尺寸中高功率的二氧化碳船光可以用于国防对空间目标的打击、拦截等控制。 The object of the present invention is implemented by the following measures: the device for realizing ship light is a boat-shaped carbon dioxide gas laser resonator, adopts the radio frequency discharge mode that is easy to realize glow discharge in the special-shaped discharge area, and the feature of the laser resonator is that its resonator is a boat-shaped resonator The resonant cavity is composed of two semi-cylindrical surfaces with co-rotating axes, a boat-shaped discharge tube composed of two long planes, and two semi-circular reflectors. A concave semi-circular total reflection mirror is attached to the bottom of the boat-shaped discharge tube. The top of the tube is attached to the flat semi-circular part to reflect the output mirror. The rotation axis of the two half-cylindrical surfaces is the optical axis of the boat-shaped resonator. The sub-cavity and the boat-shaped resonator can be regarded as the formation of the sub-cavity rotated 180 degrees around the optical axis. Each sub-cavity has its own optical axis, which is called the cavity axis. The output beam of each sub-cavity is a sub-beam, and the waist spot of the sub-beam Located at the position of the output mirror of the sub-cavity, the sub-beam rotates at a corresponding angle to form the output beam of the boat-shaped resonator, that is, the boat-shaped beam, referred to as boat light. The ship light realized by the present invention can be used in scientific research under the condition of small size and low power, such as irradiating target objects in space to generate detonation waves to control the direction of movement of the target objects, and carrying light and small substances in space, large size Medium and high-power carbon dioxide boat lights can be used for national defense to attack and intercept space targets. the
二氧化碳激光器的放电管可以采用石英、绝缘材料或部分采用绝缘材料部分采用作为电极金属材料,大型的二氧化碳激光器采用射频放电激励或预电离激励方式,工作方式为连续的,采用风机驱动工作气体兼水冷散热方式,当对射频电源进行调制而进行脉冲放电时,工作方式是脉冲的。 The discharge tube of carbon dioxide laser can be made of quartz, insulating material or partly insulating material and partly used as electrode metal material. Large-scale carbon dioxide laser adopts radio frequency discharge excitation or pre-ionization excitation mode, and the working mode is continuous. It uses fan to drive working gas and water cooling Heat dissipation mode, when the radio frequency power supply is modulated to perform pulse discharge, the working mode is pulse. the
附图说明图1、2分别是实现船光的船形激光谐振腔的装置示意立体图、装置及船光示意立体图、图3为装置子腔示意图,图4为子腔与光轴的关系示意图。 BRIEF DESCRIPTION OF THE DRAWINGS Figures 1 and 2 are a schematic perspective view of the device and a schematic perspective view of the ship-shaped laser resonator for realizing the ship's light, Figure 3 is a schematic diagram of the sub-cavity of the device, and Figure 4 is a schematic diagram of the relationship between the sub-cavity and the optical axis.
在附图中1-4中,1是船形谐振腔的凹面半圆环全反射镜,可简称全反镜1,2是船形谐振腔的平面半圆环部分反射输出镜,可简称输出镜2,3是船形放电管的半圆柱面外壁,可简称外壁3,4是船形放电管的半圆柱面内壁,可简称内壁4,5和6均是船形放电管的长条形侧壁,可简称侧壁5和6,其中3、4、5和6一起构成船形放电管8,7是船光。图2是船形谐振腔以及船光的示意图,图中 (x1,o1,y1) 所在平面位于镜1内表面所在平面,图中 (x2,o2,y2) 所在平面位于镜2外表面所在平面,也是船形谐振腔输出光束船光7的起点平面,r2是外壁3的半径,也是镜1和镜2的半圆环外半径,r1是外壁4的半径,也是镜1和镜2的半圆环内半径,z轴为壁3和4的旋转轴,也是船形谐振腔的光轴,也是船光的光轴。图3为凹平子腔示意图,z′轴为子腔的腔轴,凹镜1′为镜1的纵剖面,为凹平谐振子腔的凹面全反镜,平镜2′为镜2的纵剖面,为凹平谐振子腔的平面部分反射输出镜。图4为凹平子腔相对于船形谐振腔的光轴的位置示意图,在图4中,子腔绕z光轴旋转180度形成船形谐振腔,凹镜1′绕z光轴旋转180度形成凹面半圆环全反射镜1,凹镜2′绕z光轴旋转180度形成平面半圆环部分反射输出镜2,子腔腔轴z′与光轴z的距离为r,子腔的直径为a,a也是镜1和镜2的环宽,子腔的输出光束在距离平面 (x2,o2,y2) z处的光束半径为ω(z),子腔的长度为L,也是船形谐振腔的长度,子腔的凹面镜的曲率半径为R,沿子腔腔轴的受激辐射被腔中粒子数反转的激光介质放大并被腔镜来回反射进一步放大后出射,该出射光束绕z光轴旋转180度形成船光7,距离平面 (x2,o2,y2) z处船光7的中心凹陷深度为r – ω(z),此处船光7的厚度为2ω(z),船光7的宽度2[r+ ω(z)]。
In 1-4 of the accompanying drawings, 1 is the concave semi-circular total reflection mirror of the boat-shaped resonant cavity, which can be referred to as the
具体实施方式 下面结合附图和具体实施方式对本发明做详细描述。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below in conjunction with the drawings and specific embodiments.
本发明的小功率船光CO2激光器的船光谐振腔的底部的凹面半圆环全反镜1采用半圆形平面光学玻璃或石英块作基底,对很高输出的CO2激光器,采用致密性很好、硬度较高的半圆铜块作基底,采用孔切割装置将基底材料中间的部分按照镜1的内半圆环尺寸要求切割下来,但中间这部分应和自身的半环形块胶合在一起以便于磨制加工。为镜1设置研磨模具。研磨镜面的磨具采用低碳钢材料由数控机床按照设计加工,由于镜面不具备单一曲率中心,故磨具也不具备单一曲率中心,但是镜面的曲面具有严格的旋转对称特性,因此磨具的加工不存在较大困难。磨具加工好后,对研磨的镜的研磨过程应保持严格的旋转轴对称要求。镜面研磨抛光后再将胶合在中心的一块取下,即可得到凹面半圆环全反射镜,经过严格清洗并镀上全反射膜后可用于本发明器件上。本发明的平面半圆环部分反射输出镜2,基底形状为平面半圆环形状,将基底材料按照镜2的内半圆环尺寸要求切割下来,研磨平整并按要求镀上部分反射膜。镜2基底的材质,根据功率要求可选用锗片或硒化锌等。
The concave semi-circular full-
本发明的放电管内、外壁3和4,对小功率CO2激光器可采用石英熔化的液体注入处于一定温度的石墨模具内再逐渐冷却后制得。两放电管壁的石墨模具为两套。石墨强度较好,故能上车床较为精确地按照设计加工,精度可达0.1mm。模具在使用后若精度不够,则应修复或更换新的模具。本发明的放电管内、外壁,对高功率CO2激光器则采用铝、铜或薄的不锈钢材料制作,放电管的内外金属壁则直接用作为两放电电极。本发明的放电管的两侧壁,采用石英做出长为船形谐振腔的长度、宽为谐振腔子腔的直径的两个长条形平面。 The inner and outer walls 3 and 4 of the discharge tube of the present invention can be made by injecting quartz molten liquid into a graphite mold at a certain temperature for a low-power CO2 laser and gradually cooling it down. There are two sets of graphite molds for the two discharge tube walls. Graphite has better strength, so it can be processed on a lathe more accurately according to the design, with an accuracy of up to 0.1mm. If the precision of the mold is not enough after use, it should be repaired or replaced with a new mold. The inner and outer walls of the discharge tube of the present invention are made of aluminum, copper or thin stainless steel for high-power CO2 lasers, and the inner and outer metal walls of the discharge tube are directly used as two discharge electrodes. The two side walls of the discharge tube of the present invention are made of quartz to make two strip-shaped planes whose length is the length of the boat-shaped resonant cavity and whose width is the diameter of the sub-cavity of the resonant cavity.
在本发明的装置组装过程中,本发明的放电管的四壁的支撑和固定是通过采用专门支架来实现的。当为小功率二氧化碳激光器时,加工两个石英的空心半圆环,两半圆环的内环半径略小于镜1和2的内环半径,两半圆环的外环半径略大于镜1和镜2的外环半径,将其中一个半圆环置于水平支架台上,将镜1置于半圆环上,将放电管每个壁的外面的中间用胶分别设置一个胶结凸点,用三维调节支架将四壁竖立夹持,将放电管的内壁竖立于半圆环和镜1的内缘上,将放电管的外壁竖立于半圆环和镜1的外缘上,将放电管的两侧壁竖立于半圆环的两边缘上,将另一半圆环置于四壁的顶端,并用支架固定,同时用氦氖激光器或平行光管监测放电管的光路,调节好后,用真空密封胶将放电管的四壁密封好,固化好后再用真空密封胶将放电管下部的半圆环和镜1与放电管的下部密封好,固化好后将放电管上端的半圆环用镜2替代,镜2的镀膜面朝向腔内,用真空密封胶将镜2与放电管的上端密封好。再将电极烧上。由于元件的加工确保了精度,故在光学校准仪器的适当监测和通过辅助手段对各元件适当调整后即可达到要求,该激光器可在该支架立式工作,从顶部输出,其优点是装配方便,光学元件受力很小,也可在装配完毕后横放或倒立式工作,但是在横放或倒立前应对支架作一定处理,使其对放电管内、外壁有一定强度的辅助支撑,并在内、外放电管壁形成的间隙也加强支撑,使其横放或倒立后两放电管的内外层圆台管及电极的重力几乎均由支架支持,此时激光输出镜从横向或从下面输出。当为高功率二氧化碳激光器时,由于放电管的内、外壁为金属管且同时作为电极,故管的强度很高,其支撑问题容易解决,装配前的准备和装配过程与低功率的二氧化碳激光器的基本相同,用玻璃或石英作为基底材料制作的腔镜,若镀介质膜两电极之间的是绝缘的,若镀金属膜,则应考虑在圆台形管底部与各自的全反射镜的连接部位之间有绝缘层,不过射频电源的电压通常都是较低的。
During the assembly process of the device of the present invention, the support and fixation of the four walls of the discharge tube of the present invention are realized by using special brackets. When it is a low-power carbon dioxide laser, process two hollow semi-circular rings of quartz, the inner radii of the two semi-circular rings are slightly smaller than the inner ring radii of
装置组装好后,将放电管及连接部分抽成真空。对二氧化碳激光器,当真空度达到10-3×133.3Pa时,按照CO2:N2:He =1:1.5:7.5,总压为10×133.3Pa,两部分反射镜对10.6微米波长光波反射率为80%,两全反射镜反射率为99%以上,对其施以射频放电即可获得输出。 After the device is assembled, the discharge tube and the connection part are evacuated. For carbon dioxide lasers, when the vacuum reaches 10 -3 × 133.3Pa, according to CO 2 : N 2 : He = 1:1.5:7.5, the total pressure is 10 × 133.3Pa, and the reflectivity of the two-part reflector to 10.6 micron wavelength light wave The reflectance of the two total reflection mirrors is over 99%, and the output can be obtained by applying radio frequency discharge to it.
实施例放电管外壁3的半径r 2为100毫米,长L为200毫米,放电管内壁4的半径r 1为80毫米,长L为200毫米,两管壁间间距a为20毫米,镜1和镜2的环宽也是20毫米,放电管侧壁5和6长L为200毫米,宽a为20毫米,子腔腔轴zz用r表示为90毫米,子腔凹面镜曲率半径R为274.697米,子光束腰斑半径为5毫米,子光束发散角为0.675毫弧度,船光在平面 (x 2,o 2,y 2) 处中心凹陷深度r – ω(z)为85毫米,船光的厚度为10毫米,宽度2[r+ ω(z)]为190毫米,船光在距离平面 (x 2,o 2,y 2) 10米处中心凹陷深度r – ω(z)为81.6毫米,船光的厚度为16.8毫米,宽度2[r+ ω(z)]为196.8毫米,船光波长为10.6微米。 Embodiment The radius r2 of the discharge tube outer wall 3 is 100 millimeters, and the length L is 200 millimeters, the radius r1 of the discharge tube inner wall 4 is 80 millimeters, and the length L is 200 millimeters, and the distance a between the two tube walls is 20 millimeters, and the mirror 1 The ring width of the sum mirror 2 is also 20 mm, the length L of the discharge tube side walls 5 and 6 is 200 mm, the width a is 20 mm, the sub-cavity axis zz is expressed as 90 mm by r , and the radius of curvature R of the sub-cavity concave mirror is 274.697 m, the waist spot radius of the sub-beam is 5 mm, the divergence angle of the sub-beam is 0.675 mrad, the depth r – ω ( z ) of the center of the boat light at the plane ( x 2 , o 2 , y 2 ) is 85 mm, the boat The thickness of the light is 10 mm, the width 2[ r + ω ( z )] is 190 mm, and the depth r – ω ( z ) of the central depression of the boat light at 10 meters from the plane ( x 2 , o 2 , y 2 ) is 81.6 mm, the thickness of the ship light is 16.8 mm, the width 2[ r + ω ( z )] is 196.8 mm, and the wavelength of the ship light is 10.6 microns.
形成船光的装置,包括凹面半圆环全反射镜,平面半圆环部分反射输出镜,半圆柱面内壁,半圆柱面外壁,两个长条形侧壁,参照图1,半圆柱面外壁3、半圆柱面内壁4以及两个长条形侧壁5和6一起合围形成船形放电管8,凹面半圆环全反射镜1与船形放电管8的底部真空性封贴,平面半圆环部分反射输出镜2与船形放电管8的顶部真空性封贴,使内、外两半圆柱面夹层空间能抽高真空,在高真空条件下将二氧化碳、氮、氦混合气充入放电管8。其特征还在于由凹面半圆环全反射镜1和平面半圆环部分反射输出镜2以及船形放电管8构成的谐振腔为船形谐振腔,船形谐振腔沿放电管8的内、外壁4和3的旋转轴z轴的纵剖面为船形谐振腔的凹平子腔,设计为稳定腔,该凹平子腔绕z轴旋转180度形成船形谐振腔,内、外壁4和3的旋转轴z轴也是船形谐振腔的光轴,该子腔的腔轴zz轴的距离应远远大于于该子腔的直径a,该凹平子腔的输出光束的腰斑位于输出镜位置,其特征还在于该船形谐振腔的输出光束为船光7,该船光7可以看做是该凹平子腔的输出光束绕光轴z轴旋转180度形成,该子腔的输出光束的发散角在毫弧度量级,距离输出平面某处的该子腔输出光束的光束直径为所述位置船光的厚度,该子腔腔轴距离光轴z轴的距离减去所述位置该子光束的半径为船光7在所述位置的中心凹陷深度,该子腔腔轴距离光轴z轴的距离加上所述位置该子光束的半径之和的二倍,为该船光7在所述位置的宽度。
The device for forming ship light includes a concave semi-circular total reflection mirror, a planar semi-circular partial reflection output mirror, a semi-cylindrical inner wall, a semi-cylindrical outer wall, and two strip-shaped side walls. Referring to Figure 1, the semi-cylindrical outer wall 3. The inner wall 4 of the semi-cylindrical surface and the two elongated side walls 5 and 6 together form a discharge boat 8, the concave semicircular ring
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310245627.9A CN103326225B (en) | 2013-06-20 | 2013-06-20 | A kind of apparatus and method realizing ship light |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310245627.9A CN103326225B (en) | 2013-06-20 | 2013-06-20 | A kind of apparatus and method realizing ship light |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103326225A true CN103326225A (en) | 2013-09-25 |
CN103326225B CN103326225B (en) | 2016-04-13 |
Family
ID=49194835
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310245627.9A Expired - Fee Related CN103326225B (en) | 2013-06-20 | 2013-06-20 | A kind of apparatus and method realizing ship light |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103326225B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426705A (en) * | 1981-10-06 | 1984-01-17 | The United States Of America As Represented By The Secretary Of The Air Force | Double electric discharge coaxial laser |
US4483006A (en) * | 1982-05-06 | 1984-11-13 | The United States Of America As Represented By The Secretary Of The Air Force | Axial flow laser cavity |
CN1340889A (en) * | 2000-09-01 | 2002-03-20 | 四川大学 | He-Ne laser device |
CN1710759A (en) * | 2004-06-16 | 2005-12-21 | 四川大学 | A construction method and device of a compact helium-neon laser |
CN101232147A (en) * | 2007-01-25 | 2008-07-30 | 四川大学 | Hollow Beam Gas Lasers |
-
2013
- 2013-06-20 CN CN201310245627.9A patent/CN103326225B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4426705A (en) * | 1981-10-06 | 1984-01-17 | The United States Of America As Represented By The Secretary Of The Air Force | Double electric discharge coaxial laser |
US4483006A (en) * | 1982-05-06 | 1984-11-13 | The United States Of America As Represented By The Secretary Of The Air Force | Axial flow laser cavity |
CN1340889A (en) * | 2000-09-01 | 2002-03-20 | 四川大学 | He-Ne laser device |
CN1710759A (en) * | 2004-06-16 | 2005-12-21 | 四川大学 | A construction method and device of a compact helium-neon laser |
CN101232147A (en) * | 2007-01-25 | 2008-07-30 | 四川大学 | Hollow Beam Gas Lasers |
Non-Patent Citations (3)
Title |
---|
吴建君等: "基于二维激光支持爆轰波模型的光船工作过程数值模拟", 《推进技术》 * |
李俊美等: "激光推进中一种光船结构的设计", 《装备指挥技术学院学报》 * |
李育德: "全环形镜面利用的多程环形腔特性分析", 《激光技术》 * |
Also Published As
Publication number | Publication date |
---|---|
CN103326225B (en) | 2016-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2537487A (en) | Electrochemical composite deposition machining method and apparatus using laser light tube as electrode | |
KR100589087B1 (en) | Green welding laser | |
CN101232147A (en) | Hollow Beam Gas Lasers | |
CN101572378A (en) | Phase-locked axisymmetric folding combined carbon dioxide laser | |
CN102064458B (en) | Hollow round table resonant cavity gas laser | |
CN116117331A (en) | A laser polishing method for hemispherical harmonic oscillator | |
CN103606802B (en) | A kind of PGC demodulation compound cylinder electric discharge high-power carbon dioxide laser | |
CN103326225B (en) | A kind of apparatus and method realizing ship light | |
CN101630807B (en) | A conical phase-locked carbon dioxide laser | |
CN104009372A (en) | Phase-locked multi-channel strip discharging array carbon dioxide laser | |
CN102231474A (en) | Construction method and device of axisymmetric four-mirror folded combined CO2 laser | |
CN1996683A (en) | Laser resonance cavity of the combined full reflection mirror with the right-angle interval and external taper | |
CN102005690B (en) | Method and device for constructing multiple CO2 laser system | |
CN204832691U (en) | Laser instrument light path beam shaping system | |
Huang et al. | A novel prism beam-shaping laser diode bar end-pumped TEM00 mode Nd: YVO4 laser | |
CN103236626B (en) | A kind of apparatus and method realizing light cage | |
CN103545701A (en) | Phase-locked cylindrical CO2 laser | |
CN105436704B (en) | Double processing head laser processing devices based on radial polarized light beam | |
CN101174754B (en) | Lasers Based on Crescent Harmonic Mirrors | |
CN114597736B (en) | A high-energy 2940 nm pulsed disk laser based on Er | |
CN1929217A (en) | High power pulsed laser maladjustment proof resonant cavity | |
CN104184040A (en) | Construction method and device of traveling wave cavity high-power carbon dioxide laser | |
CN115673545A (en) | Semiconductor laser welding device | |
CN103904536B (en) | laser | |
CN103972775B (en) | A kind of apparatus and method for realizing two-dimensional helical hollow laser beam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20160413 Termination date: 20190620 |
|
CF01 | Termination of patent right due to non-payment of annual fee |